Testing the Kerr-nature of black hole candidates

Cosimo Bambi (LMU München & Fudan University)

6th FERO Meeting 30 – 31 August 2012, Prague, Czech Republic

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN ARNOLD SOMMERFELD

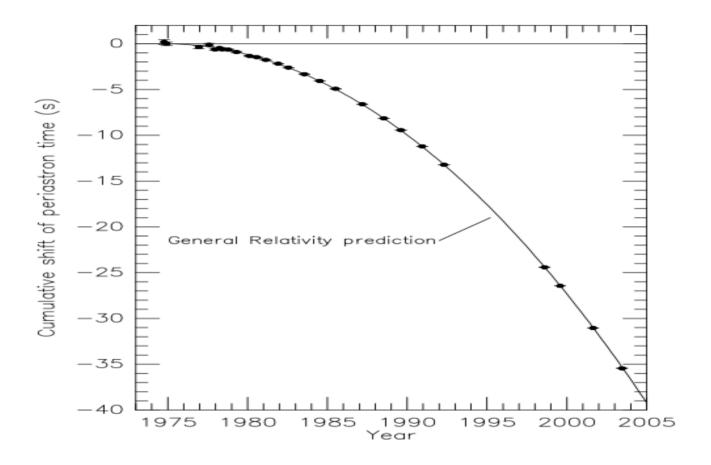
CENTER For Theoretical Physics

Plan of the talk

- Introduction (motivations, theoretical and observational facts)
- Probing the geometry of the space-time around astrophysical balck hole candidates (continuum-fitting method)
- Are jets powered by the black hole spin?

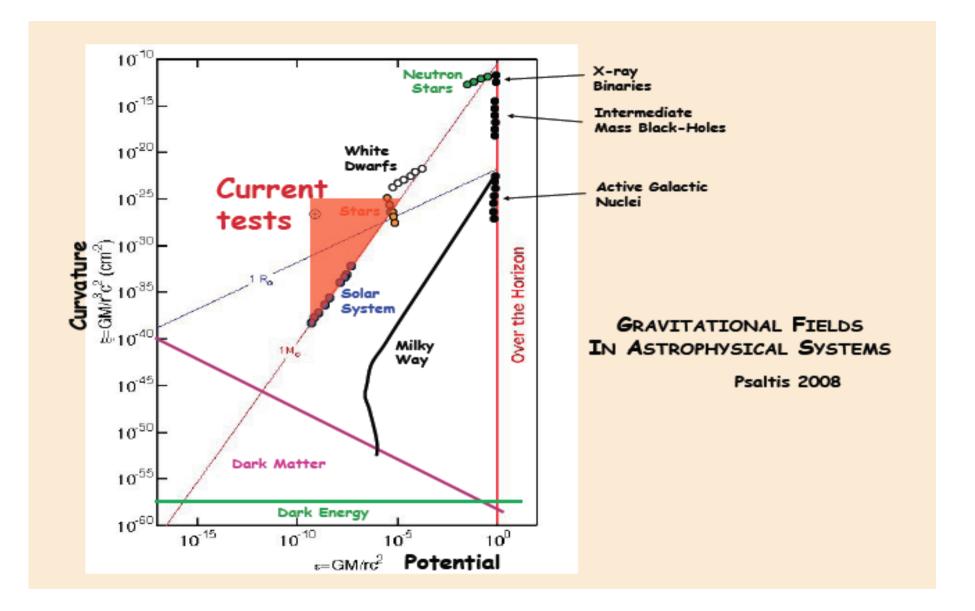
Introduction

- Introduction
- Probing the geometry of the space-time around astrophysical black hole candidates
- Are jets powered by the black hole spin?

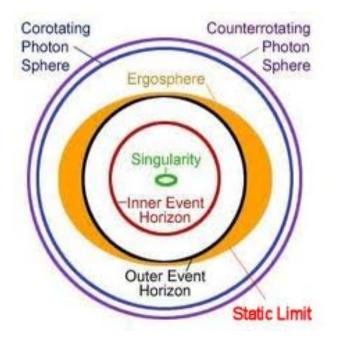

Tests of General Relativity

• Earth's gravitational field:

Lunar Laser Ranging experiments, Gravity Probe B, ...

