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SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE
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Abstract. Let λ1(Q) be the first eigenvalue of the Sturm-Liouville problem

y
′′
− Q(x)y + λy = 0, y(0) = y(1) = 0, 0 < x < 1.

We give some estimates for mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q) and Mα,β,γ = sup
Q∈Tα,β,γ

λ1(Q), where

Tα,β,γ is the set of real-valued measurable on [0, 1] xα(1 − x)β-weighted Lγ -functions Q

with non-negative values such that
∫
1

0
xα(1− x)βQγ(x) dx = 1 (α, β, γ ∈ R, γ 6= 0).

Keywords: first eigenvalue, Sturm-Liouville problem, weight integral condition

MSC 2010 : 34L15

We consider the Sturm-Liouville problem

y′′ − Q(x)y + λy = 0, x ∈ (0, 1),(1)

y(0) = y(1) = 0,(2)

where Q is a real-valued measurable on [0, 1] function with non-negative values such

that the integral condition

(3)

∫ 1

0

xα(1 − x)βQγ(x) dx = 1 (α, β, γ ∈ R, γ 6= 0)

holds whenever Q belongs to the xα(1 − x)β -weighted Lγ-space. The set of all

functions Q of this kind we denote by Tα,β,γ.
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By a solution of problem (1)–(2) we mean an absolutely continuous function y

on the segment [0, 1] such that y(0) = y(1) = 0; y′ is absolutely continuous in the

interval (0, 1); equality (1) holds almost everywhere in the interval (0, 1).

We study the dependence of the first eigenvalue λ1 of problem (1)–(3) on the

potential Q under different values of parameters α, β, γ. Our purpose is to give some

estimates for

mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q), Mα,β,γ = sup
Q∈Tα,β,γ

λ1(Q).

Let HQ be the closure of the set C∞
0 (0, 1) in the norm ‖y‖2

HQ
=

∫ 1

0
(y′2 + Qy2) dx,

where C∞
0 (0, 1) is the set of functions of C∞(0, 1) having their supports compactly

embedded in (0, 1). Let Γ be the set of functions y from HQ such that
∫ 1

0
y2 dx = 1.

Consider the functionals

R[Q, y] =

∫ 1

0
(y′2(x) + Q(x)y2(x)) dx

∫ 1

0 y2(x) dx
, F [Q, y] =

∫ 1

0

(y′2(x) + Q(x)y2(x)) dx.

Note that the values of R and F are bounded from below. Let us show that the first

eigenvalue λ1 of problem (1)–(2) can be found as

λ1(Q) = inf
y∈HQ,y 6=0

R[Q, y] = inf
y∈Γ

F [Q, y].

S t e p 1. Let Q ∈ Tα,β,γ and m = inf
y∈Γ

F [Q, y]. There exists y ∈ Γ such that

F [Q, y] = m.

For all functions Q ∈ Tα,β,γ and y ∈ Γ one has F [Q, y] =
∫ 1

0 (y′2 + Qy2) dx =

‖y‖2
HQ

. Let {yk} be a minimizing sequence of the functional F [Q, y] in Γ. Then

F [Q, yk] 6 m+1 for all sufficiently large values of k. Hence ‖yk(x)‖2
HQ

= F [Q, yk] 6

m+1. Since {yk} is a bounded sequence in a separable Hilbert space HQ, it contains

a subsequence {zk}, which converges weakly in the space HQ to a function y. So we

get ‖y‖2
HQ

6 m + 1.

Let us prove that the space HQ is compactly embedded into the space C(0, 1).

First we shall establish the boundedness of the corresponding operator of embedding.

Note that the inequality ‖u‖C 6 ‖u′‖L1
+ (b − a)−1‖u‖L1

holds for any function

u(x) ∈ C[a, b]. If u(x) ∈ AC[0, 1] and u(0) = u(1) = 0, then

‖u‖L1
=

∫ 1

0

|u| dx =

∫ 1

0

∣

∣

∣

∣

∫ x

0

u′ dx

∣

∣

∣

∣

dx

6

∫ 1

0

(
∫ 1

0

|u′| dx

)

dx =

∫ 1

0

|u′| dx = ‖u′‖L1
.
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By the Hölder inequality we get

(4) ‖u‖C 6 ‖u′‖L1
+ ‖u‖L1

6 2‖u′‖L1
6 2‖u′‖L2

6 2‖u‖HQ
.

