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SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE
STURM-LIOUVILLE PROBLEM WITH A
WEIGHT INTEGRAL CONDITION
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Abstract. Let A\1(Q) be the first eigenvalue of the Sturm-Liouville problem
v —Qx)y+ I y=0, y0)=y(1)=0, 0<z<l.
We give some estimates for mq g, = inf A (Q) and My g, = sup A1(Q), where
QETu,B,W QETa,ﬁ,w

Ta 8,y is the set of real-valued measurable on [0,1] *(1 — x)P-weighted L--functions Q
with non-negative values such that fol 21— 2)°Q(z)dz =1 (o, 8,7 € R,y # 0).
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We consider the Sturm-Liouville problem

(1) Yy = Qx)y+ Ay =0, ze€(0,1),
(2) y(0) =y(1) =0,

where @ is a real-valued measurable on [0, 1] function with non-negative values such

that the integral condition
1

3) / 291 — 2)°Q7(z)dz = 1 (0, B,7 € R,y £ 0)
0

holds whenever @ belongs to the 2%(1 — z)’-weighted L.-space. The set of all
functions @ of this kind we denote by T4 3.+
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By a solution of problem (1)—(2) we mean an absolutely continuous function y
on the segment [0, 1] such that y(0) = y(1) = 0; ¥’ is absolutely continuous in the
interval (0, 1); equality (1) holds almost everywhere in the interval (0, 1).

We study the dependence of the first eigenvalue Ay of problem (1)—(3) on the
potential @ under different values of parameters «, 3,7. Our purpose is to give some
estimates for

Ma,gy = _inf  M(Q), Magy= sup Ai(Q).
QETq, 8,y QETw 5.~

Let Hg be the closure of the set C§°(0,1) in the norm |[y[|, = fol (y? + Qy?) du,
where C§°(0,1) is the set of functions of C'*°(0, 1) having their supports compactly

embedded in (0,1). Let I" be the set of functions y from H¢ such that fol y2dz = 1.

Consider the functionals
_ o %(@) + Q)yP () du
Jo v (z) de

Note that the values of R and F' are bounded from below. Let us show that the first
eigenvalue A; of problem (1)—(2) can be found as

RIQ.y] . FlQuyl = / (v (x) + Q)P () da.

M(Q) = inf R[Q,y] = inf F[Q,y].
yel

yeHqQ,y#0

Step 1. Let Q € T, 3, and m = inf F[Q,y]. There exists y € I' such that

yel
FlQ,y] = m.

For all functions Q € T, 3, and y € I" one has F[Q,y] = fol(y’2 + Qy?)dr =
HyH%{Q Let {yx} be a minimizing sequence of the functional F[Q,y] in I'. Then
F[Q, yx] < m+1 for all sufficiently large values of k. Hence ||yx (x)||?qQ =F[Q,yx] <
m+ 1. Since {yx} is a bounded sequence in a separable Hilbert space Hg, it contains
a subsequence {zj}, which converges weakly in the space Hg to a function y. So we
get [lyll7,, <m+1.

Let us prove that the space Hg is compactly embedded into the space C(0,1).
First we shall establish the boundedness of the corresponding operator of embedding.
Note that the inequality |jullc < |[u'||L, + (b —a)||lul L, holds for any function
u(zx) € Cla,b]. If u(z) € AC[0,1] and u(0) = u(1) = 0, then

1 1 x
||u||L1:/ |u|dx=/ /u'da:
0 0 0
1 1 1
</ (/ |u'|dx) da::/ /| dz = |||,
0 0 0

dx
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By the Holder inequality we get
(4) lulle < llw'llz, + lullz, < 20w/llz, < 200z, < 2)ull -

The boundedness of this operator is proved.

Now let us prove the compactness of the operator of embedding. Let M € Hg be
a bounded set, i.e. there is a real number R such that ||u||z, < R for all u € M. We
need to prove the precompactness of M in C(0,1). By the Arzela theorem it suffices
to prove that the set M is uniformly bounded and equicontinuous.

The set M is called uniformly bounded if there is a real number R; such that
|u(z)| < Ry for all w € M and x € [0,1]. In virtue of (4) we have |u(z)| < |Jullc <
2R =R, for allu € M and z € [0, 1].

