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Abstract. The paper deals with the higher-order ordinary differential equations and the
analogous higher-order difference equations and compares the corresponding fundamental
concepts. Important dissimilarities appear for the moving frame method.
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INTRODUCTION

The parallelism between differential and difference equations was discussed in the
inspirative article [1]. Retaining the notation [1], we propose an alternative approach
where the interrelations become more transparent. Especially the fundamental con-
cepts clarify: compare (e.g.) first integrals, shift operator, symmetries and infinites-
imal transformations as stated in [1] with our conceptions introduced below. On the
other hand, the common method of moving frames [2] not mentioned in [1] needs
essential change for the case of the difference equations.
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1. DIFFERENTIAL EQUATION

We consider the equation

d
(1.1) uN) = Fz,u,d, .., 0N Y) (': —_ uzu(m))
dx
in the real domain, where F' is a smooth function. Employing the jet space M with
coordinates
(1.2) M: z,u%ut, .. uN L

equation (1.1) is expressed by the first order system

dk del
(1.3) d—z;:ukﬂ (k=0,...,N—2), “dx = F(z,u°,..., a1

and its solution is represented by the curve (the left-hand figure)
(1.4) P(z) = (z,u°(z),...,uV " Yz)) = (z,u(z),...,uN"V(z)) e M.

Such a solution is uniquely determined by any of its points

(1.5) P(z) = (z,u°(Z),...,uV (7)) € M (fixed 7 € R).
A function
(1.6) @:@(m,uo,ul,...,u]v_l)

on M is called the first integral of equation (1.1) if ®(P(z)) = const. for every
solution (1.4). It follows that the restriction of the function ® to x = Z can be
prescribed.

Fig. 1
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2. DIFFERENCE EQUATION
We consider the equation
(2.1) UntN = Fp(Un, .. sunin—1) (un € R, n€Z)

where F;, are smooth functions. We suppose that it is exactly of the order N, that is,
(2.1) can be equivalently expressed as u,, = Grny1(Un+1,- .., Unyn). After a formal
adjustment of indices, we obtain the equation

(2.2) Up—1 = Gpn(Un, ..., Unsn_1) (un €R, neZ)

equivalent to (2.1).
In order to obtain a parallel theory, we introduce discrete counterparts u” to the
derivatives u®) (). In full detail, we introduce spaces M,, with coordinates

(2.3) M,: vl ul, .. ul ™t (n€ ).

n

Roughly speaking, the coordinate u¥ corresponds to the variable u,, . appearing in
(2.1). It follows that equation (2.1) turns into the first order system

(24) wf =uft (k=0,...,N-2), urijll:Fn(uO...,uﬁY_l) (ne?)

which may be regarded as a shift transformation S,,: M,, — M,,11. (More precisely,
Sy, is given by the formulae

Stuk o =ult (k=0,...,N-2), Spun = F(ul,...,ul ") (neZ)

ns

which are a mere transcription of (2.4). Alternatively, equation (2.2) is expressed by

(2.5) ud =G, Y, wl o =, ugjll =ul 2

and may be regarded as a transformation S, ': M,, — M,,_1.) Then a solution is
represented by a sequence of points

(2.6) P,=l,...,u)l " HYeM, (ufeR, ne2)

n

satisfying (2.4) (hence S,P,, = P,41, see the above right-hand figure). It follows
that it is determined by any of its points

S

(2.7) Pr=(@d,...,u) " eM, (ufeR, fixednec 7).

n
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A sequence of functions
(2.8) @, =,w,...,.ul") (ne7)

is called the first integral of equation (2.1) if the values ®, (P,,) are independent of n
for every solution (2.6). It follows that the term ®5 (fixed i € Z) can be prescribed.

