Description of the project Feasibility, Logic and Randomness
(FEALORA)

This project was proposed as an Advanced Grant of the European Research Council. The panel
recommended it for funding and preparation of the grant agreement has been initiated. It is scheduled to start
January 1, 2014 and last five years.

The principal investigator will be me (Pavel Pudldk). There will be four permanent positions for co-
investigators partly funded by the grant: Pavel Hrubes, Emil Jefdbek, Michal Koucky and Neil Thapen.

There will be funds for one post-doc position during the whole period and two PhD-student positions. These
positions will be filled on a competitive basis and start January 1, 2014. The Mathematical Institute will
publish an official call on its web-page. I recommend, however, that you contact me directly as soon as you
start considering to apply. Also do not hesitate to contact me, or the project manager Beata Kubis
(kubisb@math.cas.cz) if you have any questions.

The post-doc positions are intended for young researchers with a background in computational complexity
and logic. The typical duration should be 1 or 2 years.

The student positions are for talented students who want to do their PhD at Charles University in Prague
(with me as the supervisor) working on a topic related to the project. The support will be given for up to 4
years.

The topic of the project is proof complexity with feasible incompleteness as a central theme. Feasible
incompleteness, roughly speaking, refers to the study of the incompleteness phenomenon in systems with
bounded resources. (For more detail, see below or [P13, Section 6.4].) My motivation for focusing on this
topic is twofold:

1. It is an approach to explaining why problems in computational complexity are so difficult. It may also lead
to proofs of independence (at least unprovability in some relatively weak theories or proof systems).

2. It is a source of problems in proof complexity as well as in computational complexity. In fact, many results
in proof complexity can be viewed as confirming certain conjectures about feasible incompleteness.

Since the topic of feasible incompleteness is rather special, we do not expect that all students, postdocs and
visitors will work on it. One should view feasible incompleteness as a an approach to problems in
computational complexity, not as the ultimate goal. So if participating researchers make progress in solving
fundamental problems in computational complexity theory or proof complexity using different means, it will
be absolutely fine.

The Scientific Content of the Project

In this project we want to study theoretical aspects of computational complexity. Computational complexity
is one of the central areas of theoretical computer science with deep and difficult open problems. Since its
origin in the 1960s computational complexity has made tremendous progress. Many important concepts have
been introduced, many difficult problems have been solved and a number of new proof methods have been
developed. In spite of this the main open problems, such as P vs. NP, remain as widely open as they were
before.



Therefore it is necessary to study the reasons why these problems cannot be solved using the current
methods. The aim of this project is to study the limitations of the methods systematically and develop a
theory that will explain why the problems are difficult. Our approach is based on studying the
incompleteness phenomenon in the context of polynomial time computability, which we call feasible
incompleteness. The basic idea is that important conjectures in complexity theory, including P not equal to
NP, are equivalent, or follow from plausible assumptions about unprovability, or lower bounds on the
lengths of proofs of certain statements. The study of feasible incompleteness will be combined with the study
of pseudorandomness, which is a concept that is connected with a number of important problems in
computational complexity and proof complexity. Most of the technical work will concern proving special
cases of feasible incompleteness conjectures and their relativized versions in order to provide evidence for
their truth.