Now let us prove that the set M is equicontinuous, i.e. for any € > 0 one can find
d > 0 such that |u(z)—u(y)| < e as|r—y| < ¢ for all u € M. By the Newton-Leibniz
formula we obtain: if |z — y| < § = (¢R™!)? then

Yy
u(z) — uly)| < \/ IU’(E)Idé‘ <z —yl2|W|p, < |z —y[FR<e forallue M.
xT

The space Hg is compactly embedded into the space C(0,1). Consequently, there
is a converging in C'(0,1) subsequence {uy} of the sequence {z,}. Since C(0,1) is
embedded into L,(0,1), where p > 1, then the sequence {ux} converges in Ly(0,1)
to a function u € Ly(0,1) such that fol w2de = 1.

Let us prove that the subsequence {uy} converges in Hg. Since the functional F
is quadric, we have the identity

Fle. %1+ Flo, % E0) = ZFIQ ) + 5FIQ.uil

Let € > 0 and let k and [ be so large that for uy,u; from the subsequence one has
! U — Uy 2
FlQ,ur) <m+e, FlQ,u]<m+e and / (T) de < &2
0
Hence,
1 2 1 _ 2
/ (uk—i—uz) dxz/ (Ul+ U, uz) da
0 2 0 2
1 1 ! U — Uy 2
2(1—5)/ u?dx——/( )dx}(l—e)—z—:zl—%.
0 €Jo 2

Therefore, F[Q, 3 (u, +w)] > m(1—2¢) and F[Q, 3 (up — w)] < m+e—m(1—2¢) =
€(1+2m). It means that the subsequence {uy} converges in Hg. Since it converges
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in Hg weakly to y, then the limit function of this subsequence in H is equal to y
too. Then, taking into account that the functional F is continuous in Hg, we obtain

F[Q,y] =m.
Step 2. Let y(z) € T and F[Q,y] =m = inlﬁF[Q,y]. Then
IS

—y"+Qy— Xy =0,

where A = m is the minimal eigenvalue of the Sturm-Liouville problem (1)—(2).

First we note that m =  inf R[Q,y]. We have that the minimum of the
yE€HQ,y#0

functional F[Q,y] is equal to m under the condition fol y2dz = 1.
Let u(x) be an element of Hg. Consider two functions of ¢ € R

o(t) = / (0 + tu)2(z) + Qa)(y + tu)*(x)) dz,  h(t) = / (v + tu)? da.

If h(0) = 1 then g(t) > ¢(0) = m, i.e. the function g has the minimal value at
t = 0 under the condition h(0) = 1. Therefore, ¢’(0) + A1 h/(0) = 0, where A\;
is a real number. Let A = —\;. It means that for all u(z) € Hg the equality
fol (y'u' + Qyu) da = )\fol yu dz holds. In particular, if u = y, then we obtain A = m.
Consequently, fol(y’u’ + Qyu — myu) dz = 0.

This equality is valid for all u € C§°(0,1). It implies the existence of the general-
ized derivative of the function y’ such that

() —y(@)" + Q)y(z) — my(x) = 0.

By the method of averaging one can obtain a sequence {yx(x)} of C§°(0,1) func-
tions with the following properties: 1) {yx(z)} converges uniformly in the space Hg
to the function y; 2) the sequence {Qyx(x)} also converges uniformly in Hg to the
function Qy. Then the sequence {yi(x)”} converges uniformly in this space to the
function y”. Therefore the equality (5) holds almost everywhere in (0, 1). Moreover,
y(0) =y(1) = 0.

Thus y is a solution of the Sturm-Liouville problem (1)—(2) with the eigenvalue
A = m. For any solution z of this problem we have fol (2% (2) + Q(z)2%(x)) da =
)\fol 2% dz; then in virtue of (5) we obtain the relation A\ > m. Consequently, m is
the minimal eigenvalue.

The following theorems give some estimates for mq g, and My g .

Theorem 1.
(1) Ify > 0, then my g, = 2.
(2) If y <0, then mq g,y < +00.
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Theorem 2.
(1) Ify<0and 0 <~y <1, then My g~ = +00.