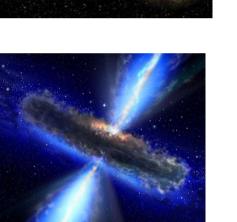

- Solar System:
 Cassini mission, . . .
- Observation of binary pulsars: PSR B1913+16, PSR J0737-3039, ...

Orbital decay of PSR B1913+16


From Weisberg & Taylor 2005

Cosimo Bambi (LMU & Fudan)

Black holes in GR (Theory)


- Final product of the gravitational collapse \rightarrow Black hole
- 4D General Relativity → Kerr black hole
- Only 2 parameters: the mass M and the spin J ($a_* = J/M^2$)
- Kerr bound: $|a_*| < 1$

Black hole candidates (Observations)

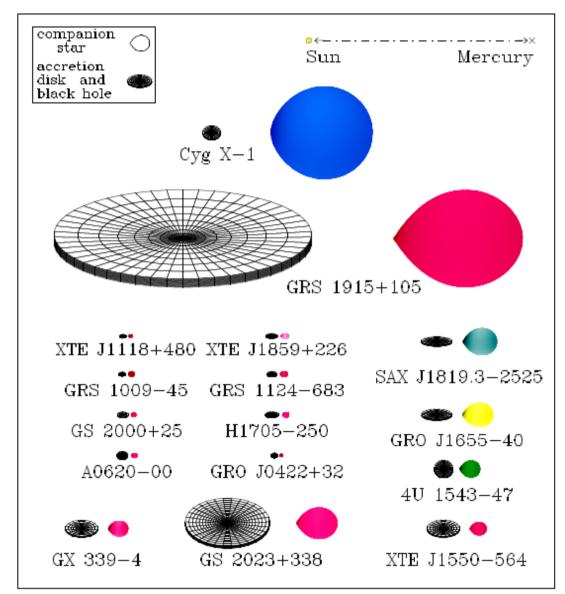
 Stellar-mass BH candidates in X-ray binary systems (5 – 20 Solar masses) –

- Super-massive BH candidates in galactic nuclei (10⁵ 10¹⁰ Solar masses)
- Intermediate-mass BH candidates in ULXS (10² – 10⁴ Solar masses?)

Stellar-mass BH candidates

• Dark objects in X-ray binary systems

• Mass function:
$$f(M_{BH}) = \frac{K^3 T}{2\pi G_N} = \frac{M_{BH}^3 \sin^3 i}{(M_{BH} + M_c)^2}$$
 $K = v \sin i$

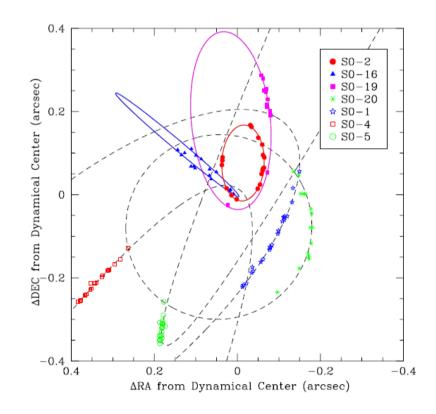

• In general, a good estimate of M_C and *i* is necessary

 Maximum mass for relativistic stars about 3 Solar masses (see Rhoades & Ruffini 1974 and Kalogera & Baym 1996)

