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Abstract We consider the problem of motion of a rigid body in an incom-
pressible viscous fluid, filling a bounded domain. This problem was studied by
many authors. They considered classical non-slip boundary conditions, which



gave them very paradoxical result of no collisions of the body with the boundary
of the domain.

In this work we study the case where the Navier slip conditions are prescribed
on the boundary of the body (instead of classical non-slip conditions). We prove
for this model the global existence of weak solution, which permit collisions with
the boundary of the domain.

Keywords rigid body, global weak solution, collisions in finite time
MSC: 35Q30

1 Introduction

The problem of motion of one or several rigid bodies in viscous fluids filling
a bounded domain was studied by several authors see [7, 8], [20], [25]. They
consider non-slip boundary condition, which give them very paradoxical result
of no collisions with boundary, see work of Hesla [16], Hillairet [17]. This result
was extended to the three dimensional situation by Hillairet, Takahashi [18].
The relation between the regularity of velocity fields given by motion of bodies
and the regularity of boundaries, which can give us answer to the problem of
existence and no existence of collision was done by Starovoitov [26]. From his
theorem it was proved that in the case of very viscous fluids (for instance Non-
Newtonian fluids) if the initial distance between bodies is positive then in a
finite time the distance continuous to be positive (see [26]). Also we would
like to mention work of Gerard-Varet, [19]. They considered the regularity of
boundary C** and on the dependency of A they showed the collision of bodies
or existence of strong solution. Aim of this paper is to study the case, when
Navier boundary conditions are prescribed on the boundary of the body, and to
show the global solvability result. To our knowledge there is a particular result
done by Neustupa, Penel [23], [24], where they consider the Navier boundary
conditions and the motion of body with the collision of the boundary of the
domain is prescribed. Recently Gérard-Varet, Hillairet [12] has shown a local-
in-time existence result: up to collisions.

We will investigate the motion of a rigid body inside of a viscous incom-
pressible fluid. We assume the fluid and the body occupy a bounded domain
QC RN, (N =2or N = 3), such that the boundary 9Q € C?. Let the body
be an open simply-connected set Sy C §2, having the boundary 95, € C?, at
the initial time ¢ = 0. The fluid fills the domain Fy = Q\Sp at ¢t = 0.

The Cartesian coordinates y of points of the body at ¢t = 0 are called La-
grangian coordinates. The motion of any material point y = (y1,..,yn)? € So
is described by two functions

t—qt)e RY and ¢t~ Q(t) € SON) for te0,T],

where q = q(t) is the position of the body mass center at a time t and SO(N) is
the rotation group in R¥ i.e. the Q = Q(t) is a matrix, satisfying Q(¢)Q(t)T =



I, Q(0) = I with I being the identity matrix. Therefore, the trajectories of all
points of the body are described by a preserving orientation isometry

Alt,y) =da(t)+Q(t)(y —a(0))  forany ye€Sp (1.1)
and at any time t the body occupies the set
S(t)y={xe RN : x=A(t,y), ye€So}=A(t>S). (1.2)

The velocity of the body is a rigid function
us; = a(t) + P(t)(x — q(t)) for all x € S(t), (1.3)

where a = a(t) € RV is the translation velocity and P = P(t) -the angular
velocity. The velocity us has to be compatible with A in the sense

da _ dQ
dt dt

The angular velocity P is a skew-symmetric matrix, i.e. there exists a vector
w=w(t) € RN, such that

and Q=P inl0,7T). (1.4)

P(t)x =w(t) xx, VxRV, (1.5)

The full system of equations modelling the motion of the body and of the fluid
can be written as

d d
mj . pPsUg dX = —/ Prndx +/ psgdx for x € S(t),
e dt Jsu 95(%) S(t)
dJw) d

s 3, — 1. s - t sd
s dt/s(t)p(x q(t)) x usdx

—— | x-a@)x Pdxs [ plx-at) xgdx (1)
5(t) S(t)

Owps + (uy - V)pr =0, divuy =0 for x € F(t) = Q\S(1),
ps(Oruy + (uy - Viuy) = divP + prg. (L.7)

py and p, are densities of the fluid and the body; m = fs(t) ps dx— the mass of

the body; Py— the value of the stress tensor P of the fluid on 05(t); n(x)— the
unit interior normal at x € 95(t), i.e. the vector n is directed inside of S(t);
g—the external force;

J=[ (x—a®)PI-(x—q(t)® (x—q(t)))dx
S(t)

-the matrix of the inertia moments of the body S(t) related to its mass center.
In (1.7) uy is the fluid velocity;

(Vs + (vup)")

DN =

P=—pl+2puyDuy and Du; =



-the stress tensor and the deformation-rate tensor; p is the fluid pressure; 1y > 0
is the constant viscosity of the fluid. In the sequel we will define common velocity
and density for the body and the fluid in the whole domain Q7 = (0,T) x Q as

_ (usaps)v X € S(t);
wor={ ey XERD

In addition to the coupled system (1.6)-(1.7) the following initial-boundary
conditions are prescribed

S = Sy, p=po(x), u=uy att=0
u = 0 ondQ (1.8)

and Navier’s boundary conditions on 95(t)
uy-n=u,-n, (Pm+~y(uy —u,))-7=0. (1.9)

Here divug = 0 in D’(Q) and Dug =0 in D’(Sp); uy and u, are the velocity
values of the fluid and the body on 0S(t); the constant v > 0 is the friction
coefficient; 7(x) is any tangent vector to S(t) at x € 9S(¢).

The outline of the article is as follows:

In the section 2 we give the weak formulation of our problem (1.6)-(1.9) and
the solvability result (Theorem 2.1).

In the section 3 we introduce an approximated problem and describe the
main steps of the proof of the solvability result.

The section 4 contains:

e the justification of the definition of weak solution (the subsection 4.1) and
some technical results, mainly used to justify the approximation of the
"jump” term on 0S(t) in the definition of weak solution, see (2.3) (the
subsection 4.2);

e classical results for the transport equations (the subsection 4.3) and a
compactness result of the convective term in the Navier-Stokes equations
(the subsection 4.4).