The boundedness of this operator is proved.

Now let us prove the compactness of the operator of embedding. Let M ∈ HQ be

a bounded set, i.e. there is a real number R such that ‖u‖HQ
6 R for all u ∈ M . We

need to prove the precompactness of M in C(0, 1). By the Arzela theorem it suffices

to prove that the set M is uniformly bounded and equicontinuous.

The set M is called uniformly bounded if there is a real number R1 such that

|u(x)| 6 R1 for all u ∈ M and x ∈ [0, 1]. In virtue of (4) we have |u(x)| 6 ‖u‖C 6

2R = R1 for all u ∈ M and x ∈ [0, 1].

Now let us prove that the set M is equicontinuous, i.e. for any ε > 0 one can find

δ > 0 such that |u(x)−u(y)| < ε as |x−y| < δ for all u ∈ M . By the Newton-Leibniz

formula we obtain: if |x − y| < δ = (εR−1)2 then

|u(x) − u(y)| 6

∣

∣

∣

∣

∫ y

x

|u′(ξ)| dξ

∣

∣

∣

∣

6 |x − y|
1
2 ‖u′‖L2

6 |x − y|
1
2 R < ε for all u ∈ M.

The space HQ is compactly embedded into the space C(0, 1). Consequently, there

is a converging in C(0, 1) subsequence {uk} of the sequence {zk}. Since C(0, 1) is

embedded into Lp(0, 1), where p > 1, then the sequence {uk} converges in L2(0, 1)

to a function u ∈ L2(0, 1) such that
∫ 1

0
u2 dx = 1.

Let us prove that the subsequence {uk} converges in HQ. Since the functional F

is quadric, we have the identity

F
[

Q,
yk − yl

2

]

+ F
[

Q,
yk + yl

2

]

=
1

2
F [Q, yk] +

1

2
F [Q, yl].

Let ε > 0 and let k and l be so large that for uk, ul from the subsequence one has

F [Q, uk] 6 m + ε, F [Q, ul] 6 m + ε, and

∫ 1

0

(uk − ul

2

)2

dx 6 ε2.

Hence,

∫ 1

0

(uk + ul

2

)2

dx =

∫ 1

0

(

ul +
uk − ul

2

)2

dx

> (1 − ε)

∫ 1

0

u2
l dx −

1

ε

∫ 1

0

(uk − ul

2

)2

dx > (1 − ε) − ε = 1 − 2ε.

Therefore, F [Q, 1
2 (uk + ul)] > m(1−2ε) and F [Q, 1

2 (uk − ul)] 6 m+ε−m(1−2ε) =

ε(1 + 2m). It means that the subsequence {uk} converges in HQ. Since it converges
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in HQ weakly to y, then the limit function of this subsequence in HQ is equal to y

too. Then, taking into account that the functional F is continuous in HQ, we obtain

F [Q, y] = m.

S t e p 2. Let y(x) ∈ Γ and F [Q, y] = m = inf
y∈Γ

F [Q, y]. Then

−y′′ + Qy − λy = 0,

where λ = m is the minimal eigenvalue of the Sturm-Liouville problem (1)–(2).

First we note that m = inf
y∈HQ,y 6=0

R[Q, y]. We have that the minimum of the

functional F [Q, y] is equal to m under the condition
∫ 1

0 y2 dx = 1.

Let u(x) be an element of HQ. Consider two functions of t ∈ R

g(t) =

∫ 1

0

((y′ + tu′)2(x) + Q(x)(y + tu)2(x)) dx, h(t) =

∫ 1

0

(y + tu)2 dx.