A brief overview of the research area

1. Results about limitations of methods. One of the first results showing limitations of methods in
computational complexity was the application of the concept of relativization [BGS75]. It was shown that for
most of the open questions about pairs of complexity classes one can find oracles such that the question
relativized to oracles is decided in both ways ways (equal and unequal). This shows that simple methods,
such as straightforward application of diagonalization, cannot be used to solve these problems. Another early
result about limitations of methods is due to Razborov [R89]. He showed that his method of approximation,
which had been successfully used to prove exponential lower bounds on monotone circuits and bounded
depth circuits with modular gates, cannot work for general circuits. Razborov's result on the limited
applicability of the approximation method can be stated in plain words as the fact that one cannot base a
lower bound on circuit complexity on the concept of progress towards the computed function. For Boolean
formulas, it possible to use “measures of progress”, but still we do not have more than cubic lower bounds.
One result that explains the difficulties of using this approach for formula size complexity is [HKPJ10]. It
shows that many complexity measures are convex and for those one can only prove quadratic lower bounds.
The most important of these results, because of its wide applicability, is the result of Razborov and Rudich
[RR97] that shows that one cannot prove superpolynomial lower bounds on circuit complexity using natural
proofs. Natural proofs are a precisely defined concept that captures the typical form of lower bound proofs
where one first defines a property that implies high complexity and then shows that the given Boolean
function has the property. Their result uses an unproven conjecture about the existence of strong
pseudorandom generators. More recently, the method of relativization was extended to proofs that use
approximations by low degree polynomials [AWO08]. The concept is called algebraic relativization, or
algebrization. Further results were proved using self-reducibility of some problems. Eg., in [PP10] we proved
that a the existence of slightly subexponential algorithms for circuit satisfiability implies the existence of
much faster algorithms for this problem. Therefore it is unlikely that there there are subexponential
algorithms of this type.

2. Feasible incompleteness. This is the idea that the incompleteness phenomenon, as we know it from first-
order logic, manifests itself also on the level of (polynomially) bounded proofs and computations. It is not a
completely new idea (e.g., already in the 1950s Georg Kreisel mentioned a feasible version of Godel's
theorem), but very little has been published and essentially no systematic research has been done. The first
result in this direction was proved by H. Friedman [F79] (and independently by the PI [P86], since [F79] has
never been published). It is a lower bound on the lengths of proofs of finite consistencies — statements
asserting that a theory is consistent up to proofs of a given length. This result is interesting, but it concerns
only proofs in a theory T of the consistency statements about T. A much more interesting question is what
happens if we consider provability in a theory S of the consistency statements in another theory T where S is
weak and T is strong. Then it is natural to conjecture that the proofs must have exponential length. Using the
fact that the consistency statements are universal in a certain class of formulas, Kraji¢ek and the PI showed
that conjectures of this kind are equivalent to several natural statements about computational complexity
[KP89]. These conjectures are stronger than the central open problems in complexity theory, such as P not
equal to NP, hence if proved, they would settle fundamental problems. The reason for lack of publications



about feasible incompleteness is that the problems one needs to solve are apparently at least as hard as those
in computational complexity theory. Therefore the PI proposed to develop a system of conjectures that would
explain, rather than prove, the phenomenon of feasible incompleteness and thus would also give justification
for commonly accepted conjectures about the basic complexity classes. In a short paper [P06] the PI
presented more conjectures and proposed the term the Feasible Incompleteness Thesis for the system of these
conjectures. The Feasible Incompleteness Thesis is treated in more detail in the forthcoming book [P13].
However, this project is just at the beginning.

An example of a feasible conjecture is: For every recursively axiomatized theory T there, there exists a total
polynomial search problem P such that T is unable to prove that P is total for any formalization of the
problem by a low complexity formula’. An equivalent statement purely in terms of computational complexity
is: For every total polynomial search problem P, there exists a total polynomial search problem S that is not
polynomially reducible to P. While the second statement does not give us much clue why it should be true,
the first one has an explanation: because of incompleteness of r. e. theories.

