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PRECOVERS AND GOLDIE’S TORSION THEORY
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Abstract. Recently, Rim and Teply [8], using the notion of T-exact modules, found a nec-
essary condition for the existence of T-torsionfree covers with respect to a given hereditary
torsion theory 7 for the category R-mod of all unitary left R-modules over an associative
ring R with identity. Some relations between T-torsionfree and 7-exact covers have been
investigated in [5]. The purpose of this note is to show that if o = (I, %s) is Goldie’s
torsion theory and %, is a precover class, then .#; is a precover class whenever 7 > o.
Further, it is shown that %, is a cover class if and only if ¢ is of finite type and, in the case
of non-singular rings, this is equivalent to the fact that .7 is a cover class for all hereditary
torsion theories 7 > o.
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In what follows, R stands for an associative ring with identity and R-mod denotes
the category of all unitary left R-modules. The basic properties of rings and modules
can be found in [1]. A class ¢4 of modules is called abstract, if it is closed under iso-
morphic copies, co-abstract, if its members are pairwise non-isomorphic and complete
with respect to a given property, if every module with this property is isomorphic to
a member of the class ¢.

Recall that a hereditary torsion theory T = (7, %,) for the category R-mod
consists of two abstract classes 7, and %, the T-torsion class and the T-torsionfree
class, respectively, such that Hom(T, F') = 0 whenever T € 7, and F' € %, the class
7, is closed under submodules, factor-modules, extensions and arbitrary direct sums,
the class %, is closed under submodules, extensions and arbitrary direct products
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and for each module M there exists an exact sequence 0 - T — M — F — 0 such
that T € 7, and F € .%,. For two hereditary torsion theories T and 7’ the symbol
7 < 7’ means that 7, C 7 and consequently .%,, C .%,. Associated with each
hereditary torsion theory 7 is the Gabriel filter £, of left ideals of R consisting of
all left ideals I < R with R/I € Z,. Recall that 7 is said to be of finite type, if
% contains a cofinal subset £/ of finitely generated left ideals. A submodule N of
the module M is called 7-closed (or 7-pure), if the factor-module M/N belongs to
Zr. A module M is said to be T-noetherian, if the set of all T-closed submodules
of M satisfies the maximum condition. A module @Q is said to be 7T-injective, if
it is injective with respect to all short exact sequences 0 — A — B — C — 0,
where C' € 7,. Further, a hereditary torsion theory 7 is called ezact, if E(Q)/Q
is 7-torsionfree 7T-injective, F(Q) being the injective hull of @), whenever @ is a 7-
torsionfree 7-injective module. If, in addition, 7 is of finite type, then it is called
perfect. For more details on torsion theories we refer to [7] or [6].

For a module M, the singular submodule Z(M) consists of all elements a € M, the
annihilator left ideal (0: a) = {r € R; ra = 0} of which is essential in R. Goldie’s
torsion theory for the category R-mod is the hereditary torsion theory o = (7, .%,),
where 7, = {M € R-mod; Z(M/Z(M)) = M/Z(M)} and #, = {M € R-mod;
Z(M) = 0}. If the ring R is o-torsionfree, Z(R) = 0, then R is called non-singular.
Note that in this case the Gabriel filter .Z, consists of essential left ideals only.

If ¢ is an abstract class of modules, then a homomorphism ¢: G — M is called a
4 -precover of the module M, if G € 4 and every homomorphism f: F — M, F € ¥,
factors through ¢, i.e.there exists a homomorphism g: F — G such that pg = f.
Moreover, a ¥-precover ¢ of M is said to be a ¥-cover, if each endomorphism f
of G with ¢f = ¢ is an automorphism of the module G. An abstract class ¢4 of
modules is called a precover (cover) class, if every module has a ¥-precover (¢-
cover). It is well-known that an %, -precover p: G — M is an %, -cover if and only
if Ker ¢ contains no non-zero submodule 7-closed in GG. For more details concerning
the theory of precovers and covers we refer to [10].