Coordinate	Common	Year	Spec.	P _{orb}	f(M)	M_1
Name	Name/Prefix	1000/1		(hr)	(M _☉)	(M _☉)
0422 + 32	(GRO J)	1992/1	M2V	5.1	1.19 ± 0.02	3.7 - 5.0
0538 - 641	LMC X-3	_	B3V	40.9	2.3 ± 0.3	5.9 - 9.2
0540 - 697	LMC X-1	_	O7III	93.8^{d}	0.13 ± 0.05^{d}	4.0-10.0: ^e
0620 - 003	(A)	$1975/1^{f}$	K4V	7.8	2.72 ± 0.06	8.7 - 12.9
1009 - 45	(GRS)	1993/1	K7/M0V	6.8	3.17 ± 0.12	3.6-4.7: ^e
1118 + 480	(XTE J)	2000/2	K5/M0V	4.1	6.1 ± 0.3	6.5 - 7.2
1124 - 684	Nova Mus 91	1991/1	K3/K5V	10.4	3.01 ± 0.15	6.5 - 8.2
$1354-64^{g}$	(GS)	1987/2	GIV	61.1^{g}	5.75 ± 0.30	_
1543 - 475	(4U)	1971/4	A2V	26.8	0.25 ± 0.01	8.4 - 10.4
1550 - 564	(XTE J)	1998/5	G8/K8IV	37.0	6.86 ± 0.71	8.4 - 10.8
$1650 - 500^{h}$	(XTE J)	2001/1	K4V	7.7	2.73 ± 0.56	_
1655 - 40	(GRO J)	1994/3	F3/F5IV	62.9	2.73 ± 0.09	6.0 - 6.6
1659 - 487	GX 339-4	$1972/10^{i}$	_	$42.1^{j,k}$	5.8 ± 0.5	_
1705 - 250	Nova Oph 77	1977/1	K3/7V	12.5	4.86 ± 0.13	5.6 - 8.3
1819.3 - 2525	$V4641 \ Sgr$	1999/4	B9III	67.6	3.13 ± 0.13	6.8 - 7.4
1859 + 226	(XTE J)	1999/1	_	$9.2:^{e}$	7.4 ± 1.1 : ^e	7.6 - 12.0: ^e
1915 + 105	(GRS)	$1992/Q^l$	K/MIII	804.0	9.5 ± 3.0	10.0 - 18.0
1956 + 350	Cyg X–1	_	O9.7Iab	134.4	0.244 ± 0.005	6.8 - 13.3
2000 + 251	(\mathbf{GS})	1988/1	K3/K7V	8.3	5.01 ± 0.12	7.1 - 7.8
2023 + 338	V404 Cyg	$1989'/1^{f}$	KOIII	155.3	6.08 ± 0.06	10.1 - 13.4

From Remillard & McClintock 2006

Black Hole Binaries in the Milky Way

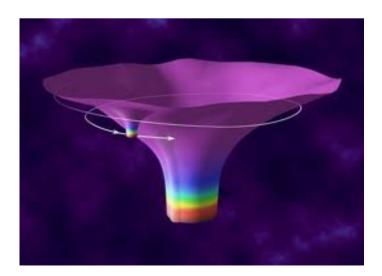


From Remillard & McClintock 2006

Cosimo Bambi (LMU & Fudan)

Super-massive BH candidate in the Galaxy

- We study the orbital motion of individual stars
- Point-like central object with a mass of 4x10⁶ Solar masses
- Radius < 45 AU (600 R_{Sch})


From Ghez et al., ApJ 620 (2005) 744

Probing the geometry of the space-time around astrophysical black hole candidates

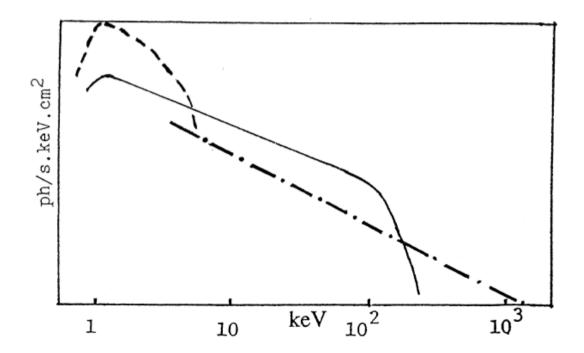
- Introduction
- Probing the geometry of the space-time around astrophysical black hole candidates
- Are jets powered by the black hole spin?

Testing the Kerr BH Hypothesis with EMRIs

- EMRI = Extreme Mass Ratio Inspiral
- LISA will be able to observe about $10^4 10^6$ cycles of GWs emitted by an EMRI while the stellar-mass body is in the strong field region of the super-massive object
- The quadrupole moment of the super-massive object can be measured with a precision at the level of $10^{-2} 10^{-4}$

Testing the Kerr BH Hypothesis with the radiation emitted by the gas of accretion

- Significant progresses in the last ~ 5 years in the understanding of the electromagnetic spectrum of BH candidates
- Spin measurements:
 - → Continuum-fitting method (stellar-mass BH candidates)


 \rightarrow Relativistic iron line (both stellar-mass and super-massive BH candidates)

Some data are already available and more data will be available in a near future

- High-frequency QPOs
- New VLBI experiments with unprecedented high-resolution imaging capabilities

Continuum-fitting method

• The soft X-ray component of the spectrum of stellar-mass BH candidates is the thermal spectrum of a geometrically thin and optically thick accretion disk

Cosimo Bambi (LMU & Fudan)

