

Measuring strong field gravity effects in AGN observed with LOFT

Alessandra De Rosa INAF/Institute for Space Astrophysics and Planetology

Outline

LOFT: Large Observatory For X-ray Timing LAD background knowledge: scientific constraints

BH diagnostic

1. Phase resolved spectroscopy of the iron line

- ✓ Step 1: WARNING Models: absorption vs reflection
 IF Reflection is the right answer ...
- ✓ Step 2: The broad relativistic "average" Fe line (disc line): measuring the spin
- ✓ Step 3: iron line from hot spot around SMBH (HS line): measuring the mass
- 2. Reverberation: measuring the lag and distance
- Conclusions and future

LOFT Large Observatory For x-ray Timing

A mission proposal selected by ESA as a candidate Cosmic Vision M3 mission devoted to X-ray timing and designed to investigate the space-time around collapsed objects

ESA Member States currently involved in the payload development: Czech Republic, Denmark, Finland, France, Germany, Italy, Netherlands, Poland, Spain, Switzerland, United Kingdom

The LOFT Instruments (today)

LAD – Large Area Detector			
Effective Area	4 m ² @ 2 keV 8 m ² @ 5 keV 10 m ² @ 8 keV 1 m ² @ 30 keV		
Energy range	2-30 keV primary 30-80 keV extended		
Energy resolution FWHM	260 eV @ 6 keV 200 eV @ 6 keV (45% of area)		
Collimated FoV	I degree FWHM		
Time Resolution	10 μs		
Absolute time accuracy	l μs		
Dead Time	<1% at I Crab		
Background	<10 mCrab (<1% syst)		
Max Flux	500 mCrab full event info 15 Crab binned mode		

Energy range	2-50 keV primary 50-80 keV extended
Active Detector Area	1820 cm ²
Energy resolution	300 eV FWHM @ 6 keV
FOV (Zero Response)	80°x90° + 90°x90°
Angular Resolution	5' x 5'
Point Source Location Accuracy (10-σ)	l' x l'
Sensitivity (5-σ, on-axis) Galactic Center, 3 s Galactic Center, 1 day	270 mCrab 2.1 mCrab
Standard Mode	5-min, energy resolved images
Trigger Mode	Event-by-Event (10µs res) Realtime downlink of transient coordinates

The LAD background

- How accurately we know the total bkg ?
- How/how much variable are the bkg components (Orbital phase)?

LAD Background modelling

6th FERO. 30-31 August 2012. Prague

LAD Background modelling

- 82% of the LAD background is due to CXB and Albedo photons leaking through the collimator walls; 8% due to ⁴⁰K radioactivity; additional 4.8% is due to particles and albedo neutrons: <u>92% of the LAD background is due to "mass effects"</u>
- Residual bkg (5%) due to CXB.
- Expected largest background variability (<20%) due to the geometrical combination of "intrinsically stable" CXB and Albedo (total of 82%): a geometrical model describing the satellite position and orientation in this "stable" environment will account for the detected variation.
- The variation is smooth, on the orbital timescale.

Active Background monitoring

- As the largest variable bkg component is "mass-driven", a mass-representative blocked collimator will be able to follow the smooth variations of the largest fraction of the overall background (leakage+particles+albedo=87%). The rest is stable (aperture+radioactivity).
- SDDs covered with a closed collimator (no open channels) of reduced thickness (same mass per unit surface) will receive the same leakage background as "real" SDDs.
- We can use these "blocked" detectors to monitor the background variability and support its geometrical modeling; variation is smooth along the orbit, allowing for a minute-scale integration times.
- A trade-off between required accuracy for background modelling and area of these "blocked" detectors is ongoing (subtracted or added to the overall LAD area???).

Preliminary simulations on active bkg modelling

LOFT-STRONG FIELD GRAVITY

AGNs: Black Hole Diagnostic 1. Phase resolved spectroscopy 2. Reverberation (credits Phil Uttley)

From the LOFT Scientific Requirements Document SFG5: De Rosa, Fabian, Reynolds, Miniutti, Nowak, Uttley, Matt, ...

Broad Fe Line

Measure the Fe-line profile of 30 AGN, and carry out reverberation mapping of 8 brightest AGNs, to provide BH spins to an accuracy of <u>20% of the maximum</u> spin (10% for fast spins)

Hot-spot (variable) Fe Line Reverberation mapping

Measure AGN masses with 30% accuracy, constraining fundamental properties of supermassive black holes and of accretion flows in strong field gravity

The X-ray reflection spectrum

THE relativistic Fe line in MCG-6-30-15

Is really the reflection nearby a SMBH the right answer?

Complex ionized absorption has be proposed as a viable alternative (Miller+08)

Can we distinguish between the two?

Miniutti vs Miller scenario

Miniutti vs Miller scenario

MCG6-30.15: 1 warm absorber+2 reflecting media

	Flux (2-10 keV)	Flux (3-30 keV)	
Continuum	3.1e-11	3.7e-11	
Ionized refl	1.3e-11	3.5e-11	
Cold refl	1.2e-12	4.8e-12	

A. De Rosa

Reflection vs complex absorption model

MCG6: 1wa+2refl. a=0.9

MCG6: 1wa+2refl. a=0.7

A. De Rosa

Reflection as a probe of the innermost accretion flows: BH diagnostic with LOFT.