It is well-known (see e.g. [7; Proposition 42.9]) that a hereditary torsion theory 7
is of finite type if and only if any directed union of 7-torsionfree 7-injective modules
is 7T-injective and that this condition is sufficient for the existence of T-torsionfree
covers (see [9] for the T-torsionfree rings and [2] for the general case). On the other
hand, in [8] a necessary condition has been presented saying that the directed union
of 7-exact submodules of a given module is 7-injective. By a 7-exact module we
mean any 7-torsionfree module, every 7-torsionfree homomorphic image of which is
T-injective. The purpose of this note is to prove that for Goldie’s torsion theory o
the finite type condition is necessary and sufficient for the existence of o-torsionfree

covers. Moreover, if %, is a precover class, then %, is a precover class whenever
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7 > o and the same holds for cover classes provided that the ring R is non-singular.
More precisely, we are going to prove the following two theorems.

Theorem 1. Let o0 = (7,,-%,) be Goldie’s torsion theory for the category
R-mod. If %, is a precover class, then %, is a precover class for any hereditary
torsion theory T > o.

Theorem 2. Let o = (J,,%,) be Goldie’s torsion theory for the category
R-mod. The following conditions are equivalent:
(i) &, is a cover class;
(ii) o is of finite type;
(iii) o is perfect.
If, moreover, the ring R is non-singular (Z(R) = 0), then these conditions are
equivalent to the following three conditions:
(iv) every non-zero left ideal of R contains a finitely generated essential left ideal;
(v) rR is o-noetherian;
(vi) for every hereditary torsion theory T > o the class #. is a cover class.

We start with some preliminary lemmas, the symbol o will always denote Goldie’s
torsion theory.

Lemma 1. Let 7 > o be a hereditary torsion theory for the category R-mod.
Then
(i) a module Q € %, is T-injective if and only if it is injective;
(ii) a submodule K < @ with Q € %, injective is T-closed if and only if it is
injective. In this case the factor-module )/ K is also injective.

Proof. (i) If Q € %, is T-injective and E(Q) is the injective hull of @, then
E(Q)/Q € %, C %, by [7; Corollary 44.3]. In view of the obvious fact E(Q)/Q €
we have Q@ = E(Q). The converse is obvious.

(ii) If K is 7-closed in @, then Q/K € %, C .%#,. Hence K has no proper essential
extension in () and consequently it is injective. The rest is clear. O

Lemma 2. Let 7 > o be a hereditary torsion theory for the category R-mod. If
every module has an % -cover, then every directed union of T-torsionfree injective
modules is T-torsionfree injective.

Proof. Let K = |J K, be a directed union of T-torsionfree injective modules,

acA
let M = E(K) be the injective hull of K and let ¢: G — M/K be an % -cover

of the module M/K. Denoting by 7,: M/K, — M/K the corresponding natural
projections, there are homomorphisms f,: M/K, — G such that ¢f, = 7, for
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every a € A. Obviously, Ker f, C K/K, and we are going to show that the equality
holds for each a € A. If not, then Kg/K, ¢ Ker f, for some o, 3 € A and so
0 # fo(Kp/K.) = Kg/Lg € #; C %, yields according to Lemma 1 that 0 #
fa(Kg/Ko) C Kery is injective. This contradicts the fact that ¢ is an % -cover
of the module M/K and consequently Im f, = M/K € %, for each & € A. Thus
M/K € %,N 7, =0, M = K and we are through. O

Lemma 3. Let 7 = (J;,.%;) be an arbitrary hereditary torsion theory for the
category R-mod. The following conditions are equivalent:
(i) every module has a T-torsionfree precover;
(ii) every injective module has a T-torsionfree precover;

(iii) every injective module has an injective T-torsionfree precover.

Proof. Foran arbitrary injective module M we obviously have the commutative
diagram

where ¢ is the inclusion map of G into its injective hull E(G) and ¢ is an %, -precover
of the module M. Then v is obviously an Z.-precover of M and consequently (ii)
implies (iii).