If h(0) = 1 then g(t) > g(0) = m, i.e. the function g has the minimal value at

t = 0 under the condition h(0) = 1. Therefore, g′(0) + λ1h
′(0) = 0, where λ1

is a real number. Let λ = −λ1. It means that for all u(x) ∈ HQ the equality
∫ 1

0 (y′u′ +Qyu) dx = λ
∫ 1

0 yu dx holds. In particular, if u = y, then we obtain λ = m.

Consequently,
∫ 1

0
(y′u′ + Qyu − myu) dx = 0.

This equality is valid for all u ∈ C∞
0 (0, 1). It implies the existence of the general-

ized derivative of the function y′ such that

(5) −y(x)′′ + Q(x)y(x) − my(x) = 0.

By the method of averaging one can obtain a sequence {yk(x)} of C∞
0 (0, 1) func-

tions with the following properties: 1) {yk(x)} converges uniformly in the space HQ

to the function y; 2) the sequence {Qyk(x)} also converges uniformly in HQ to the

function Qy. Then the sequence {yk(x)′′} converges uniformly in this space to the

function y′′. Therefore the equality (5) holds almost everywhere in (0, 1). Moreover,

y(0) = y(1) = 0.

Thus y is a solution of the Sturm-Liouville problem (1)–(2) with the eigenvalue

λ = m. For any solution z of this problem we have
∫ 1

0 (z′
2
(x) + Q(x)z2(x)) dx =

λ
∫ 1

0
z2 dx; then in virtue of (5) we obtain the relation λ > m. Consequently, m is

the minimal eigenvalue.

The following theorems give some estimates for mα,β,γ and Mα,β,γ.

Theorem 1.

(1) If γ > 0, then mα,β,γ = π
2.

(2) If γ < 0, then mα,β,γ < +∞.
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Theorem 2.

(1) If γ < 0 and 0 < γ < 1, then Mα,β,γ = +∞.

(2) If γ > 1, then Mα,β,γ < +∞.

P r o o f of Theorem 1. We emphasize that in virtue of Friedrichs’ inequality the

following relations hold for all Q ∈ Tα,β,γ:

λ1(Q) = inf
y∈HQ,y 6=0

∫ 1

0 (y′2(x) + Q(x)y2(x)) dx
∫ 1

0
y2(x) dx

> inf
y∈HQ,y 6=0

∫ 1

0 y′2(x) dx
∫ 1

0
y2(x) dx

= π
2.

Hence, mα,β,γ > π
2.

1) Let γ > 0, α, β be arbitrary real numbers. We prove thatmα,β,γ = π
2. Consider

the functions

Qθ,α,β,γ(x) =

{

0, x ∈ (0, θ);

((1 − θ)xα(1 − x)β)−1/γ , x ∈ [θ, 1),

yθ(x) =

{

sin πx/θ, x ∈ (0, θ);

0, x ∈ [θ, 1), θ → 1 − 0.

Then we have
∫ 1

0
Qθ,α,β,γ(x)yθ(x)2 dx = 0 and the integral condition holds. Since

∫ 1

0 yθ(x)2 dx = 1
2θ,

∫ 1

0 y′
θ(x)2 dx = 1

2π
2/θ, we obtain

lim
θ→1−0

R[Qθ, yθ] = lim
θ→1−0

1
2 (π2/θ)

(1
2θ)

= π
2

and mα,β,γ = inf
Q∈Tα,β,γ

λ1(Q) 6 π
2. Therefore, mα,β,γ = π

2.

2.1) First we suppose that γ < 0, β > 0, α > 2γ − 1. Consider the function

Qθ(x) = Cx−(α+1)/γ+θ/γ(1 − x)−β/γ , where θ is a positive real number such that

α > 2γ − 1 + θ. We take the constant C such that
∫ 1

0
Qθ(x)γxα(1 − x)β dx = 1, i.e.

C = θ1/γ . By the Hardy inequality we obtain

∫ 1

0

Qθ(x)y2 dx = C

∫ 1

0

(1 − x)−β/γy2

x(α+1−θ)/γ
dx 6 C

∫ 1

0

x−2y2 dx 6 4C

∫ 1

0

y′2 dx.