(2) If y > 1, then My g, < +00.
Proof of Theorem 1. We emphasize that in virtue of Friedrichs’ inequality the
1
2(x)dx o
=7,

following relations hold for all @ € Ti, 5,4
1,2 2
d
o oW 1 QEl@)dr 0
fO y2( )di[: yEHq,y#0 f y (E d

/\1(@) B yEHq,y#0

Hence, mq 5,4 = 12
) Let v > 0, a, 3 be arbitrary real numbers. We prove that m, g, = . Consider
the functions
0, z € (0,0);
—2))7V, ze0,1),

@reia) = { (1 0)n(1
z € (0,0);

(2) sinnz/6,
xTr) =
. 0, c[0,1), 6 —1-0.
Then we have fo Q0,a 5 7( z)yp(x)?dz = 0 and the integral condition holds. Since

)2 dz = 16, f (z)>dz = £7%/6, we obtain
%(TEQ/Q) — 2

9211110]%[@0’%] - 9211110 (30)

fol Yo()

A1(Q) < 7%, Therefore, mq 5, = 72
0, « > 2y — 1. Consider the function

and mq, g, =  inf
QETw, 5,
2.1) First we suppose that v < 0, 3
Qo(z) = Cx=@tV/7+0/7(1 — £)=P/7 where 6 is a positive real number such that
a > 2y — 1+ 6. We take the constant C' such that [ Qg(z)Yz%(1 —z) dz =1, i.e.
C = 0'/7. By the Hardy inequality we obtain
1 — B/ q?
29 (1 z) Py -2 2
/()Qe(x)y dxfC/O EperEEEr dz < C/x y*dr < 4C/y dz.
Then it follows from C' = 6'/7 that m, 5, < (1 +4(a — 2y +1)1/7)
2.2) Suppose that v < 0, 8 > 0 and a < 2y — 1. Consider the functions
0 1.
’ 0 g €T g 2
1—2)?, %<x<1,

Q:a.8(x) = 2™ (1 —2)=72 &7V and 1 (2) {(
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where 6 is a real number such that 20 — /vy + (€7 —1)/v > —1 and 26 > 1. Denote
fol y2de = Oy, fol yidr = Co, fol x= /12 =D/7y2 dx = Cy. Then R[Qc.a.5.4,y1] =
(C1 +¢eC3)/Cy and mg g4 < C1/Co. The case « > 0, § < 0 is symmetric to the case
6>20,a<0.

2.3) Now we assume that v < 0,2y — 1 < a <0 and 2y — 1 < 8 < 0. Counsider
the function
Cog= et/ H0/v(1 — )8/ 0<z < %;
Cx*a/“’(l _ x)*(ﬁ+1)/v+9/v, % <z <1,

Qo,0,8~(T) = {

where 6 is a positive real number such that o > 2y — 1+ 6. By the Hardy inequality

1 B 1 N B 1
/Qa,aﬂﬁy%x)dmcz“f/ x*%%?dxwz“f/ (1—2)" 5 Hy2de
0 0 =

2

-

1

_ 2 1 - 1
< Iy 2’Y’Y 1 (/ m_2y2 dz +/ (1 _ l‘)_2y2 dx) g c9 4'yW 1 / y/2 dx
0 3 0

2

and My 5, < (14+C247=D/7M)12 For § = a — 2y + 1 and C = (§2°~1)/7 we have
Ma,p,y < (14 (@ — 2y + 1)H/72004270/7)r2,
2.4) Consider the case v < 0, « < 2y — 1 and 8 < 0. Consider the functions

a?, 0<z<3;
1

Qeapr() =cx V(1 =) P2 =D/ and yi(x) =
50’,5’)’( ) ( ) 1( ) (1_x)07 %<x<

)

where 6 is a real number such that 20 — a/y + (¢¥ — 1)/v > —1, 20 > 1 and
20 — B3/ > —1. Denote fol yP2de = Oy, fol y?dr = Oy, fol Qc.0.8~(2)y? dz = £Cs.
Then R[Qc.a,8,,Y1] = (C1 +¢C5)/Cq and mq g~ < C1/Co. The case § < 2y — 1,
«a < 0 is symmetric to the case o < 2y — 1, f < 0. By substitution x =1 —t, a <
the case 2y — 1 < a < 0 and 8 < 2y — 1 can be included into the case 2.4).

Proof of Theorem 2. 1.1) First we suppose that v < 0, « > 0, § > 0. Let us
prove that M, g, = +00. Assume that a > 5. Consider the function
0 (2) (1 =% (1—e)™)/2e) 72—/ (1 —2) P/, ze(0,1)\ (g1 —e);
By(x) =
R (e(1 =)/ (1= 2e)) a1 —2) P/, we (e, 1~ ),

where ¢ — +0. Thus we have

l—e 1=e g=a/v(1 - x)~/
2 d é/ T 2 d
| vwas [ @
1—¢ —a/’y(l _ )70(/’)/
i x — ) (@=B)/7,2
< SR -0 e
Efa/y 1—¢ )
= m : Qc,a.8~(2)y" (z) da.
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By the Holder inequality we get