2 Main result

Let us introduce some necessary notations to define the concept of weak solution
for system (1.6)-(1.9). We define the space

VEP(Q) = closureyrpy{ v € D(Q) :  divv =0}
According to classical results, we have

VO2Q) = {velL?Q):divwv=0 inD'(Q), v-n=0 in H /2(8Q)},
VI2Q) = {veW,?Q): divv =0 ae. inQ},



where n is the unit normal to the boundary of Q. Let M(Q2) be the space
of bounded Radon measures. We define the spaces of functions of bounded
deformation as

LD*(Q)={veL*Q): Dve L*(Q)}, BDQ)={velL(Q): DveM(Q)}
endowed by the norms
IVllp2) = [IVllL2(0) + DV 22(0), IIVllED©) = [IVIlL1(0) + DV](L),
respectively. Also we consider the spaces
LD§(Q)={veLD*Q): v=0 on 0Q},
BDy(Q2)={veBD(): v=0 on 9Q}.
Let us point that due to the Korn inequality
IVVr20) < V2/IDV||2(), Vv € LD3(Q), (2.1)

we have that LDZ(Q) N V%2(Q) coincides with the space V1:2(Q).
Let S be an open simply-connected subset of  with the boundary 95 € C?.
We introduce the following spaces of vector functions

C*(S) = {veC¥S): D*v has a continuous extension on S, |a| < k},
K(S) = {veVv'?Q):Dv=0ae. onS},
KB(S) = {veBDy(Q):DvelL*Q\S), Dv=0ae onbS,

divv=0 in D'(Q)}.
The class of all characteristic functions of subsets of RY is denoted by Char(R™Y).
In the sequel for any ¢ € Char(RY), S(¢) is a set of points where ¢ = 1.
Let us present the definition of weak solution of (1.6)-(1.9), based on Lemma
4.1, which is given in the subsection 4.1.

Definition 2.1 The triple {A, p,u} is a weak solution of system (1.6)-(1.9), if
the following three conditions are satisfied:

1) The function A(t,-) : Q — Q s a preserving orientation isometry (1.1),
which defines a time dependent set S(t) by (1.2). The isometry A is compatible
with uw = u, on S(t) in the sense of the equalities (1.3)-(1.5);

2) The function p € L (Qr) satisfies the integral equality

/ p& + (u- V)¢ didx = —/ 00€(0, ) dx (2.2)
Qr Q
for any € € CY(Qr), &(T,-) = 0;

3) The function u € L?(0,T; KB(S(t))) N L>(0,T;V%2(2)) satisfies the
integral equality

T
/ { |l (aeV)) - 2y Dus Dy +pg¢dx}dt
0 QS (1)

T
= _/onuo'(p(o7 ) dx—!—/o {/as(t) v(us —uy) (s — Py) dx} dt,  (2.3)



which holds for any test function 1, such that

¥y e LPN7D(0,T; KB(S(1))),
W, € L*0,T;L*(Q\05(t))), «(T,-)=0. (2.4)

Here uy(t,-), ¥s(t,-) and uy(t,-), ¥¢(t,-) are trace values of u, ¥ on 0S(t)
from the 7solid” side S(t) and the "fluid” side F(t), respectively.

Our main result is the following theorem.
Theorem 2.1 Let us assume that

s(X) > const >0, x € Sp; o
i) = { 10 O and p e L(S)),

py = const > 0, x € Fy,

w € VO2(Q),  ge L} Q). (2.5)

Then problem (1.6)-(1.9) possesses a weak solution {A,p,u}, such that the
isometry A(t,-) is Lipschitz continuous with respect to t € [0, T,

p(t,x) = { Z;(f_;(;;z))’ i E }S;((?): for a.e. t € (0,T), (2.6)

U € Cueax (0, T;VO2(Q)) and the energy inequality

1 T
*/ plul?(r) dX+/ / 205 |Dul? dX+/ Yy —ul? dx ¢ dt
2 Ja 0 Q\05(t) a5(t)

1 T
< f/ poluo|? dx+/ /pgu dtdx (2.7)
2 Ja 0 Ja
holds for a.a. r € (0,T).

3 Approximate problem

First let us introduce some notations, which we use for the construction of an
approximated problem to system (1.6)-(1.9).

Let us consider an open simply-connected set S C RY, having C?—smooth
boundary 95, and denote by

ds(x) = dist[x, RV \ §] —dist[x,S],  vxe& RY,

the signed distance to the boundary 995, where dist[x, S| = infycg |x —y|. For
a given § > 0 we define the §— kernel of S and the §— neighborhood of S by

[S]s = dg'((5,+00)) and ]S[s=dg'((—9,+00)). (3.1)



Let 0 € C*(R) be a positive even function with support in (—1,1), such
that f_ll o(z)dz=1.Let 07 (x) = TiNa( |x‘> for any 7 > 0 be the regularization

T

kernel for the convolution

T = | fy) o (x—y)dy, ¥xeR" (32)
R

of a function f € L'(2), which is extended by zero outside of Q2. In the following

sections 3.1 - 3.3 the index 7 will be omitted in the convolution fT just for the

convenience of reading.

3.1 Solvability result

Let us consider the characteristic functions g s(x) and xo,s5(x) of the sets [So]s
and Us(0Sp) = So\[So]s, defined in the whole space RY, respectively. We
extend py by the constant value ps outside of ().

We study the following approximate problem to system (1.6)-(1.9), consisting

from the linear transport equations

Op + div(pu) = 0, Opp + div(pu) = 0, Ox +divixu) =0 (3.1.1)
in D'((0,T) x RY) with the initial data

p=poes=(1=Xo05)po+Ex0s: ¥=%0s X=Xxo05 att=0 (3.1.2)

and the momentum equation
| udw + pu(@9)e - D D+ o] didx
Qr
= —/ po,g(gqu(O,') dX, (313)
Q

which is valid for any test function ¥ € L?(0,T;V12(Q)) N HY(Qr), such that
(T, ) = 0. The function u(t, -) is extended by zero outside {2 for a.e. t € (0,T")
in equations (3.1.1)-(3.1.3). Here

1
Ne:g¢+2ﬂf9+’YOX/XdX7 0=1-p—x (3.1.4)
Q

with the constants 7o = 757, 050 = [4, 1dx.

The e—dependent of the “viscosity” . can be easily identified as the penal-
ization, introduced by Hoffmann and Starovoitov [20], where the rigid bodies are
replaced by the fluid of high viscosity becoming singular for ¢ — 0. The third
term in g is introduced to define a mixture region between the fluid and the
body, which approximates the ”jump” boundary term on 9S(¢) in (2.3). The
parameter 7 controls the regularity of the velocity for the transport equations
(3.1.1), even when a real velocity u of the motion of fluid and solid has a jump



on 95(t). In order to facilitate the analysis, we assume that 7 € (0, 79), where
To = 70(So) is introduced in Lemma 4.2 for S = Sy.

Fore > 0,6 >0 and 7 > § fixed we refer the following existence result that
can be proved by means of the standard arguments: Method of characteristics,
given in Lemma 4.6, Galerkin’s method and Schauder’s fixed point argument
1], [14].

Proposition 3.1 Under the assumptions of Theorem 2.1 problem (3.1.1) -
(3.1.3) possesses a weak solution

p € L=((0,7)x RY), ¢, x€L>0,T;Char(R"Y)),
u € Cueak(0,T;VO2(Q)) N L2(0,T; VI2(Q)), (3.1.5)

satisfying the energy inequality

1 s
7/ plul®(r) dx + / //JLE|ID)u|2 dtdx
2 Jo 0o Ja

1 T
< f/ 0.5 u0|? dx+/ /pgu dtdx  (3.1.6)
2 Jo 0o Ja

for a.a. r € (0,T) and positive p,p,x € C(0,T; LY (RYN)), Vp € [1,00), such
that
llo(r, Nlerryy = lpoeslleryy, e )lorryy = [lpo,sllr(rry,
Xy Mperey = lxosllze(ry).- (3.1.7)

3.2 Solidification. Viscous limit on € — 0

In this section we consider that § and 7 are fixed. Let us denote the solution
of problem (3.1.1)-(3.1.3) by pe, ¥, Xe, ue for the fixed §, 7. Estimate (3.1.6)
and (3.1.7) imply

/ peluc|? dx, / pe|Du,|? dtdx < C (3.2.1)
Q Qrp

for some constant C' independent of .