Measuring spin: average disc Fe line

FERO sample de la Calle-Perez+2010

 \bullet

- The fraction of relativistic Fe lines detected a flux limited XMM sample (FERO, de la Calle Pérez, 2010) is 36% (11/31).
- HOW MANY AGN with relativistic Fe line will be observed with LOFT with No>5?

EW vs hard X-ray counts

FERO being made of spectra of disparate quality and by the unavailability of a well-defined complete AGN sample. Nevertheless, the observed detection fraction can be considered as a lower limit for the intrinsic number of AGN that <u>would show a broad Fe line if, for</u> example, all sources were observed with the same signalto-noise.

$\Box 5\sigma$ detection

✓ upper limit (90% c.l.)

 \Box above 1ct/s in RXTE Slew Survey (*Revnivtsev+ 04*)

de la Calle Perez+ 2010

A. De Rosa

Hard X-ray counts

	3mCrab	1mCrab	0.1mCrab
LOFT cts(2-10keV)	1e7	3.4e6	3.4e5
LOFT S/N	1700	650	71
XMM cts (2-10keV)	8.1e4	2.7e4	2.7e3
XMM S/N	284	160	50

More than 10 AGN above 2mCrab More than 30 AGN above 1mCrab

Hard X-ray counts

More than 10 AGN above 2mCrab More than 30 AGN above 1mCrab

Credits S. Bianchi

A. De Rosa

Reflection as a probe of the innermost accretion flows: BH diagnostic with LOFT

Measuring spin: average disc Fe line

Step 3

Measuring mass: hot spot disc Fe line

X-ray Fe line from hot spot around SMBH

• AGN variability is likely associated to "activation" of the X-ray regions above the accretion disc. These flares will produce an echo in the observed reflection components from the disc (Fe line & Compton hump) on time-scales comparable light-crossing of a gravitational radii

 $t_{cr} = r_g / c = GM / c^3 \sim 50 M_7 s.$

• While time averaged Fe profiles can be expressed in terms of $r_{g,}$ losing any information about black-hole mass, assuming the 'hotspot' corotating with the disc with a Keplerian rotation, the orbital period can be measured $T_{orb}=310 (r^{3/2}+a)M_7$ s, and then the BH mass.

Orbiting spots

Dovciak+08

6th FERO. 30-31 August 2012. Prague

A. De Rosa

Orbiting spots

A. De Rosa

LOFT 16 ks simulation of a steady and variable Fe line

MCG-6-30-15

F=3mCrab, a=0.99, $r_{in}=1r_g$, $r_{out}=100r_{g}$, $\theta=45^{\circ}$, ϵ^{-3} , $r_{sp}=10r_g$, $T_{orb}=4$ ks $T_{exp}=16$ ks \rightarrow mapping 4 phases (1000 s each) in four cycles

M=3-4 10⁶ M_{sun}, a=0.93-0.99, R=0.98(0.02

LOFT 16 ks simulation of a steady and variable Fe line

MCG-6-30-15

F=3mCrab, a=0.99, $r_{in}=1r_{g}$, $r_{out}=100r_{g}$

A. De Rosa

1mCrab. 5ks. 2orbits. a=0.5, r=6

- 2 orbits
- 10 phases: 5e3 s each

- Theta=30⁰
- a=0.5

Hot-Spot variable Fe line. 1mCrab

- 2 orbits: 5e3 s
- R=R_{isco}
- Theta=30⁰
- a=0.5

Effective area vs Energy resolution

2 orbits, 10 phases a=0 $R_{in}=R_{isco}$, S/N=3EW=30 eV $\sigma=100 eV$

Reverberation: basic idea

By modeling the lags we can measure the light travel times from the continuum emitting region and the disc, and so determine R

Expected results and effects of uncorrected background fluctuations

Assume 1% rms fluctuation of **total** bgd spectrum, which is not corrected by bkg modelling

- 3 effects: bias, extra noise and systematic error:
- •Bgd contributes an extra correlated variable component with its own lag (zero lag?) dilutes/shifts the intrinsic source lags
- Bgd variations correlate randomly with Poisson noise to add extra noise term
 Bgd variations also correlate randomly with source variations, adds an extra systematic shift, but in a random direction!

No uncorrected fluctuations

1% uncorrected fluctuations: bias (assume zero bgd lage) FERCt ନସ-ମାଦାଙ୍କୁ st 2012. Prague 1% uncorrected fluctuations: systematic shifts (upper and lower 68% probability)

Dependence on BKG fluctuation amplitude

Dependence on BKG fluctuation amplitude

•Constant background increases errors through additional Poisson noise and dilution of variable signal, but these are not catastrophic effects

• The lag measurements are very sensitive to background variations: *errors scale approx. linearly with amplitude of uncorrected bgd fluctuations!*

• Both effects could be reduced by net reduction of background (e.g. leakage), since amplitude of fluctuations also scale with background rate.

Summary and next steps

- Although it has been primary conceived for timing studies, detailed simulations have shown that LOFT will provide a major step forward in the study of GR in the strong filed regime by observing with unprecedented accuracy transient features in X-ray spectra of AGNs
- SFG studies impose strict requirements to the uncorrected variations of the LAD background: between <1% for phase resolved spectroscopy, < 0.25 % for reverberation mapping;
- Mostly of the LOFT-LAD bkg variability is "geometrically" dominated. Use of blocked SDDs to monitor and model the modulation is under evaluation; alternative hardware (collimators) are currently under study
- ESA M3 missions Assessment study extended. Yellow Book due Sept. 2013