Novikov-Thorne Model

- Geometrically thin and optically thick accretion disk
- Relativistic generalization of the Shakura-Sunyaev model

Assumptions:

- Disk on the equatorial plane
- Gas's particles move on nearly geodesic circular orbits
- No magnetic fields
- No heat advection; energy radiated from the disk surface
- Inner edge of the disk at the ISCO, where stresses vanish

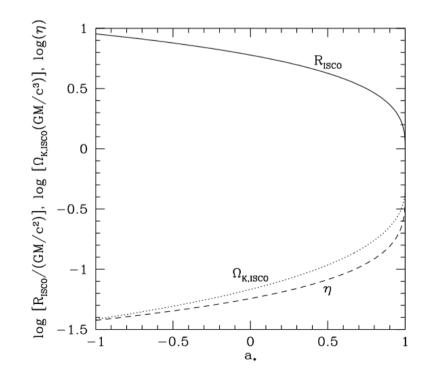
 \rightarrow Efficiency = 1 – E_{ISCO}

Novikov-Thorne Model

- Geometrically thin and optically thick accretion disk
- Relativistic generalization of the Shakura-Sunyaev model

Assumptions:

• Disk on the equatorial plane


Selection criterion: $0.08 L_{EDD} < L < 0.30 L_{EDD}$

- Gas's particles move on nearly geodesic circular orbits
- No magnetic fields
- No heat advection; energy radiated from the disk surface
- Inner edge of the disk at the ISCO, where stresses vanish

 \rightarrow Efficiency = 1 – E_{ISCO}

Continuum-fitting method in Kerr background

- 5 parameters (BH mass, BH spin, BH distance, viewing angle, mass accretion rate)
- BH mass, BH distance, viewing angle → BH spin, mass accretion rate

Spin measurements from the Harvard group

Black Hole	Spin a₊	Reference
GRS 1915+105	> 0.98	McClintock et al. 2006
Cygnus X-1	> 0.97	Gou et al. 2011
LMC X-1	0.92 ± 0.06	Gou et al. 2009
M33 X-7	0.84 ± 0.05	Liu et al. 2008, 2010
4U 1543-47	0.80 ± 0.05	Shafee et al. 2006
GRO J1655-40	0.70 ± 0.05	Shafee et al. 2006
XTE J1550-564	0.34 ± 0.24	Steiner et al. 2011
LMC X-3	< 0.3	Davis et al. 2006
A0620-00	0.12 ± 0.18	Gou et al. 2009

Testing the Kerr BH Hypothesis

- To test the Kerr-nature of an astrophysical black hole candidates we need to consider a more general background, which includes the Kerr solution as special case
- In addition to the mass and the spin, the compact object will be characterized by one or more "deformation parameters", measuring possible deformations from the Kerr geometry
- The Kerr black hole hypothesis is verified if observations require vanishing deformation parameters

Johannsen-Psaltis metric

$$\begin{split} ds^2 &= -\left(1 - \frac{2Mr}{\Sigma}\right)(1+h)\,dt^2 + \frac{\Sigma(1+h)}{\Delta + a^2h\sin^2\theta}\,dr^2 + \Sigma\,d\theta^2 - \frac{4aMr\sin^2\theta}{\Sigma}(1+h)\,dt\,d\phi + \\ &+ \left[\sin^2\theta\left(r^2 + a^2 + \frac{2a^2Mr\sin^2\theta}{\Sigma}\right) + \frac{a^2(\Sigma + 2Mr)\sin^4\theta}{\Sigma}h\right]d\phi^2\,, \end{split}$$

$$\Sigma = r^{2} + a^{2} \cos^{2} \theta,$$

$$\Delta = r^{2} - 2Mr + a^{2},$$

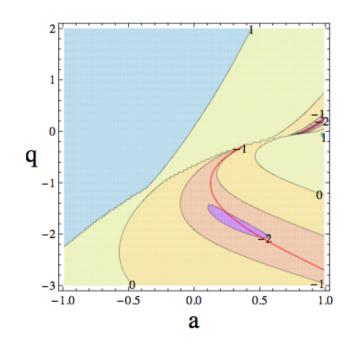
$$h = \sum_{k=0}^{\infty} \left(\epsilon_{2k} + \frac{Mr}{\Sigma} \epsilon_{2k+1} \right) \left(\frac{M^{2}}{\Sigma} \right)^{k}$$