Due to the Korn inequality (2.1) we have the uniform boundedness of {u.}, .
in L2(0,7;V12(Q)), hence, using (3.1.7) and passing to a suitable subsequence,
we have

u — u weakly in  L%(0,T; V12(Q)),
o — u weakly in L2(0, T; WE2(RY)), Vk >0,

Vpau. — 4/pu *-weakly in  L>(0,T; L*(Q)),
per Per Xe = Py 9y X I C(0,T; LY, (RY)), Vpelloo) (3.2:2)

and for any fixed o > 0 there exists g(c) > 0, such that

S:(t) CIS()[» for all e < g9 and V¢ € [0, 7], (3.2.3)



where: () = (1 [Sl5) = S(pe(0), () = (e [Sy) = S(p(e) and v

Sn(ty) = whaty),  n.0y)=y
%n(tm) = at,nty), n0y) =yeR". (3.2.4)

By (3.2.1), (3.2.2) and the low semi-continuity property of integral, we derive
0< / o|Dul?dtdx < hm 1nf/ o |Du,2dtdx < 0.
QT —0 QT

Hence pDu = 0 a.e. in Q7. Accounting that u € L?(0,T; V12(Q)) and u(t, ) =
0 outside of Q, t € (0,T), we conclude that there exists a rigid velocity us =
k(t) + P(t)x = k(t) + w(t) x x, such that

u=u, in S(t), ae. te(0,T). (3.2.5)
Since u = u; = °, in [S(t)]. (r-fixed) and wu € L%*0,T;VH%(Q2)), we

have k,w € L%*(0,T). Therefore due to Lemma 4.6 there exists the unique
solution n = n(t, ) : [Sols+r — [S(t)]+ of (3.2.4), being the isometry

n(t,y) = q(t) + Q(t)(y — q(0)) for all y € [S(1)]-, (3.2.6)

where the pair {q, Q} is the unique solution of the system

dq 1 /
— —w(t) x = k(t), 0) = = dy,
Toexa = K0, a)= e [ ydy
[Sols
d
aQ  _ PQ, Q(0) =1 (3.2.7)
dt
By (3.2.6) and PT = —P, it is easy to check that
q(t) = 5O / x dx,
5(t)
Qi) = exp(/ P(s)ds), such that QTQ =1. (3.2.8)
0
Let A: RY — RV be the isometry, defined as
A(t,y) = q(t) + Q) (y — a(0)) forall y € RY, te€[0,T], (3.2.9)

therefore, accounting (3.2.5) and u(t,-) = 0 outside of 2, we obtain

S(t) = S(e(t) = A(t,[So);) €  forall te[0,T],
e(t,x) = @os(A7(t,x)) forae. (tx)€Qr. (3.2.10)



By the same method as in [25] we can obtain the convergence

Vpeu: — \/pu strongly in  L*(Q7), (3.2.11)

see also p. 1358-1361, ”5.2 Point-wise convergence of the velocities” of [11]. We
omit the proof of (3.2.11), since nowadays it is standard.
Let us choose in (3.1.3) for a fixed ¢ > 0 the test function @ = 1, such
that
D, (t,x) =0 for t€10,7], x€]SH#)s,

that exists due to Proposition 4.3 in [25]. Due to (3.2.2)-(3.2.3), (3.2.11), we
can take the limit ¢ — 0 in (3.1.1)-(3.1.3) and then pass on o — 0. Therefore
for the fixed 7> > 0 we derive the solvability of the system, which consists
from the transport equations (3.1.1) with the initial data

p=pos=(1—x06)po, ©=¢os X=Xx05 att=0 (3.2.12)

and from the integral equality
/ [pudiy + pu(@-V)yY — pDu: DY + pgep] didx
Qr

=~ [ o0, dx (3.2.13)

which holds for any
W € L*(0,T; K(S(t)) N H(Qr), such that ¥(T,-) = 0. (3.2.14)
Here
M:2Mf9+’YOX/XdX7 O=1—p—x, 0= ot
0 050
Hence we have shown the following result.

Proposition 3.2 Under the assumptions of Theorem 2.1 there exists the so-
lution {p, v, x,u} of system (3.1.1), (3.2.12), (3.2.13), satisfying the regularity
properties (3.1.5), the energy inequality

1 s
f/ plul®(r) dx + / /,u|]D)u|2 dtdx
2 Ja 0o Ja

1 T
< 7/ po.s|uol? dx+/ /pgu dtdx  (3.2.15)
2 Jo 0o Ja

for a.a. r € (0,T) and p,o,x € C(0,T; L? (RYN)), Vp € [l,00), such that

loc

Hp(rv')HLP(RN) = ||p0,6”LP(RN)7 |\<P(T7')|\LP(RN) = H‘PO,&HLP(]RN)a
IX(rs Mo ryy = [IxosllLe(ry)- (3.2.16)
Moreover there exists a preserving orientation isometry A(t,-) : RN — RN
and a time dependent set S(t), defined by (3.2.9)-(3.2.10) and related with u

on S(t) through formulas (3.2.5), (3.2.7). The function (t,-) and S(t) for all
t €[0,T] are related by (3.2.10).

10



3.3 Limit transition on § — 0
In this section the parameter 7 continues to be fixed and the solution of problem
(3.1.1), (3.2.12), (3.2.13) is denoted by

Pss ©s5, Xos Us, Ss(t) = As(t,[Sols) for any d§ € (0,7). (3.3.1)

The boundaries of S5(t) and Ss(t) = ns(t, So) are denoted by dSs(t) and S5(t),
which are the interior and exterior boundaries of S(x;(t)) = ns(t, Us(9S0)),
respectively. During all considerations in the section we will take into account
that

ps(ny 1 (t,x)) = const >0,  x € Ss(t);
pé(t, ) = Ov X € S(X5( ))7 (332)
py = const, x € RN\ S5(t)

for a.e. t € (0,T), where n;(t, ) solves the system

gtm(t y) =us(t,ms(t,y),  ms(0,y) =y € RV (3.3.3)