_a 1—
=~ €

Qc.0,84(x)y* () dz

1 62 £
/y2<x>dx<—/ y2 () de + ———
0 2 Jo (1—2¢)"7 Je
2 1

1 1
3
+ y'?(z)dz < a(a)(/ y'?(x) dz + / Qe 05~ (7)y% () d:c),
1-¢ 0 0
where a(e) = €2/2 4+ &%/7/(1 — 2¢)*/7. Then R[Qc.0.5.,y] = 1/a(e) for all func-
tions y € Hg. Consequently, inf R[Q,y] > 1/a(e). Taking into account that
YyEHQ,y7#0
a(e) — 0 as e — 0, we obtain M, g, = +00.
1.2) Consider the case v < 0, @ > 0, 8 < 0. Let us prove that M, g, = +00.

For ¢ — +0 consider the function

(a+ 1) e/ )1 —2) P 0<a<e
Qepr(@) = { (a+ DYVl —eoet)y=1Uv(1— )P <<l
As in the previous case fol y?(z)de < a(e)(fol y"?(z)dx + fol Qc.0.8,~()y?), where
a(e) = €2/24+ (1/(a+1))/7%e1/7(1 —2F1)1/7 and by the same argument M, g, =
400. The case v < 0, 8 > 0, @ < 0 is symmetric to the case v < 0, a > 0, 8 < 0.
1.3) Now suppose that v < 0, @ < 0, 8 < 0. Let us prove that M, g, = +00.

Consider the function

0 @) (1—e)/TeVvg=o/v(1—2)=B/7, 0<a<e
€Tr) =

R (1— &) VeVl — o) B/, e<a<l,

where ¢ — 40. By the same argument M, g, = +00.

2.1) Cousider the case 0 < v < 1, a > 0, 8 > 0. Divide the segment [0,1] by
points 0 = g9 < €1 < ... < €, = 1 to equal segments of length €. Consider the
function Q.(z) on the segment [0,1] defined on each interval [e;_1,&;) (1 < i< n) as
follows:

0.(2) E_I‘x_"/v(l — ac)_ﬁ/v, cii1 ST <gi_1+e?
e\T) =
0, gi—1+e?<x<e¢y,
where e — +0, 0 = (14+7)/(1 —7), u = 2/(1 —~). Then thereis 6; € [g;,_1,8;,_1+€9)
such that

ei—1+€?
/ Qe(z)y? dw = e 720, /(1= 0,) P/ 2 (6;) = 10,7/ (1= 0;) P 1y2(8;).

€i—1
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Since y(z) = y(6;) + f; y'(x) dz, we have by the Holder inequality

/ Y2 dz = / <y(9i)+/;y'(x)dx)

:252<9?/V(1—9i)6/7/ l Qe(a?)dex—l-/ l y/de)

<252</ 7, Qe(a:)dex+/ z y/de)

i—

2 £
dr < 2ey%(6;) + 2¢2 / y'"? dx
€i—1

and fol y?de < 252(f01 Q-y*dx + fol y"? dz). Hence, M, 5., = +00.

22)f0<vy<1,a<0, >0, then divide the segment [0, 1] in a way similar to
the previous case and define the function Q). on each interval [g;_1,&;) (1 < i < n)
as follows:

Q.() 0, 6i,1<x<6i,1+%6—%69 or Ei,1+%€+%69<x<6i;
e\T) =
eThT™ V(1 —2) P/, g1+ de—Lte? <w <+ e+ Lkl

where & — +0, 0 = (14+7-a)/(1=7), j1 = (2= a/7)/(1-7). By the same argument
as for the case a > 0, 3 > 0 we have

1 1 1
/ y?dz < 2e2<max(9?/”)ea/”/ Q=y” dx+/ y"? dw)
0 ? 0 0

1 1
— 9.2 (9?”50‘/7/ Q5y2 dz +/ y12 dx)
0 0

1 1
< 217(1/“/62(1 _ Egl)a/’)'(/ QeyQ dz +/ y/2 da:).
0 0

Taking a sufficiently small e we get R[Q.,y] > (&)72/7/217%/7¢2 Therefore,
My g = 400. Note that the case 0 < v < 1, 8 < 0, @ > 0 is symmetric to
thecase 0 <y <1, a <0, >0.