Then it follows from C = θ1/γ that mα,β,γ 6 (1 + 4(α − 2γ + 1)1/γ)π2.

2.2) Suppose that γ < 0, β > 0 and α 6 2γ − 1. Consider the functions

Qε,α,β,γ(x) = εx−α/γ(1 − x)−β/γx(εγ−1)/γ and y1(x) =

{

xθ, 0 6 x 6 1
2 ;

(1 − x)θ, 1
2 < x 6 1,
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where θ is a real number such that 2θ − α/γ + (εγ − 1)/γ > −1 and 2θ > 1. Denote
∫ 1

0 y′2
1 dx = C1,

∫ 1

0 y2
1 dx = C2,

∫ 1

0 x−α/γx(εγ−1)/γy2
1 dx = C3. Then R[Qε,α,β,γ , y1] =

(C1 + εC3)/C2 and mα,β,γ 6 C1/C2. The case α > 0, β < 0 is symmetric to the case

β > 0, α < 0.

2.3) Now we assume that γ < 0, 2γ − 1 < α < 0 and 2γ − 1 < β < 0. Consider

the function

Qθ,α,β,γ(x) =

{

Cx−(α+1)/γ+θ/γ(1 − x)−β/γ , 0 < x < 1
2 ;

Cx−α/γ(1 − x)−(β+1)/γ+θ/γ , 1
2 6 x < 1,

where θ is a positive real number such that α > 2γ − 1+ θ. By the Hardy inequality

∫ 1

0

Qθ,α,β,γy2(x) dx 6 C2
2γ−1

γ

∫ 1
2

0

x−α+1

γ
+ θ

γ y2 dx + C2
2γ−1

γ

∫ 1

1
2

(1 − x)−
β+1

γ
+ θ

γ y2 dx

6 C2
2γ−1

γ

(
∫ 1

2

0

x−2y2 dx +

∫ 1

1
2

(1 − x)−2y2 dx

)

6 C2
4γ−1

γ

∫ 1

0

y′2 dx

and mα,β,γ 6 (1 + C2(4γ−1)/γ)π2. For θ = α − 2γ + 1 and C = (θ2θ−1)1/γ we have

mα,β,γ 6 (1 + (α − 2γ + 1)1/γ2(α+2γ−1)/γ)π2.

2.4) Consider the case γ < 0, α 6 2γ − 1 and β < 0. Consider the functions

Qε,α,β,γ(x) = εx−α/γ(1 − x)−β/γx(εγ−1)/γ and y1(x) =

{

xθ, 0 6 x 6 1
2 ;

(1 − x)θ , 1
2 < x 6 1,

where θ is a real number such that 2θ − α/γ + (εγ − 1)/γ > −1, 2θ > 1 and

2θ − β/γ > −1. Denote
∫ 1

0 y′2
1 dx = C1,

∫ 1

0 y2
1 dx = C2,

∫ 1

0 Qε,α,β,γ(x)y2
1 dx = εC3.

Then R[Qε,α,β,γ, y1] = (C1 + εC3)/C2 and mα,β,γ 6 C1/C2. The case β 6 2γ − 1,

α < 0 is symmetric to the case α 6 2γ − 1, β < 0. By substitution x = 1− t, α ↔ β

the case 2γ − 1 < α < 0 and β 6 2γ − 1 can be included into the case 2.4).

P r o o f of Theorem 2. 1.1) First we suppose that γ < 0, α > 0, β > 0. Let us

prove that Mα,β,γ = +∞. Assume that α > β. Consider the function

Qε,α,β,γ(x) =

{

((1 − ε2α(1 − ε)α)/2ε)1/γx−α/γ(1 − x)−β/γ , x ∈ (0, 1) \ (ε, 1 − ε);