3. SYMMETRIES OF DIFFERENTIAL EQUATION

We are interested in mappings I' that preserve differential equation (1.1), how-
ever, reasonable counterparts for the difference equation (2.1) represent only the
x-preserving mappings. In terms of coordinates (1.2), such z-preserving symmetry
I': M — M is given by certain formulae

(3.1) Mz =a, T = a%(z,u®, ..., ™) (k=0,...,N—1)
and equations (1.3) are preserved if and only if
(3.2) D% =Mt (k=0,...,N-2), DNt = F(x,4°, ..., aN 7Y,

(D =0/0x +u'd/ou’ + ... +uN 19 0uN 2 + FO/OuNTT).

We also recall the infinitesimal symmetry
(3.3) M=z, TI*u®=u"4+eQx,u® .. ™ +...

represented by the vector field

(3.4) X=> Q"aul .. N —

duk
on the space M. The coefficients Q* satisfy the identities

oF
ouk’

DQk:QkJrl (k‘:O’...,N—Q)’ DQN71:ZQIC

Since symmetries are mappings permuting the solutions, it follows that the restriction
of symmetries to the fiber x = Z (fixed T € R) can be arbitrarily prescribed.

There is a huge literature on the symmetry theory of differential equations. In
particular, we refer to [2] for the moving frame method. The particular pointwise
subcase when I'*u® = 4%(z,u’) is supposed is not easier and nontrivial pointwise
symmetries of a given equation (1.1) need not ezist.
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Fig. 2

4. SYMMETRIES OF DIFFERENCE EQUATIONS
We introduce mappings I';,: M,, — M,, (n € Z) given by certain formulae
(4.1) Thuf =ak@l, ... N "Y) (k=0,...,N —1).
Then equations (2.4) are preserved if and only if the requirements

(4.2) ak g =ak (k=0,....N-2), a)i =F,a0,....a) ")

ns
are satisfied by virtue of (2.4). In full detail, we have the requirements

aktl (ifk=0,...,N —2),

~k 1 N—-1
Up, Upy vy Uy 7Fn =
#l ) {P;Fn (if k=N —1).

The sequence T'), (n € Z) represents a symmetry of difference equation (2.1). The
relevant infinitesimal symmetry

(4.3) Tiul =uf + Qb (ul, .. ull 1) 4 ...

n - n

is analogously represented by the sequence of vector fields
(4.4) X = Q... uNfl)i (nez)
n n? ’'n 8”2

on the spaces M,,. The coefficients QF satisfy the identities

ferl(u'}w"'?ur]y_laFn) =

Qk+L (ifk=0,...,N —2),
S QLOF,/oul (if k=N —1).

Since symmetries are just the mappings that permute the solutions, it follows that
the data Ty, and QE (fixed o € Z) can be arbitrarily prescribed.
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We will mention in more detail the particular pointwise subcase when the trans-
formation formula

(4.5) 2wl = g, (u?) (= gn(un)) (n € Z, abbreviation g, = 1°)
is supposed. Then the remarkable identities

F;uﬁ = F;ugwrk = gnJrk(u?LJrk) = gnJrk(ufz) (k = 07 e 7N - 1);

(4.6) . N B
I S u'r]erll = 9n+N(unN+11) = gn+N(Fn)

follow from (4.2) and (2.4).

We refer to [1] for the infinitesimal pointwise symmetries. Instead we will mention
the alternative method of moving frames. It is rather dissimilar from the common
theory of symmetries of differential equations [2].

5. MOVING FRAMES FOR POINTWISE SYMMETRIES

Functions ¢n+k, gn+n in identities (4.6) are unknown. Therefore identities (4.6)
can be expressed by saying that I',, transforms every level set u¥ = ¢k F,, = ¢, (¥, ¢,
are constants) again into such a level set. Alternatively: every equation duf = 0,
dF,, = 0 is preserved. Still otherwise: let us consider spaces N,, with coordinates

and differential forms

(5.1) Ny ud, ol a e a, (ne?),
af =afduf (k=0,....N—-1), a,=a,dF,.