By (3.2.5) and (3.2.7)-(3.2.10) we have

[ sk dx = 1T @P sl + [ 1% 0 - asO)F dy

S(;(t [50]6

for a.a. t € (0, 7). Moreover

Q5 ()(y — a5 (0)[* dx > ClQ5(t)I%,
Br(as(0))

where R > 0 is chosen, such that Br(qs(0)) C [So]s. Here Br(qs(0)) is an open
ball of radius R > 0 with the center q5(0) and the constant C' depends only
on R and N. Due to (3.2.15) and (3.3.2), we have the uniform boundedness
of {us}soo in L>(0,T;L?(S5(t))). From above considerations and (3.2.7) w;
conclude

la5| < C, Q51 <C, V2Jws| = |Q5Q7 | < (3.3.4)

for the constants C' independent of §. Therefore, there exists a subsequence of
{a5,Qs5,ws} 5, such that

ws — w *-weakly in L°°(0,T),
a45,Qs — q,Q *_weakly in Wl"x’(O7 T) and QTQ =
q57@5 — qu in C“ (OvT) for any o € [07 1)3

A5 = A=q(t)+Qt)(y —q(0)) in C%(0,T;Cf.(RY)). (3.3.5)

11



Since [, xs|Dus| dx < ([, xs|Dus|? dx) 1/2 (Jo xs dx)l/z, we derive

T 2 T 2
/ </ |us| qu) dt < / (/ |Dus| dx) dat<C (3.3.6)
0 Q 0 Q

for any ¢ < N/(N — 1) by the energy inequality (3.2.15) and the embedding
results, obtained in Theorem 2.2, p. 152-153, of [27] (see also Proposition 1.2
[28]). Therefore there exists a subsequence of {us}s- ., such that

u; — u weakly in  L?(0,T; L9(%)),
i, — u  weaklyin L2(0,T;WEY(RY)), Vk >0,
Dus — Du weakly in L?(0,T;M(Q)). (3.3.7)
Moreover, applying (3.2.15) and (3.2.16), we have that for any p € [1, c0)
Ps, L5, X6, 95 - P, ®, 07 1_SO in C(O T L?OC(RN))v
Vpsus — \/pu *oweakly in L>(0,T;L*(Q)), (3.3.8)

which give
St) = S(e(t) = A(t,So) for t€0,T]
ot,x) = (A7 (t,x)) forae. (t,x)€ Qr.
p(t,x) = { Zf(i‘ Cogsz)) zggﬁt\)}g(t) ae te(0,T) (3.3.9)

with the help of (3.2.10), (3.3.2), (3.3.5) and Lemma 4.6.
By (3.2.15), (3.3.6) and the semi-continuity property of integral there exist
two matrix functions M;= M (t,x) € L?(Qr), such that

V0sDus — My, /psDus — My  weakly in L?(Qr),

/ (1—@)|M;|? dtdx < lim inf/ 05|Dus|? dtdx < C,
Qr 5—0 Qr

/ ©|My|? dtdx < lim inf/ @5 Dug|? dtdx =0,
QT 5—0 QT

/OT </Q |1DJ11|>2dt < /OT </Q |Du| dx>2dt<c, (3.3.10)

where the equalities 5 = 62, ©5 = % and (3.3.8) have been used. From (3.3.9)
we conclude

M; =Du in F(t)=Q\S({t) and My=Du=0 in S(t). (3.3.11)

Due to Theorems 1.4, 1.5 of [2] (see also theorem 2.1 , p. 148-150, of [28] and
Theorem 1.1 of [27]) the Radon measure Du has the following the Lebesgue-
Radon-Nikodym decomposition

Du = Dul™ + T (us —uy) HKY7HaS() N for a.a. t € (0,T), (3.3.12)
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where Dufl? is the absolutely continuous part of Du with respect to the
Lebesgue measure £V. The density of Dul? coincides with the function Du
in F(t) and Du = 0 in S(t); HN¥"10S(t)NQ is the (N — 1)-dimensional
Hausdorff measure, restricted to the surface 9S(t) N 2; the matrix T(p) has
the components

Ti;(p) = (pinj + pjn;) /2, ihj=1,.,N (3.3.13)

with n being the unit interior normal to 9S(t); us(¢,-) and uy(¢,-) are the trace
values of u on 9S(¢) from the domain S(¢) and the domain F'(¢), respectively.
The functions u(t,-) € L'(0S(t)) and uy(t,-) € L' (9S(t)) satisfy

[[us(t, )l|rr@s@)s [y, )llLiase) < Cllult,-)|lsp@)

with the constant C' depending only on the curvature of 9S5(t), i.e. on the
curvature of 0Sy. Therefore (3.3.10) implies

a2 075210500 1NagllLzomeosey)) < C- (3.3.14)
Moreover (3.3.5) and (3.3.11) give
u = u in S(t), ae te€[0,T] with
u;, = q(t)+w(t) x(x—q(t)) forall xe S(t),

HQ||W1»°C(O,T)7 ||Q||W1v°°(0,T)7 ||W||Loo(0,T) <C. (3.3.15)

For simplicity of the notations, since the function u; is continuous in S(t), we
use here and below the same notation for the trace value of the velocity u from
the ”solid” side S(t).

Since information (3.3.7)-(3.3.8) is not enough to pass to the limit on 6 —
0 in (3.2.13), we consider some embedding results, which will be valid in

the "fluid” domains S(65(t)) = Q\Ss(t), ¥6 > 0. The following embedding
inequalities

||

v < Cllzllwizs) < Cllzl|Lp2s),
llzl|roy < Cllzllwros), V2 € LD*(B) (3.3.16)

are true for any finite numbers r < 2N/(N —2) and p < 2(N —1)/(N —2) ina
bounded domain B ¢ RY with the boundary 0B € C'. Moreover we have the
interpolation inequality

2l acm) < C {11200, 1V21525) + 12l 220 | (3.3.17)

where C denotes various positive constants, depending only on the diameter
d(B) = sup, yep {|x —y[} of B and 0B € C'. Here q € [2,2N/(N —2)] is a
finite real and a = N(1/2 — 1/q).

Since € is bounded, there exists R > 0, such that |Q[2,,C Br(0). Obviously,
(3.3.16)-(3.3.17) are valid in the following domains

1) B=Bgr(0)\So;  2) B=DBgr(0)\S(t); 3) B= Bgr(0)\S;1).

Let us derive the following behavior of the set S(t).
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Lemma 3.1 The boundary 8Ss(t) of the set Ss(t) is C2, such that
Ss(t) LA S(t) = n(t, So) uniformly on t € [0,T)]. (3.3.18)

Moreover 0Ss(t) converges to dS(t), uniformly on t € [0,T] in C*-norm.

Proof. Since {us},. is uniformly bounded in L?(0,T;L%(Q2)), ¢ < N/(N —1)
on ¢ > 0, then, using (3.3.3), we have that for the space derivatives

C
|DFns(t,x)| < = inQp, k=12 (3.3.19)
T
with the constants C' independent of ¢ (and 7 — fized). Property (3.3.18) is a
direct consequence of Lemma 4.6.
For any y,yo € 0Sp and the projection points x = p(y), xo= p(yo) € 9550
we have the formulas of Taylor

2
mly) = mo(tsx) + Dt )< () + D 2
ns(t,yo) = ms(t,x0) + Dns(t,%0) - (yo —X0) + Dinstt,o) (yo — x0)*.