3. Proof complexity. Proof complexity is a research field that studies the question of how difficult it is o
prove a theorem (in contrast to computational complexity which studies the question of how difficult it is fo
compute a function value). Proof complexity can be divided, like computational complexity, into uniform and
nonuniform parts. The part of proof complexity that studies nonuniform concepts deals with the lengths of
proofs in various proof systems for (classical) propositional calculus. The part of proof complexity that
studies uniform concepts deals with weak arithmetical theories. A generic proof system for propositional
calculus can be viewed as a nondeterministic Turing machine accepting the coNP-complete set of
tautologies. A proof, then, is an accepting computation; its length is the length of this computation. We can
also view it as a certain framework for deterministic algorithms. For example, the Davis-Putnam procedure
corresponds to tree-like resolution proofs. Thus by proving exponential lower bound on tree-like resolution
proofs, it has been shown that any deterministic algorithm that is based on Davis-Putnam procedure must run
in exponential time on some inputs. Two general methods for proving lower bounds on the lengths of proofs
are known. The first is the random restriction method that is known in circuit complexity. Its application in
proof complexity is always technically more involved. The second method is the feasible interpolation
method. Both methods can only be applied to relatively weak proof systems. In Boolean circuit complexity
there is another important method: the method of approximation. This method has not been applied in proof
complexity yet. It is a challenge to find a version of this method suitable for proof complexity. The weak
first-order theories are called bounded arithmetic. Each such theory is usually associated with a complexity
class. There are several ways how to formalize this association. One of these is as follows. Given a
complexity class C, we pick a suitable set of formulas F that define sets in C. Then we define a theory using
some finite set of basic axioms plus the schema of induction postulated for formulas from F. Further, these
theories are associated with propositional proof systems, which can be viewed as their nonuniform
counterparts. The association with propositional proof systems enables us: 1. to construct propositional
proofs more efficiently by first finding a proof in the theory and then translating it into the propositional
calculus, 2. to prove independence of sentences by proving superpolynomial lower bounds on the proofs in
the associated proof system. The main reason why these theories are studied is that they are on the border
where one can prove independence of statements about complexity classes. While proving unprovability of
such statements in Peano Arithmetic is a hopelessly difficult problem, for some weak theories in bounded
arithmetic, this is possible. One result of this kind is due to Razborov [R95]. He proved that one cannot prove
superpolynomial lower bounds on circuit complexity in a certain theory. In terms of complexity classes, the
theory is unable to prove that NP is not a subset of P/poly. On the other hand, one can prove for a stronger
(and more natural) theory that it is consistent with NP not equal to coNP [folklore].

4. Randomness, pseudorandomness and lower-bound methods. The concept of pseudorandomness will play
one of the key roles in our project. Pseudorandom generators were introduced in order to simulate sources of
genuine random bits that are needed in probabilistic algorithms. This concept is very important in

1 Low complexity means Sigma”b_1.



theoretical cryptography because of is close connection with one-way functions. Furthermore, it is also
important in proof complexity. There is a growing body of evidence that the concept is connected with circuit
lower bounds and thus connected with fundamental problems about separating complexity classes. Already
Claude Shannon observed that a random Boolean function has exponential circuit-size complexity. So, in
principle, it suffices to imitate random functions by pseudorandom ones in order to get explicit boolean
functions with exponential circuit complexity. There are much more concrete connections. In particular,
derandomization of certain randomized algorithms implies lower bounds on circuit complexity and, vice
versa, sufficiently large lower bounds on Boolean circuit complexity imply the existence of pseudorandom
generators [NW94,IW97,KI04]. Pseudorandomness is also important for the aforementioned result of
Razborov and Rudich - their theorem uses a conjecture about the existence of strong pseudorandom
generators. Pseudorandom generators are further used in an important conjecture of Krajicek and Razborov
about hard tautologies [R03,K11]. According to their conjecture, the existence of pseudorandom generators
implies superpolynomial lower bounds on the lengths of proofs of tautologies in Frege systems, which is a
big open problem in proof complexity. This conjecture is important because, in spite of being very strong, it
is not known to imply NP not equal to coNP. Furthermore, it has been proved for a certain class of proof
systems (instead of Frege system) [Pill].

5. Pseudorandomness in number theory. Pseudorandomness plays an important role also in number theory. In
number theory considerations about random behavior of some sequences have been used to justify
conjectures in an informal way and to explain why some algorithms are fast. There are now results that
consider pseudorandomness as a formal concept. In particular, a certain concept of pseudorandomness plays
an important role in the famous result of Green and Tao about arithmetic progressions of primes [GTO08].
Subsequently, their idea was analyzed in complexity theory and interesting connection were found
[RTTVO8]. Another example is the Mobius Randomness Principle, a conjecture proposed informally by Peter
Sarnak. It can be formalized by saying that the sequence of values of the Mobius function is pseudorandom
in a well-defined sense. This means that it is not possible to distinguish the sequence from a random
sequence using polynomial time computable tests. (Since the values of the Mobius function are 0, 1, and -1,
and we are comparing it with a random sequence of 1s and -1s, we have to ignore the 0s.) The simplest
special case of the conjecture is equivalent to the Prime Number Theorem. Very recently Ben Green proved
the conjecture for ACO tests [G13]. These connections are important for our project. We will use models of
arithmetic to study this kind of pseudorandomness.