Then

(5.2) F:Lafl = o/fL (k=0,...,N=1), Tra,=a,

if the transformation formulae (4.5), (4.6) are appropriately completed by the ad-
ditional coordinates. One can directly verify that the additional transformation
formulae (in fact needless in the sequel) ensuring the invariance (5.2) are

a Gnp

5.3 ok = _.
(5:3) 9%+N(Fn)

nln = 7 (k=0,...,N-1), Tra,=
n+k

n
(u;)
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6. THE ALGORITHM

Identities (5.2) express the invariance of the differential forms a¥, o, and we will

search for more invariants in order to determine the mapping I';,: N, — N,,. The
indices n € Z may be kept fixed in this section.
First of all, we have

an =3 Akak (Ag - Z—Z&Fn /8qu)

and it follows that A¥ = I'* Ak are invariants. Assume OF,,/0uf # 0 for a certain k.
Since the level set A¥ = 1 is preserved, we may restrict our calculations to this level
set. Alternatively, the coordinate a® in (5.1) may be omitted and the coefficient a¥
in (5.1) is replaced by a,dF,/duk. (This is the common procedure in the moving
frame method.) Repeatedly applying this reduction, we have the invariant forms

ap

(6.1) L anOF, /ouk - duk  (if OF, /ouk #0)
’ ) ak duk (if OF, /duk = 0)

on the “reduced” space N,, (some coordinates a® are not occuring here).

Secondly, clearly
da,

an

(6.2) dan = dag A dF, = B A am (ﬁn = Sy, an)

where b,, is regarded as a new variable. Since this (3,, is the most general differential

form satisfying (6.2), it follows that (3, = I}, is invariant. The invariance is
ensured if v
1 n
Fibn = ———— (b + an Sty Fn) )
9n+N(Fn) gn+N(Fn)

by using (4.6) and (5.3). (The formula will be in fact needless.)
Thirdly, assuming 0F,,/0uk # 0 and OF,,/0ul, # 0, (6.1) gives

ko 1 Kl ! k i O0PFn/0ulduy,
(6.3)  dak = (B + A o, ) Aol (AN = OF, | ouk - 8Fn/8u%)

with help of (6.2). The coefficients are invariant. Since every level set A¥ — b, =0
with k # [ is preserved, we may restrict the calculations to the level set and put
b, = AF for a certain appropriate k,l (where k # [).

Fourthly, after this restriction, we have the invariant form

]‘ s T S
(6.4) 4B, = dAF A dF, = PRE Y Ara" Aa
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where

1 1 (8145}/8% 8Afll/8ufb>

(¢5) (anP'A” " (an)2\OF,/0u; ~ OF,/our,

are invariant coefficients. If A”S # 0, the level set A"*/(a,)? = 1 may be employed

in order to determine a,, which clarifies the form 3,. Then 3, = 3. I*a% with the

n“n»
N-1

true invariant functions I¥ depending only on the primary variables u?, ..., u?

In particular, we have proved the following assertion needful below.

Theorem 6.1. Assume 9F,/0uf # 0 (n € Z; k = 0,...,N — 1). Then the
pointwise symmetry Ty, (n € Z) given by (4.5) preserves all differential forms

oF, da 0?F,, ) 0uk oul
n = duy, By = —= L Z; k,1=0,...,N —1).
On =0 duk tns B an * OF,,/ouk - OF,, /oul, (n€Z k1=0,..., )

Here the additional parameters a,, are subject to formulae (5.32).

7. EXAMPLES
(i) The linear equation. Let us consider an equation
UptN = Cgun +...+ C,r]l\]ilun+]\]71 (Cﬁ € R, 02 #0),

therefore F,, = >~ C*u* in terms of variables (2.3). We have invariant forms

afL = anCﬁ du’fL (if C’,ﬁ #0), Bn = dan;

Gnp

see (6.1), (6.2) where b, = A = 0 identically. The invariance equations (5.2)
with TXuf = g1 (uk) together with the additional invariance I'}3, = 3, read
Ira, - C’T]f dgn+r = anC'T]f duf17 dI'} Ina, = dlna, whence
. 1
ILan = Epan, gn+k(u2) = _(UZ + DZ) (Enanz €R)

and it follows that F,, = E is independent of n and Dfl = Dy 1. In terms of original
variables, we have the substitution un4+x — gn+k(Untk) = (Untk + Dptr)/E which
can be simplified as

Up > gn(un) = %(un +D,) (nez).
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This is indeed a symmetry if the recurrence D,y n = Y. C¥D,, 1 (n € Z) is satisfied.
It follows that the point symmetries depend on the choice of N constants E # 0,
Dy,...,Dn_1.