2!

By Lemma (4.2) we have x =y + dg, (y)d, Xo= yo + Vdg,(yo)d. Therefore
if we devide the difference of the formulas of Taylor over |y — yo| and pass to
the limit on |y — yo| — 0, we get

IT(ms(t, y0)) — T(n5(t, p(¥0)))| < C% (3.3.20)

with the help of (3.3.19) and 95, € C?. Here T are tangents vectors coincide
with arbitrary given direction s = (y — yo). Accounting that ns(¢,[So)s) =
As(t,[So]s), we obtain the convergence of S5(t) to dS(t), uniformly on ¢ € [0,T]
in C'-norm (we refer to the description of C!— surfaces in the book [22], p. 304-
307). m

Lemma 3.1 implies that the boundary 855 (t) has the shape close to the shape
of dS(t) in C*-norm. Therefore inequalities (3.3.16)-(3.3.17) are valid for the

domains B = Bg(0)\Ss(t). In particular, taking into account (3.2.15), (3.3.2)
and us(t,-) = 0 outside of 2, we have the inequalities

lus|[Le o2y < C,
||u6HL2(0,T;LT(B)) < C'||116||L2(0,T;W1'2(B))
< Cllus||z20,m002(B)) < C,
laslLz0,miie0m) < C,
sl pssoryxmy < C for B=8(0s(t)) = Q\Ss(t), (3.3.21)
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where 7, p are defined in (3.3.16). As a consequence of (3.3.21), we have
[0 — usl|z2 0,1y xB) < CT||us|[2(0,7,w1.2(B)) for some a >0,  (3.3.22)

that can be shown as in Theorem 1, 4., page 272 of [9]. All constants C' in
(3.3.21), (3.3.22) depend only on d(2), &Sy € C*, being independent of § and
also 7, it is enough to consider small §, such that C% < 1072|[0So||c in
(3.3.20).

3.3.1 Approximation of test function
Let us consider an arbitrary function ), such that

Y e L*0,T; KB(S())),
Wy € L20,T; L*(Q\0S(t))), (T,-)=0. (3.3.23)

Lemma 3.2 For a given 1, satisfying (3.3.23), there exists a sequence of func-
tions

¢5 S L2(07T7 K(S5(t)))7 8151!]5 S L2(QT)7 ¢5(T7 ) = 0;
such that

Ps — P in L*(Qr),
(1 —x6)Vix®s — Vixth in L2(0,T; L3 (Q\0S(1))). (3.3.24)

The functions 15 are defined by (3.3.28) if N =2 and (3.3.29) if N = 3.

Proof. To construct {1s} - , we use the stream function approach as in Propo-
sition 4.3 of [25].

1% step) Let us define the approximations for the characteristic function of
the set of non-positive reals RT by

1, s < 0
—m+1, 86[0,52];
05(s) = (=5 +1-0/2)/(1 =9), s€(6%0—0%);
s5—0)2
2((53(1—)5)’ s €[0—6%0];
07 s > 1)

and the approximation for the characteristic function of the set Ss(t) by

0s(t,x) = 05(dsg, (ngl(t,x))). (3.3.25)

274 step) We have that Di(t,-) = 0 on S(¢) and divep(t,-) = 0 in D'(Q),
that permit to use Theorem 3.8, p 36 of [14]. Therefore in the case:
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a) when N = 2, there exist a scalar stream function £(¢,-) € H(9), a rigid
velocity function ¥g(t,-) and a scalar function g (¢, -), satisfying the conditions

P = curlé = ( _3125 ) € KB(S(t)), s(t,x)= curlés(t,x)

A
fszéwx|2+(< '{? >,x>+£°,

1

PY=1vs and =& in S(b).

The scalar functions w(t), ¥9(t),¥3(t), £°(t) € W1>(0,T) are defined uniquely
by the above relations. We can consider that the functions g, {s are defined
in QT-

Let us extend the function 1), restricted to the ”fluid” part F(¢), inside of
the ”solid part” S(t) for t € (0,7") by the following way: let 1; be the solution
of the problem

divip =0 in S(t),
) (3.3.26)
Y =1(t,-) on dS(t),

where 1 (t,-) is the trace of 9(t,-) on 0S(¢) from the "fluid” side F(t). Let
us consider the following extension

Yp=1 inF(t) and p =1 inS(t), Vie (0,7). (3.3.27)

Let ép € L2(0,T; W22(Q)) be a stream function of 9 in Q7. Since 1 satisfies
(3.3.23) and the boundary Uye(o,70S(t) is Lipschitz continuous on the time
variable and is C? on the space variables x, we can find ¢, such that & =
&p in UeoF(t) and ¢p = curlép € WH2(0,T; L*(Q)). Let us define the
approximate functions

£ =E&s +05(€r —&s), s =curls inQp (3.3.28)

to & and to 1, respectively. Obviously that 15 satisfies (3.3.24).

b) when N = 3, there exist a vector function £(t,-) = (£1,&2,&3)T € HY(Q),
a rigid velocity function ¥g(t, ) and a vector function &g(t,-), satisfying the
conditions

aa:gf?; - a’v3§2
Yp=curll =| 0,6 —9,,& | € KB(S(t)), s(t,x)=curl{s(t,x),
83:1€2 - 895251
wi (23 + 23)
s =13 woa?+23) | +Ax+ 19 x x+£°,
ws(2] + 23)

Pp=1s and €£=E&s in S(t).
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The vector-functions w(t) = (w1 (t),wa(t),ws(t))T, ¥O(t), £°(t) € WH>(0,T)
and the (3 x 3)-symmetric matrix A(t) € W1°(0,T) are uniquely defined by
the above relations. We can consider that the functions ¥g, £s are defined in
Qr.

As in the case a), by the same way (3.3.26)-(3.3.27), we construct the ex-
tension ¥ on the whole domain Q for the function %), which is restricted to
the "fluid” part Upe(o,mF(t). Let €p € L*(0,T; W22(Q2)) be a stream func-
tion of ¥r in Q. We can find &p, such that § = &p in Ue(o,r)F(t) and
Yr = curlér € WH2(0,T; L2(Q)). Let us define the approximate functions

& =E&s+os(€p — €s), s =curlés in Qp (3.3.29)

to € and to 1, respectively. Obviously, that s satisfies (3.3.24). |

3.3.2 Convergence inside the mixture zone S(xs)

In this subsection we derive the following convergence result, related with the
7jump” term on 9S(¢) in (2.3) of the definition of weak solution.

Lemma 3.3 Let 1 and s be the functions as in Lemma 3.2. Then there exists
a suitable subsequence of {us}s- ., such that

T
/ ,u(;ID)u(;:DI/J(;dtdx%/ {/ 2 Du: Dy dx
Qr 0 Q\85(¢)
+/ Y(up —u,) (P —1hs) dx} dt  ford —0,
aS(t)

where Us, ¥, and uy, ¥y be trace values of u, ¥ on 0S(t) from the "solid”
side S(t) and the "fluid” side F(t), respectively.