(ε2α(1 − ε)α/(1 − 2ε))1/γx−α/γ(1 − x)−β/γ , x ∈ (ε, 1 − ε),

where ε → +0. Thus we have
∫ 1−ε

ε

y2(x) dx 6

∫ 1−ε

ε

x−α/γ(1 − x)−α/γ

ε−α/γ(1 − ε)−α/γ
y2(x) dx

6

∫ 1−ε

ε

x−α/γ(1 − x)−α/γ

ε−α/γ(1 − ε)−α/γ
(1 − x)(α−β)/γy2(x) dx

=
ε−α/γ

(1 − 2ε)−1/γ

∫ 1−ε

ε

Qε,α,β,γ(x)y2(x) dx.
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By the Hölder inequality we get

∫ 1

0

y2(x) dx 6
ε2

2

∫ ε

0

y′2(x) dx +
ε−

α
γ

(1 − 2ε)−
1
γ

∫ 1−ε

ε

Qε,α,β,γ(x)y2(x) dx

+
ε2

2

∫ 1

1−ε

y′2(x) dx 6 a(ε)

(
∫ 1

0

y′2(x) dx +

∫ 1

0

Qε,α,β,γ(x)y2(x) dx

)

,

where a(ε) = ε2/2 + ε−α/γ/(1 − 2ε)−1/γ . Then R[Qε,α,β,γ, y] > 1/a(ε) for all func-

tions y ∈ HQ. Consequently, inf
y∈HQ,y 6=0

R[Q, y] > 1/a(ε). Taking into account that

a(ε) → 0 as ε → 0, we obtain Mα,β,γ = +∞.

1.2) Consider the case γ < 0, α > 0, β 6 0. Let us prove that Mα,β,γ = +∞.

For ε → +0 consider the function

Qε,α,β,γ(x) =

{

(α + 1)1/γε−(α+1)/γ(1 − ε)1/γ(1 − x)−β/γ , 0 < x < ε;

(α + 1)
1/γ

ε1/γ(1 − εα+1)−1/γ(1 − x)
−β/γ

, ε < x < 1.

As in the previous case
∫ 1

0
y2(x) dx 6 a(ε)(

∫ 1

0
y′2(x) dx +

∫ 1

0
Qε,α,β,γ(x)y2), where

a(ε) = ε2/2+(1/(α+1))1/γε−1/γ(1−εα+1)1/γ , and by the same argumentMα,β,γ =

+∞. The case γ < 0, β > 0, α 6 0 is symmetric to the case γ < 0, α > 0, β 6 0.

1.3) Now suppose that γ < 0, α 6 0, β 6 0. Let us prove that Mα,β,γ = +∞.

Consider the function

Qε,α,β,γ(x) =

{

(1 − ε)
1/γ

ε−1/γx−α/γ(1 − x)−β/γ , 0 < x < ε;

(1 − ε)−1/γε1/γx−α/γ(1 − x)−β/γ , ε < x < 1,

where ε → +0. By the same argument Mα,β,γ = +∞.

2.1) Consider the case 0 < γ < 1, α > 0, β > 0. Divide the segment [0, 1] by

points 0 = ε0 < ε1 < . . . < εn = 1 to equal segments of length ε. Consider the

function Qε(x) on the segment [0,1] defined on each interval [εi−1, εi) (1 6 i 6 n) as

follows:

Qε(x) =

{

ε−µx−α/γ(1 − x)−β/γ , εi−1 6 x < εi−1 + ε̺;

0, εi−1 + ε̺ 6 x < εi,

where ε → +0, ̺ = (1+γ)/(1−γ), µ = 2/(1−γ). Then there is θi ∈ [εi−1, εi−1 +ε̺)

such that

∫ εi−1+ε̺

εi−1

Qε(x)y2 dx = ε−µε̺θ
−α/γ
i (1−θi)

−β/γy2(θi) = ε−1θ
−α/γ
i (1−θi)

−β/γy2(θi).
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Since y(x) = y(θi) +
∫ x

θi
y′(x) dx, we have by the Hölder inequality

∫ εi

εi−1

y2 dx =

∫ εi

εi−1

(

y(θi) +

∫ x

θi

y′(x) dx

)2

dx 6 2εy2(θi) + 2ε2

∫ εi

εi−1

y′2 dx

= 2ε2

(

θ
α/γ
i (1 − θi)

β/γ

∫ εi

εi−1

Qε(x)y2 dx +

∫ εi

εi−1

y′2 dx

)

< 2ε2

(
∫ εi

εi−1

Qε(x)y2 dx +

∫ εi

εi−1

y′2 dx

)

and
∫ 1

0
y2 dx < 2ε2(

∫ 1

0
Qεy

2 dx +
∫ 1

0
y′2 dx). Hence, Mα,β,γ = +∞.