(ii) Nontrivial invariants. Let us consider the equation

u’n+N :un+1nGn (Gn :un+...+un+N71).

In terms of variables (2.3), we have invariant forms

1 1
a%zan(l—FG—)du?L, aﬁzanG—qu (k=1,...,N—1),

and 3, which will be needless. One can then find that all coefficients to appear (e.g.,

AFCD,,, ARLTE) depend only on functions G, and we may introduce the invariance

requirement T} Gy, = G,. This implies I'} du® = du® whence
gnJrk(uZ) = F;uﬁ = uﬁ + Entk.

In terms of original variables, we have the substitution w4k — gntk(Untk) = Untr+
E,, 4+ which can be simplified to

Up = gn(Un) = Up + By
This is indeed a symmetry if the compatible requirements
Eyn=E,E,+...+E,yn_1=0
equivalent to the single recurrence
Epi1+...+Ewyn=0 (ne2)

are satisfied. It follows that the point symmetries depend on the choice of N — 1
constants. One can however see that a slight change of data may provide a difference
equation without any point symmetries, see also [4] for a quite general discussion if
N = 2 is supposed.

(iii) The zero curvature examples. Let us introduce a large class of equations

_ I
UntN = En(Pn(Un) + oo+ pp " Hunan-1)) (@, #0, Dy #0)

where ¢,,, p¥ are smooth functions. In terms of variables (2.3), we have

Fo=ea( b)), A = 20 A =0

©n)?
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We recall the invariant forms

da 17
of = a,lpk ' dut = a,¢ dpt, B, = — + 4'0/" 5 don = d(Ina,e),).
an (Son)

The invariance of the forms 3, implies

F:L(GMP%) = Enan‘?%

for appropriate nonvanishing constants £, € R. Then the invariance of the forms o
reads

Enan@, Ty, dpl = ang), dpls
whence

E.Tipf =pf +DF (k=0,...,N-1)

for appropriate constants DX € R. However,
Do = pr(Chug) = P (gnsk)

and therefore E,, = F is independent of n and DfL = Dy 4. Altogether we have the
substitution

(7.1) Untk = Gntk(Unik) = (pﬁ)_l (%(pﬁ(unﬂf) + Dn+k)) (k=0,....,.N-1)

(with the inverse function (p’fb)fl) in terms of original variables. In particular,

-1/1
(7.2) = galun) = (p5) (5 (wn) + D)
and this result is quite reasonable in applications. We have an overdetermined sys-
tem of requirements. If requirements (7.1), (7.2) are compatible, they determine all
possible point symmetries.
(iv) Continuation with N = 2. Let us mention two intentionally simple examples

UnUn+1 1 —upupqa
Upy2 = ————, Upyo = —————.
Up + Un+1 Up + Un+1
They can be transcribed as
1 1
Unp+2 = Un4+2 =

1/ tn + 1/ upi1’ tan(arctan u, + arctanu, 1)’
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respectively. The choice of functions ¢,, = ¢, p¥ = p (independent of n, k) is obvious
here and formula (7.2) may be applied. We obtain substitutions

1 1
E-Y(1/un + Dy)’ Un T an E-(arctanu, + D,,)

Uy, —

(nez)

and they are true symmetries if and only if the recurrence Dyio = D, + Dpy1
(n € Z) is satisfied (direct verification). The same formulae were obtained in [1]
with the use of infinitesimal transformations and rather lengthy calculations.
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