Proof. 1) By (3.3.7), (3.3.8) and (3.3.12) we easily derive

/ OsDug : Dipsdtdx — fDu : Dy dtdx; (3.3.30)
QT QT

ii) In the following considerations we use the notations of Lemma 3.2 and
consider the case, when N = 3. Let us point that the case N = 2 can be
transformed in 3-dimensional one, if all scalar stream functions, introduced in
27 step), a) of Lemma 3.2, are considered as vector functions. For instance:
if &5 is given by (3.3.28), then we define the vector function &5 = (0,0, &s).

By (3.3.29) and Lemma 4.4, we have

Dps = D1(Vos, & — &s) + D2(05,€r — &5) (3.3.31)

in accordance with notations (4.2.4).
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Since

/ o(t) dx = / 25(0) dx = 6|9S0| + 0(62), (3.3.32)
Q Q

then the energy inequality (3.2.15), &r — &g € L2(0,T;W22(Q)), 9Sy € C?
imply

T
5/ / Dus Dl(vgg,fp—ﬁs) dxdt
0 JS(xs(t))

T
:/ / Dus; : Di(ms,&F — Es)dxdt + O(Vs),  (3.3.33)
0 JS(xs(t)

where ms = —Vdg, (n; *(,%)). Moreover, using that £ = &g on 9S(t) (in view
of &(t,-) € HY(Q)) and Theorem 1 of [15], we obtain

T
5/ / Dus : Da(0s,€r — Es) dxdt = O(\/g) (3.3.34)
0 JS(xs(t)

Since the matrix D1 = D;(mg, & — €g) is symmetric, applying the Gauss-
Green formula, we have

/ Dus : Didx= 7/ div(Dy) - us dx
S(xs(t)) S(xs(t))

+ / (Ding) -usdx = I} + 12, (3.3.35)
95 (xs (1))

where ns is the exterior normal to the boundary of S(xs(t)). Due to (3.2.15)
and &r — €5 € L2(0,T;W22(Q)), 0S5y € C?, we easily obtain

T
‘/ Ig(t) dt| < C||€F — 55‘|L2(0,T;W2>2(S(X5(t)))) — 0 ford—0. (3336)
0
Moreover we have

Ig(t) = / (Dlng) - U, s ClX—l—/~ (D1n5) “Usg,f dx = Jg + J§7 (3.3.37)
9S5(t) 0S5 (t)

where us (¢, %) = qj(t) + ws(t) X (x —qs(t)) is the trace value of us on 955(¢)
with qf, ws satisfying (3.3.4), and us 5 is the trace value of us on 9Ss(t) (see
(3.3.21)), such that

s, £ll22(0,524 (85 (1)) < C- (3.3.38)

The integral J} can be written as an integral on 95(t), using the change of
variables T} : 0Ss(t) — 95(t), defined as

T} (x) = A(t, pas, (A5 L(t,x)))  for x € AS5(t),

where pgg, is defined in Lemma 4.2. Due to (3.3.4) and (3.3.5) the operators
-1
Ttl’(s, (Ttl";) are Lipschitz one with the Lipschitz constants, independent of
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6 > 0 and t € [0,T]. These operators converge point-wisely to the identity
operators, when 6 — 0. Hence Lemma 4.2 and (3.3.4) imply

~1 ~1
m; o (T;ﬁ) . ng o (Tgﬁ) — —n, n in C([0,T] x dS(t)),
-1
U 5 © (Ttl’é) — u, weakly-*in L*°(0,T; L*>(0S(t))),

where n is the interior normal to 9S(t) (n is directed inside of S(¢)) and uy is
defined in (3.3.15). Therefore

T T
/ JME) dt — — / / (Dy(n, €r — £5)n) - 1, dxdt. (3.3.39)
0 0 aS5(t)

By the similar way as above the integral J 62 can be rewritten as an integral
on 05(t), using the change of variables Tf’é : 0Ss(t) — 05(t), defined as

T2 (x) = A(t,m; 1 (t,x)) for x € AS5(t).
-1
The operators Tt2’5, (Tt2’5) are Lipschitz one with the Lipschitz constants,
independent of 6 > 0 and ¢t € [0,7]. These operators converge pointwisely to
the identity operators for 6 — 0. We have

ms o (7f>5)_1, 1 0 (T“) ' n —n in C([0,T] x 8S(2).

Applying the same approach as in Theorem 6.1, p. 438 of [6] and using (3.3.38),
we obtain

—1
us f 0 (Tf’é) —u; weakly in L*(0,T; L*(0S(1))),
where uy is defined in (3.3.12). Therefore
T T
/ JE(t) dt — / / (D1(n, &p — €s)n) - uy dxdt. (3.3.40)
0 o Joasw)
Combining (3.3.39) and (3.3.40) with the help of Lemma 4.5, we obtain

/ / Dug : Dy dxdt — / / uy —uy) - (Y5 — ) dxdt,
(xs(1)) 85(t)

that, jointly with (3.3.30), (3.3.32)-(3.3.34), implies the result of this lemma. Bl
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Corollary 3.1 There exists a suitable subsequence of {us}s. o, such that

T
lim inf usDug : Dug dtdx > / / 2p5 |D ul? dx
6—0 Qr 0 Q\dS(t)

+/ Yluy — us? dx p dt. (3.3.41)
85 (t)

Proof. Since u satisfies (3.3.23), then due to Lemma 3.2 there exists an approx-
imate sequence {15 = Us};-, to ¥ = u. Applying Lemma 3.3 to us, us and
1ps = Uy with the help of fQT ps/D(us — Us)|? dtdx > 0, we obtain (3.3.41). W

As a consequence of (3.3.41) and the energy inequality (3.2.15), we obtain
that the limit pair {p, u} satisfies

1 T
7/ plul?(r) dx+/ / 245 [Dulf? dx+/ yluy —ug|? dx p dt
2 Ja 0 Q\05(1) aS(t)

1 T
< 7/ polugl? dx+/ /pgu dtdx (3.3.42)
2 Ja 0o Jo
for a.a. r € (0,T).

3.3.3 Convergence of the convective term

In this subsection we show the convergence result for the convective term of
(3.2.13).

Lemma 3.4 Let the function ¥ and the sequence of approximate functions
{5} 550 be as in Lemma 3.2. Let us assume additionally that

e L*N=D(0,T; KB(S(t))). (3.3.43)
Then for 6 — 0 we have

T
/ psus (s - V)bs dtdx —>/0 {/Q\BS(t) pu(u- V) dx} dt+o(1), (3.3.44)

Qr

where o(1) - 0 as T — 0.