2.2) If 0 < γ < 1, α < 0, β > 0, then divide the segment [0, 1] in a way similar to

the previous case and define the function Qε on each interval [εi−1, εi) (1 6 i 6 n)

as follows:

Qε(x) =

{

0, εi−1 6 x < εi−1 + 1
2ε − 1

2ε̺ or εi−1 + 1
2ε + 1

2ε̺ 6 x < εi;

ε−µx−α/γ(1 − x)−β/γ , εi−1 + 1
2ε − 1

2ε̺ 6 x < εi−1 + 1
2ε + 1

2ε̺,

where ε → +0, ̺ = (1+γ−α)/(1−γ), µ = (2−α/γ)/(1−γ). By the same argument

as for the case α > 0, β > 0 we have

∫ 1

0

y2 dx 6 2ε2

(

max
i

(θ
α/γ
i )ε−α/γ

∫ 1

0

Qεy
2 dx +

∫ 1

0

y′2 dx

)

= 2ε2

(

θ
α/γ
1 ε−α/γ

∫ 1

0

Qεy
2 dx +

∫ 1

0

y′2 dx

)

< 21−α/γε2(1 − ε̺−1)
α/γ

(
∫ 1

0

Qεy
2 dx +

∫ 1

0

y′2 dx

)

.

Taking a sufficiently small ε we get R[Qε, y] > (1
2 )−α/γ/21−α/γε2. Therefore,

Mα,β,γ = +∞. Note that the case 0 < γ < 1, β < 0, α > 0 is symmetric to

the case 0 < γ < 1, α < 0, β > 0.

2.3) Consider the case 0 < γ < 1, α < 0, β < 0. If for example β > α, then divide

the segment [0, 1] in a way similar to the previous cases and define the function Qε

on each interval [εi−1, εi) (1 6 i 6 n) as follows:

Qε(x) =

{

0, εi−1 6 x < εi−1 + 1
2ε − 1

2ε̺ or εi−1 + 1
2ε + 1

2ε̺ 6 x < εi;

ε−µx−α/γ(1 − x)−β/γ , εi−1 + 1
2ε − 1

2ε̺ 6 x < εi−1 + 1
2ε + 1

2ε̺,

where ε → +0, ̺ = (1 + γ − α)/(1 − γ), µ = (2 − α/γ)/(1 − γ). The proof in this

case is similar to the proof of 2.2) and also Mα,β,γ = +∞.
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3.1) Consider the case γ = 1, 0 6 α 6 1, β < 0. Since y2(x) 6 x
∫ 1

0 y′2 dt for all

x ∈ (0, 1), we have

∫ 1

0

Qy2(x) dx 6 sup
[0,1]

y2

xα

∫ 1

0

Qxα(1 − x)β dx 6 sup
[0,1]

y2

x
6

∫ 1

0

y′2(x) dx.

Therefore, Mα,β,γ 6 2π
2. Note that the case γ = 1, 0 6 β 6 1, α < 0 is symmetric

to the case γ = 1, 0 6 α 6 1, β < 0.

3.2) Consider the case γ = 1, 0 6 α 6 1, 0 6 β 6 1. We have Mα,β,γ 6 3π
2,

because

∫ 1

0

Qy2(x) dx 6 sup
[0,1]

y2

xα(1 − x)β

∫ 1

0

Qxα(1 − x)β dx 6 sup
[0,1]

y2

x
+ sup

[0,1]

y2

1 − x
.

3.3) Now suppose that γ = 1, α < 0, β < 0.