2.3) Cousider the case 0 < v < 1, a < 0, 5 < 0. If for example 8 > «, then divide
the segment [0, 1] in a way similar to the previous cases and define the function Q.
on each interval [g;_1,¢;) (1 < i < n) as follows:

Q:(z) =

1 1 1 1
{0, €i_1 <m<ai_1+§€—§59 orei_1+§e+§59<x<ai;

eThaT (1 —2) P, e+ e — el <w <+ de+ 1ef,

where e — 40, o= (1 +v—«a)/(1 —7), p = (2 —a/7)/(1 —~). The proof in this
case is similar to the proof of 2.2) and also M, g, = +00.
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3.1) Consider the case y =1, 0 < a < 1, 8 < 0. Since 3?( a:f y'? dt for all
€ (0,1), we have

1 2 1
/ Qy?(x)dx < sup —/ Qx( ﬁ dz < sup v < / y'?(x) d.
0 [0,1] T¢ 0

Therefore, M, 5., < 2n°. Note that the case v =1, 0 < 3 < 1, a < 0 is symmetric
tothecase y=1,0< a <1, 8<0.

3.2) Consider the case v = 1,0 < < 1,0 < f < 1. We have M, 3, < 32,
because

2 2

1
/QyQ(:c)d supi/ Qz(1—z)Pdx < supy—+sup
0

[0,1] (1 — J) [0,1] x [0,1] 1-— J?.

3.3) Now suppose that y =1, « <0, 8 < 0.

One can show [1], [2] that for all y € H, the following inequality holds: supy? <
(0,1]

1 01 y"?(x) dz. Then

2 1 2 1
1
/ Qy*(z)dz < sup ¥ Qz(1 — )P dz < sup ¥ <supy? < —/ y'?(z) dz.
[0,1] 2% Jo 0,11 % [0,1] 4 Jo

Hence, M, g, < %TE2.
3.4) Now we consider the case v > 1, 0 < a < 2y — 1, § < 0. By the Holder
inequality we have

! 2 1 2y a B8 ’Ysl 1 _2y—1 ’Y;l
Yy (r)ar & Yyttt —XT)l=7 dx S ylr—txr - x .
Qy(z)dr < ly=Tet= (1 —z)™=d < [yl =T rd
0 0 0

By the generalized Hardy inequality [3]

V2_;1 2y -1 271(/1 2 )%
vla: 7= dx < z)dx
(/ Iy ) ( Y ) oy (=)

1
we have [ Qu*(x)dz < ((2y — 1)/v) 2= 1)/’Yf y"?(z)dx and My g, < (1+ ((27 —
1)/7)@7=1/7M)x2 The case v > 1, 0 < 3 < 2y — 1, a < 0 is symmetric to the case
v>1,0<a<2y-1,8<0.

3.5) Now consider the case v > 1,0 < a <2y —1,0< 8 <2y — 1. Since

y—1

1 1 1 L, j -
/OQyQ(x)dx<</0 Q”x“(l—x)ﬁdx) (/0 Iylwxﬁ(l—x)l‘wdx) 7
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we have by the generalized Hardy inequality

1 2v—1 1 Yy
ol o 2y —1 = -1
/ |y|w2—1x1—w (1- x)lfw dz < 2C( ’Y’y ) o </ v () d:c) ,
0 0

where C = 22v=1/(v=1) and M, < (14 9(3y— 2)/“v((27 )/7)(27—1)/7)752
3.6) Suppose that v > 1, a < 0, 8 < 0. It follows from

y—1

1 9 1 2+ o 8 BN
| s (/ |y|wm<1—x>wdx)
0 0
r, = 1
<( / |y|wdx) < / ¥ () dx
0 0
that Magv\2n2

3. 7) Consider the case v > 1, a > 2y — 1, < 0. Let 43 = z*/®Y sinnz and
fo 2dz = Oy, fo y} dz = Cs. Then we have that M, g~ < (C1 + 1)/Ca, because

C1+ fol Q(z)x®/vdx Oy + (fol Q7 (z)x*(1 — x)P dx)l/’y C1+1
RIQ,y1] < o < o = G
Thecasey > 1, 8 > 2y—1, a < 0 is symmetric to the case vy > 1, a« > 2y —1, 8 < 0.

3.8) Finally, let v > 1, « > 2y — 1, 8 > 0. Taking y; = xo‘/@”)(l — 2)P/(27) sin nz
the proof in this case is similar to the proof 3.7) and M, 3, < (C1 + 1)/Ca2. Note
that by substitution x =1 —1¢, o <> fthecase vy =1, 0 < a <1, > 1 can be
included into the case 3.8).
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