Proof. Tt is easy to check that if ¢ € L*V=1(0,T; KB(S(t))), then 15 €
L>N=1(0,T; K(Ss(t))) by the construction.
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Due to (3.3.7), since 7 > 0 is fixed, applying Lemma 4.6, there exist a positive
0o = 0o(7) and an integer M = M (1), such that
S(t) AJSs()r/ar Ss(t) CIS(B)rya VEE[0,T], V5 < o,
and the partition 0 < s < 2s < ... < M's =T satisfies
S(t) c]S(ms)lrja, S(ms) C]S(t)[r/a, vt € I,, = [ms, (m + 1)s]
for any m =0,..., M — 1. As a consequence we have
Ss(t) C1S(t)]7/aC)S(ms)];/2C185(t)lr, VYt € L, ¥m. (3.3.45)

Let Fpr = Q\]S(ms)[;/2. We have Q C F,;, ;U]S(ms)[3,/4, then there exist
two functions ¢f,(x) € C§(Fpn,r), ¢5 € C§°(1S(ms)[3,/4) for each m =
0,...,M — 1, which form a partition of the unity in € :

i) 0< oL (x), 65,(x) <1, VxeRY; i) ¢f,(x) +d5(x) =1, VxeQ

The set UM _111,,, [+/8 is an open cover of the time interval [0, T, therefore there
exist functions ¢, € C°(|In[;/8), m =0,...,M — 1, which form a partition
of the unity in [0, 7] :

M-1

) 0<on(t) <1, VEeR; i) > om(t)=1, Yte[0,T].

m=0
Let £ (or &) be the stream function of 4, if N =2 (or if N = 3, respectively),
which is introduced in Lemma 3.2. We denote by ¥, = ¢,,curl(¢f £) and ¥3, =
omeurl(¢ €) (or ¥l = pncurl(¢f &) and 3, = p,,curl(¢? €), respectively).

M-1

M-—1
Y=l g with /= Y gl ¢T=) ¢ nQr
m=0 m=0

Using the stream function (3.3.28) if N = 2 (or (3.3.29), if N = 3) and
the same partitions qi){;, @5, ¢Pm, defined above, we construct the sequence of
functions 'l,bgm7 Y5, and

M-1 M-1
Py =l 5 with =Y @l . wi=Y w5, nQr

m=0 m=0

By (3.3.21) we see that the quantities
Us = psus, Ts = 2pusDus — psusuy

in the sub-domain I x B =|I,,[,/sx Fy, - satisfy the hypotheses of Lemma 4.7

with ¢ = %. Hence we can apply Lemma 4.8, pass to a suitable subsequence if

necessary, and derive the following convergence

/(U(; ® Us) : Dyl dtdx — /(U @ U): D) dtdx as § -0, Vm,
Qr

Qr
(3.3.46)
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with U = pu. Here we use s = ¥ in Q\S(xs(t)) by the construction of s in
Lemma 3.2.

Let us define the cut-off function ¢ (¢,x) = min {|¢(¢,x)|,L} for L > 0. If
we denote g5 = psus((Ws — us) - V) @bg, then

T

| [anitax < L [ slluago |5 - wsllage
0

Qr

T
e / sl )16 — Gnll oyt with ¢ = [V,
0

From (3.3.21), (3.3.22), (3.3.43) and (3.3.17) with ¢ = 4, z = u; for B =
S(0s(t)), we have

| /95 dtdx| < CLT* + Cl|¢ — ¢l L2ov -1 0,1:2(B))-
Qr

a/2

Choosing L = 77%/%  we derive

| /95 dtdx| <o(1) -0 as7—0 (independently of §). (3.3.47)
Qr

Hence (3.3.46) and (3.3.47) imply

/p5u5 (- V) ¢§ dtdx — / plu®u) : D dtdx + o(1). (3.3.48)
Qp Qrp

Since D¢§ =0in Sé(t), D¢ =0in S(t) and llig =Uugs = qg(t) —|—w5(t) X (X—
qs(t)) in [S5(t)]-, we have

/T / ug(tM'V)’l,bngdtO/T/ u(u - V) dxdt.

0 [S5(1)]~ 0 5(t)
Using (3.3.2), (3.3.45) and the boundedness of {us}s.,in L>(0,T; L>(Ss(t)))N
L2(0,T; L"(S(05(t)))) (see (3.2.5), (3.3.4), (3.3.21)), we obtain

girr(l) pous (Us - V) 5 dtdx = / pu(u- V) dtdx + O(t%). (3.3.49)
—
QT QT

From (3.3.48) and (3.3.49), we derive (3.3.44). [

Finally, taking the limit transition 6 — 0 in system (3.1.1), (3.2.12), (3.2.13)
and combining the convergence results (3.3.5), (3.3.7), (3.3.8) and Lemmas 3.3,
3.4, we show the following result.
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Proposition 3.3 Under the assumptions of Theorem 2.1 for the fized T > 0
there exists the solution

p € L>((0,T)x RY), e L>(0,T;Char(R")),

U € Cyeax(0,T5V%2(Q)) N L0, T; KB(S(1))),

of the system

Op+divipn) = 0 in D'((0,T) x RY), p(0,-)=po in RY,
oo +div(iga) = 0 in D'((0,T)x RY), ©(0,")=¢e in RY,

T
L[ o0 pua D)% = D D+ g} de + o(1)
o Jovas()

T
—— [ o0, dxs [ ] atug - w )y - wdxdt - (33.50)
Q 0 aS(t)

which holds for any test function ¥, such that

¢ e LNV, T; KB(S(1)),
Py € L*0,T;L*(Q\0S(t))), (T,-)=0. (3.3.51)

Here o(1) = 0 as T — 0. The solution of this system satisfies (3.3.42) and
p,p € C(0,T; LY (RYN)), Vp € [1,00), such that for any r € [0,T]

loc
llo(r, Nlerryy = [lpollze(ryy,  o(r, )lLeryy = l@ollLr(ry)-

Here g is the characteristic functions of Sy, defined in the whole space R™.

Moreover there exist a preserving orientation isometry A(t,-) : RN — RN,
which is defined by (3.3.5) and related with u on the set S(t) = A(t,So) through
formulas (3.3.15). The matriz Q = Q(¢), the vector w = w(t) and a skew-
symmetric matriz P = P(t) satisfy relationships (1.4), (1.5). The functions
p(r,-), @(t,-) and the set S(t) are related by (8.8.9) for all ¢ € [0,T].

3.4 Limit transition on 7 — 0

In this subsection the solution of problem (3.3.50) is denoted by p,, ©,, u, and
S-(t) = S(e-(t)) = A-(t,Sy) for any 7 > 0. From Proposition 3.3, follow-
ing the same stroke as in the subsection 3.3, we derive for {q,,Q,,w;} ., a
similar estimate as (3.3.4), independent of 7. Therefore there exists a suitable

subsequence of {q,, Q;,w:} -, such that

w, — w *-weakly in L°°(0,T),

9-,Q; — q,Q *.weakly in W1*°(0,7) and QTQ=T,
qT?QT — an in CQ(O’ T)? va 6 [07 ]‘)?
Ar = A=qt)+Qt)(y—q(0) in C*0,T;C} . (RY)).(3.4.1)
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that, using (3.3.9), implies
pry 92— p, @ in C(0,T; LE (RY)), Vpe[l,00),
Sit) = S(e(t) =A(,Sy) forall tel0,1]
and (2.6). Moreover, applying (3.3.7) and (3.3.42), we have that
u, T’ — u weakly in  L?(0,T; LY(Q)),
(1— . )Du,, p,Du, — (1—¢)Du,eDu weakly in L*(Q7),
Vprur — 4 /pu *weakly in L>(0,T; L*())
with ¢ defined in (3.3.16).