Cosimo Bambi (LMU & Fudan)

Basic features of the code

• Geometry of the background:

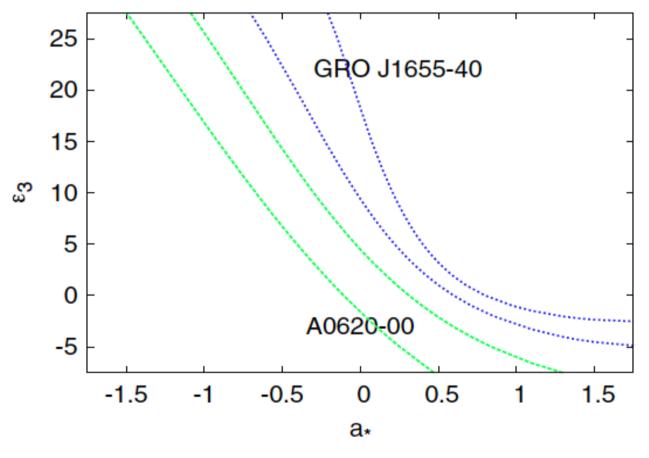
Johannsen-Psaltis space-time (Johannsen & Psaltis 2011) with three free parameters – mass, spin parameter, deformation parameter. No restrictions on the values of the spin parameter and of the deformation parameter


• Relativistic effects:

All relativistic effects are included. Ray-tracing technique used

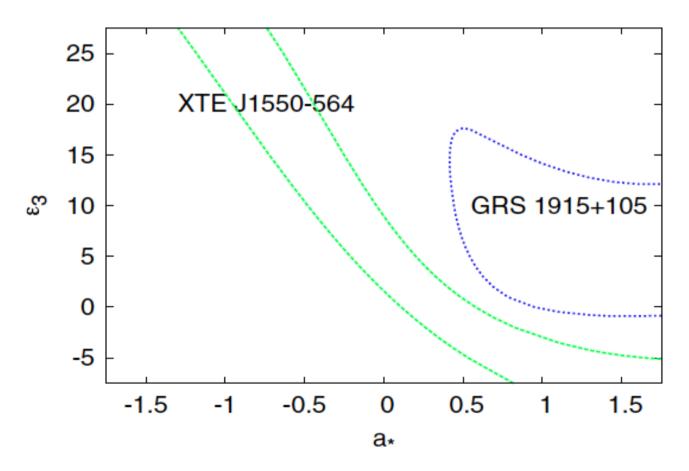
- Self-irradiation: Not included
- Non-zero torque at the inner edge of the disk: Not included
- Color factor: Constant. Set by the user
- Radiation emission: Isotropic or limb-darkened

M33 X-7


- X-ray binary system in the galaxy M33. Mass, distance from us, and inclination angle of the disk are known with good precision
- Chandra and XMM-Newton data in the high-soft state
- Spin parameter: 0.84 ± 0.05 (Liu et al. 2008, 2010)
- Allowed region in the spin parameter deformation parameter plane: work in progress . . .

From Bambi & Barausse 2011

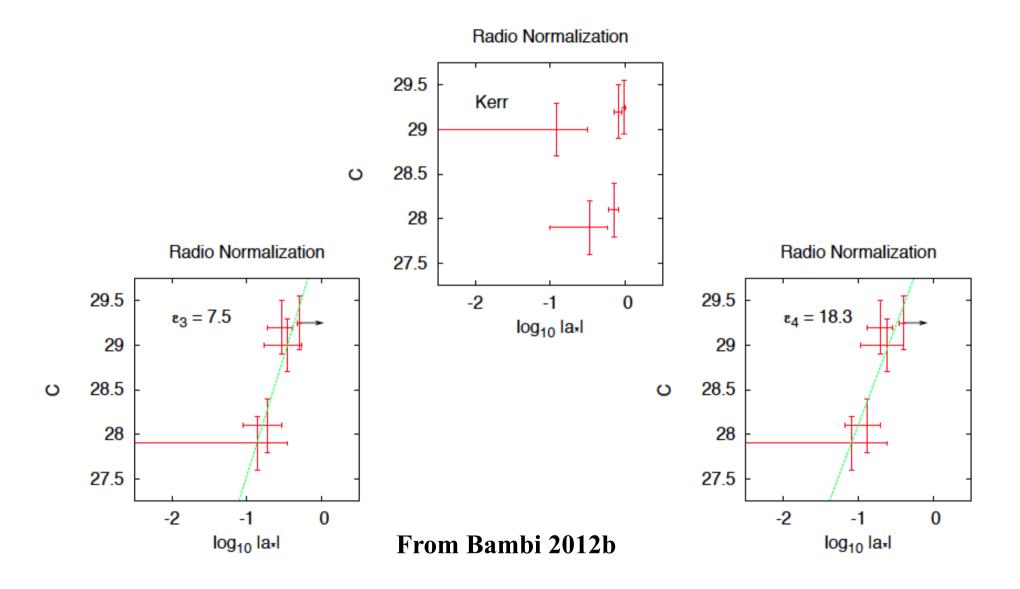
Spin parameter – Deformation parameter plane