Assuming (iii) let us consider the pullback diagram

©
e

F M
l j
G— <£4>

% F

where M € R-mod is arbitrary and 1 is an .%.-precover of F(M) with G injective.
Clearly, i is injective, hence F' € .%, and the pullback property yields that ¢ is an
Z-precover of the module M. The rest is clear. O

Lemma 4. Let 7 = (J;,%;) be a hereditary torsion theory for the category
R-mod. A homomorphism ¢: G — M with G € %, and M injective is an F.-
precover of the module M if and only if to each homomorphism f: (Q — M with
Q € %, injective, there exists a homomorphism g: Q — G such that pg = f.
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Proof. Only the sufficiency requires verification. So, let us consider the com-

mutative diagram
E(F)=—=E(F)<——F
1)
G —r M——M
with the given ¢, M injective and f: F — M, F € %., arbitrary. Then there is
h: E(F) — M with hi = f, M being injective, and ¢g: E(F) — G with ¢g = h by
the definition of a precover. Thus ¢(gi) = hi = f and the proof is complete. a

Proof (of Theorem 1). Let A be an arbitrary infinite cardinal and let
M be any complete co-abstract set of modules of cardinalities at most A. For any
M € My we fix an F,-precover ppr: Gpr — M and denote by k the first cardinal
with k > |G| for each M € M.

Further, let Q € %, be an arbitrary injective module with |Q| > « and let K < Q
be its submodule such that |Q/K| < A. Then, obviously, @ € %, and consequently,
by the above part, the factor-module @/ K has an .%,-precover ¢: G — Q/K with
|G| < k. Thus, there is a homomorphism f: @ — G such that ¢ f = 7, 7 being the
canonical projection Q — @Q/K. Now Ker f = L is contained in K and it is a direct
summand of ) by Lemma 1 (ii) owing to the fact that Q/L = Im f € %#,. Moreover,
Q/LI = |Tm f < |G| < .

Now let M € R-mod be an arbitrary injective module, A = max(|M|, Rg), and let
K be the cardinal corresponding to A by the beginning of this proof. Further, let 91,
be any complete co-abstract set of 7-torsionfree injective modules of cardinalities less

than k. We put G = @ QMom(@M) and p: G — M will denote the correspond-
QEMN,
ing natural evaluation map. To verify that ¢ is a 7-torsionfree precover of the module

M we shall use Lemma 4. So, let QQ € %, be an arbitrary injective module and let
f: @ — M be an arbitrary homomorphism. For |@Q| < s there exists an isomorphic
copy of @ lying in 9, and the existence of the homomorphism g: @ — G with
pg = [ can be easily verified. In the opposite case, for |Q| > k, denoting K = Ker f
we have |Q/K| = |Im f| < |[M| < A. Thus, by the above part, there is a direct
summand L of @ contained in K and such that |Q/L| < k. Moreover, f naturally
induces the homomorphism f: @Q/L — M such that fr = f, 7: Q — Q/L being the
canonical projection. Thus there is §: Q/L — G with g = f by the previous case,
so p(gm) = fm = f and to complete the proof it suffices now to apply Lemma 3. [

Proof (of Theorem 2). (i) implies (ii). It suffices to use Lemma 2 and [7;
Proposition 42.9].

(ii) implies (i). This has been proved in [9] in the case of a faithful torsion theory
and in [2] in the general case.
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(ii) is equivalent to (iii). This is obvious, o being exact by Lemma 1 (see also [7;
Corollary 44.3]).

Assume now that the ring R is non-singular.

(ii) implies (iv). Since R is non-singular, the Gabriel filter ., consists of essential
left ideals only, and consequently every essential left ideal contains an essential finitely
generated left ideal by the hypothesis. So, let 0 # I < R be an arbitrary non-essential
left ideal of R and let J < R be any left ideal maximal with respect to I N J = 0.
Then I & J is essential in R and consequently there is a finitely generated left ideal

K =5 Ra; CI®J essential in R. Now a; =b;+c¢;, b, € [, ¢, € J,i=1,...,n,
i=1

n
and it remains to verify that the left ideal > Rb; is essential in I. However, for

=1
n n n
an arbitrary element 0 # u € I we have 0 # ru = > rja; = Y. rib; + > ric; for
i=1 i=1 i=1
n
suitable elements r,71,...,r, € R, and consequently, 0 # ru = > r;b;, as we wished
i=1

to show.

(iv) is equivalent to (v). See [7; Proposition 20.1].

(iv) implies (vi). Let I € .. be arbitrary and let K < I be a finitely generated
left ideal essential in I. Then I/K € 7, C J,, hence K € %, and the torsion theory
7 is of finite type. Now it suffices to use [2].

(vi) implies (i). This is trivial. O
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