Objectives of research

1. Develop a system of conjectures in order to justify commonly conjectured inequalities between complexity
classes. The idea of explaining the difficulty of the fundamental problems in complexity theory attracted a
lot of attention in the past few years. The term barriers in computational complexity has become fashionable,
but the results obtained so far only give more precise delimitation of the barriers without explaining why
there are any barriers. We want to take this challenge seriously and develop a global theory of the open
problems in complexity theory. We hope that this theory will also suggest which directions of research
should be pursued in order to make progress in solving the fundamental problems.

2. Develop better understanding of feasible incompleteness. Working towards objective 1, we will focus on
feasible incompleteness. The reason is that we believe that the nature of the fundamental problems in
complexity theory is logical. The results obtained and methods developed in proof complexity enable us to
analyze and test the conjectures. To this end we will prove special cases and relativized versions of the
conjectures. In this way, the conjectures will guide us in which direction we should pursue the research in
proof complexity.

3. Find connections between pseudorandomness and feasible incompleteness. Although pseudorandomness
and feasible incompleteness seem to be of fundamentally different nature, some connections are already
known and there are good reasons to expect that more will be found. One reason is that in several cases
conjectures about pseudorandom generators have been used to give conditional solutions to problems in
proof complexity. Another reason is the connection of derandomization with circuit lower bounds. A concrete



example of a conjecture connecting these two concepts that has already been stated is the aforementioned
Kraji¢ek-Razborov's conjecture.

A sample of specific problems

10.

11.

12.

References

Find a natural feasible incompleteness conjecture that implies all feasible conjectures considered
so far.

Find connection of feasible incompleteness conjectures with standard conjectures about
pseudorandom generators and extend the system to include conjectures that imply them.

Find connections with proof-complexity generators of Krajicek and Razborov [R03,K11].
Explain pseudorandomness using a system of models with a probability measure or using
Boolean valued models [K11]. A preliminary result in this direction is in [P12].

Find a nontrivial example of a trade-off between the complexity of an algorithm and strength of
a theory in which it is provable that the algorithm solves a given problem.

Prove a lower bound on a theory or a proof system in which it is possible to prove some
pseudorandom properties of particular structures. Except for simple kind of circuits, properties
of pseudorandom generators have not been formally proved. We believe that there are some
fundamental reasons why it is so.

Prove separation for relativized total search problems associated with the Bounded Arithmetic
Hierarchy. One of the conjectures is that the hierarchy of total search problems is unbounded and
this is because the theories with which they are associated have increasing strength. If we prove
that total search problems associated with Bounded Arithmetic Hierarchy have increasing
strength relative to an oracle, it will be evidence for the truth of this conjecture.

Construct a hierarchy of total search problems indexed by ordinal less than some transfinite
ordinal greater than omega. Countable ordinals have been successfully used in proof theory as a
parameter that determines the strength of theories. This approach failed for weak theories studied
in proof complexity. It seems, however, conceivable that it may work for concepts such as total
search problems because they correspond to fast growing functions in strong theories and those
can be classified by ordinals.

Find a concept in proof complexity that corresponds to natural proofs of Razborov-Rudich or
find an argument that there is none. It has been shown that many concepts of computational
complexity have their counterparts in proof complexity. The concept of natural proofs in proof
complexity is elusive so far.

Formalize pseudorandom generators in weak theories. This is an important problem because
proving lower bounds on circuit complexity is tightly connected with constructions of
pseudorandom generators.

Find a natural theory in which one can formalize current lower bound techniques, but which is
unable to prove lower bounds for general circuits. A significant progress towards this goal has
been made by Razborov [R95], but the theory defined in his paper is not natural.

Prove lower bounds on the complexity of proofs of some properties of combinatorial structures,
such as Ramsey graphs and expanders. A related problem is to prove lower bounds on the
complexity of proving properties of some pseudorandom generators.
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