One can show [1], [2] that for all y ∈ HQ the following inequality holds: sup
[0,1]

y2 6

1
4

∫ 1

0 y′2(x) dx. Then

∫ 1

0

Qy2(x) dx 6 sup
[0,1]

y2

xα

∫ 1

0

Qxα(1 − x)β dx 6 sup
[0,1]

y2

xα
6 sup

[0,1]

y2
6

1

4

∫ 1

0

y′2(x) dx.

Hence, Mα,β,γ 6
5
4π

2.

3.4) Now we consider the case γ > 1, 0 6 α 6 2γ − 1, β < 0. By the Hölder

inequality we have

∫ 1

0

Qy2(x) dx 6

(
∫ 1

0

|y|
2γ

γ−1 x
α

1−γ (1 − x)
β

1−γ dx

)

γ−1

γ

6

(
∫ 1

0

|y|
2γ

γ−1 x−
2γ−1

γ−1 dx

)

γ−1

γ

.

By the generalized Hardy inequality [3]

(
∫ 1

0

|y|
2γ

γ−1 x−
2γ−1

γ−1 dx

)

γ−1

2γ

6

(2γ − 1

γ

)

2γ−1

2γ

(
∫ 1

0

y′2(x) dx

)
1
2

we have
∫ 1

0
Qy2(x) dx 6 ((2γ − 1)/γ)(2γ−1)/γ

∫ 1

0
y′2(x) dx and Mα,β,γ 6 (1 + ((2γ −

1)/γ)(2γ−1)/γ)π2. The case γ > 1, 0 6 β 6 2γ − 1, α < 0 is symmetric to the case

γ > 1, 0 6 α 6 2γ − 1, β < 0.

3.5) Now consider the case γ > 1, 0 6 α 6 2γ − 1, 0 6 β 6 2γ − 1. Since

∫ 1

0

Qy2(x) dx 6

(
∫ 1

0

Qγxα(1 − x)β dx

)
1
γ
(

∫ 1

0

|y|
2γ

γ−1 x
α

1−γ (1 − x)
β

1−γ dx

)

γ−1

γ

,
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we have by the generalized Hardy inequality

∫ 1

0

|y|
2γ

γ−1 x
α

1−γ (1 − x)
β

1−γ dx 6 2C
(2γ − 1

γ

)

2γ−1

γ−1

(
∫ 1

0

y′2(x) dx

)

γ
γ−1

,

where C = 2(2γ−1)/(γ−1) and Mα,β,γ 6 (1 + 2(3γ−2)/γ((2γ − 1)/γ)(2γ−1)/γ)π2.

3.6) Suppose that γ > 1, α < 0, β < 0. It follows from

∫ 1

0

Qy2(x) dx 6

(
∫ 1

0

|y|
2γ

γ−1 x
α

1−γ (1 − x)
β

1−γ dx

)

γ−1

γ

6

(
∫ 1

0

|y|
2γ

γ−1 dx

)

γ−1

γ

6

∫ 1

0

y′2(x) dx

that Mα,β,γ 6 2π
2.

3.7) Consider the case γ > 1, α > 2γ − 1, β < 0. Let y1 = xα/(2γ) sin πx and
∫ 1

0
y′2
1 dx = C1,

∫ 1

0
y2
1 dx = C2. Then we have that Mα,β,γ 6 (C1 + 1)/C2, because

R[Q, y1] 6
C1 +

∫ 1

0
Q(x)xα/γ dx

C2
6

C1 +
( ∫ 1

0
Qγ(x)xα(1 − x)β dx

)1/γ

C2
=

C1 + 1

C2
.

The case γ > 1, β > 2γ−1, α < 0 is symmetric to the case γ > 1, α > 2γ−1, β < 0.

3.8) Finally, let γ > 1, α > 2γ − 1, β > 0. Taking y1 = xα/(2γ)(1 − x)β/(2γ) sin πx

the proof in this case is similar to the proof 3.7) and Mα,β,γ 6 (C1 + 1)/C2. Note

that by substitution x = 1 − t, α ↔ β the case γ = 1, 0 6 α 6 1, β > 1 can be

included into the case 3.8).
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