• The continuum-fitting method measures the radiative efficiency: Efficiency = $1 - E_{ISCO}$

Cosimo Bambi (LMU & Fudan)

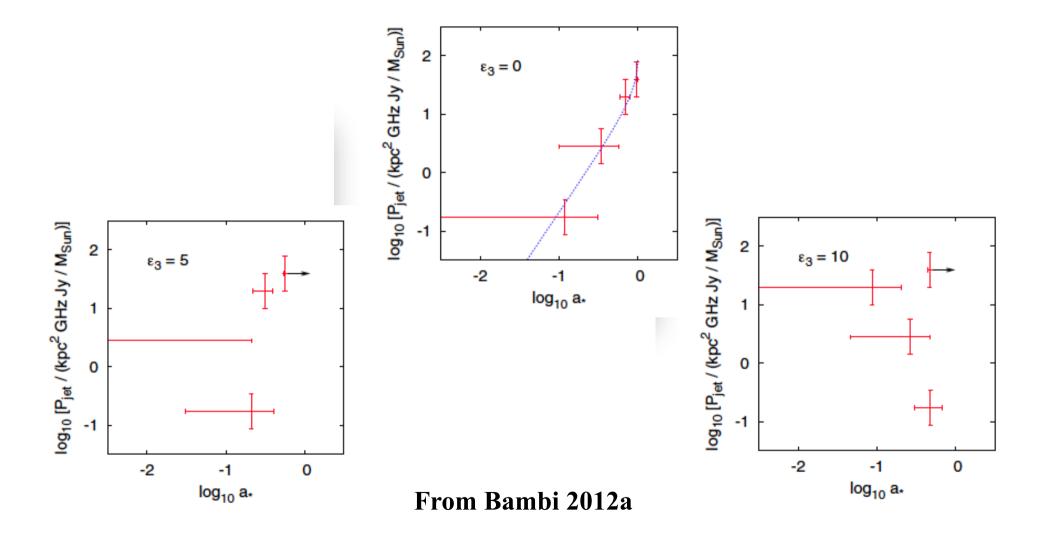
Spin parameter – Deformation parameter plane

• The continuum-fitting method measures the radiative efficiency: Efficiency = $1 - E_{ISCO}$


Cosimo Bambi (LMU & Fudan)

Are jets powered by the black hole spin?

- Introduction
- Probing the geometry of the space-time around astrophysical black hole candidates
- Are jets powered by the black hole spin?


- Jets are commonly produced by accreting BH candidates
- Two kinds of jets in the case of stellar-mass BH candidates: steady jets (in the hard state) and transient jets (usually when the source switches from the hard to the soft state)
- The exact mechanism producing these jets is not known
- For steady jets, a quite appealing scenario is the Blandford-Znajek mechanism, in which the jet is powered by the rotational energy of the BH
- No observational evidence for a correlation between jet power and BH spin (Fender, Gallo & Russell 2010)
- Claim of observational evidence for a correlation between power of transient jets and BH spin (Narayan & McClintock 2012)

Steady jets

Cosimo Bambi (LMU & Fudan)

Transient jets

Cosimo Bambi (LMU & Fudan)

Conclusion

- There is a body of observational evidence supporting the existence of dark and compact objects in the Galaxy and in the Universe. These objects are thought to be Kerr black holes
- The Kerr black hole hypothesis can be tested with the already available X-ray data by extending the continuum-fitting method to non-Kerr backgrounds
- One typically finds a degeneracy between the spin and the deformation parameter
- This degeneracy can be broken by adding another measurement (e.g. the power of steady/transient jets)