Lemma 3.5 For any given 1, satisfying (2.4), there exist a sequence of func-
tions

¥, € L*N7U(0,T; KB(S: (1)),
op, € L*0,T; L*(Q\0S,(t)), ¥.(T,-) =0, (3.4.2)
such that

Pr, Vi — P, oV
(1—)Vxthr = (1—9)Vetp in L*ND(0,T; L*(Q)),
(1—0)0r, 00 — (L—@)0h, @dpp in L*(Qr).  (3.4.3)

Proof. We can consider that the function (¢, ), t € (0,T), is extended by zero
outside Q. Let £ be a stream function of ¥ in (0,7) x RY. We introduce
Y1, =curl(§o A, 0 A7h).

Note that any function z € LD?(Q\S,(¢)) with zero values on 95, (t) can be
extended by zero inside S;(t), i.e. the embedding inequalities (3.3.16) are true
for this extended z in B = (). Therefore the existence of the solution 5 ; of the
problem

—div(Dye -) +Vp, =0, divper =0 in Q\S;(t),

¢2,T =0 on 8S7(t)5 17b2,7' = 7¢17T(t3 ) on aQa
follows from the Lax-Milgram theorem. Due to the regularity of A, A, and %,
we show that 1o, € L2N=D(0,T; LD?(Q\S,(t))) N W12(0,T; L2(Q\S.(t))),
such that

te (0,7)

12, | L2v -1 (0,75 02(0\ 5, (1)) Cllt1,+ || L2v—v 0, r;w1/2.298)) = 0,

<
b2, rllwreorizz) < CllYisllwizomw-1/2200) — 0

as 7 — 0. The constants C' are independent of 7.
Let us put 42 - (¢,-) = 0 in S-(¢), a.e. t € (0,T). Finally, we define 1, =
Y1 + 2, in Qp, which satisfies (3.4.2)-(3.4.3). |

Now, using the constructed sequence of test functions {1, }_ <r, In Lemma
3.5, the rest of the convergence proof as 7 — 0 can be done repeating step by
step the arguments of the preceding subsection 3.3.3, using (3.3.42) for p., -,

u, and we show Theorem 2.1.
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4 Appendix. Technical results

4.1 Justification of Definition 2.1

In the following result we present the justification of Definition 2.1 for the weak
solution of (1.6)-(1.9).

Lemma 4.1 The triple {S, p,u} is the solution of system (1.6)-(1.9), if and
only if, the triple {A, p,u} is the weak solution of (1.6)-(1.9) in the sense of
Definition 2.1.

Proof. To show this lemma we use the following well-known result from the fluid
mechanics theory: Let V(t) be a time dependent volume moved by a smooth
velocity v = v(t,x). Then

d

dt V(t)

d
ft,x)dx = /V(t) d—‘idx (4.1.1)

for any smooth function f = f(t,x). Here ‘;—{ = % + (v - V)f is the total time
derivative.

Here we consider that u is ”smooth” in the sense that u is a C!-differentiable
function over Qr, being discontinuous across the smooth surface 95(¢).

= Let {5, p,u} be the solution of system (1.6)-(1.9). The isometry A is
defined by (1.1).

Let &, v be test functions, defined in the definition 2.1. Identity (2.2) is a
direct consequence of formula (4.1.1), applied to the function f = p. Now
if we apply formulae (4.1.1) to the function pu in the volumes S(t) and F(t),
respectively, we derive

—/SO psao (0, -) dx = /OT /S(t) ps{(u: + (u-V)u)

+(%y + (u- V)ap)ul dxdt, (4.1.2)
T
- prorb(0, ) = I ot (e
+(tp; + (u- V)ap)u} dxdt. (4.1.3)

For the stress tensor P = P(u,p) = —pl + 2uDu we have the identity

—/ (Pn-v¢)rdx = —/ {2pDu: Dyp 4+ divP - ¢} dx (4.1.4)
as(t) F(t)
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The sum of (4.1.2), (4.1.3) and (4.1.4) gives

_/()T/as(t)(Pn-1/:)fdx—/0001101/’(07‘)‘1X

T
— [ [ ol (e D+ pules+ (a9 s
o Jsu
T
+/0 /F(t) P{p(u; + (u- V)u) — divP} dxdt

T
+// pu(h, + (0 - V)ep) — 2uDu : Dap dxdt. (4.1.5)
0o JF(@)

Observing that
u=a(t)+w(t)x (x—q(t)), Y =b(t)+w(t)x (x—q(t)) on S(t) (4.1.6)

with b, zo being arbitrary function of ¢, it is easy to show that (1.6) can be
written as the integral identity

T
/ / ps(uy + (u- V)u) dxdt
0o Jsw

T T
= - / / Pen - s dxdt + / / PsgY dxdt. (4.1.7)
o Jas() o Jsw)

Therefore from (1.7), (4.1.5) and (4.1.7) we deduce the identity

T T
— / / P - apy dxdt — / pouetp(0, ) dx = —/ / Psn - s dxdt
0 Jas(t) Q 0 Jas(t)
T
+/ / pu(th; + (u-V)p) — 2uDu : Dip + pgep dxdt.
o Jovasw)

By (1.9) we derive that A, p, u satisfy (2.3).
<= Now we prove the inverse result. Let us choose in (2.3) the test function
1), such that 1 =0 on S(t). Since

divep = 0, divu =0  in D'(Q),

then
Yr-n=1, -n=0, Uf-N=1us-n on 0S(t).

Therefore identity (2.3) can be written as
T
I/ | Pru (V) 2D D gy
0o JF@)

T
= / / y(up —ug) - T Py - T dxdt —/ prugy (0, -) dxdt.
0 aS(t) Fy
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Due to (4.1.3), (4.1.4) we derive equations (1.7) and the boundary conditions
(1.9).

Returning back to (2.3) and using (1.7), (1.9), (4.1.5), we derive the integral
identity (4.1.7). Finally choosing % in (4.1.6)-(4.1.7) at first with o (t) = 0
and then with b = 0, we obtain equations (1.6). [

4.2 Properties of smooth surfaces

Let us recall useful result, related with the properties of C?-smooth surfaces.

Lemma 4.2 (p. 85/-357 of [13]) There exists a small 19 > 0, depending only
on the curvature of 95, such that

ds € C*(U,,(95)), where Uy, (0S) = dg' ((—70,70)). (4.2.1)

For any x € U, (0S) there exists a unique nearest point pas(x) € 95, such
that
|pas(x) — x| = dist[x, 5], pos(x) € CH(U,,(99)).

Further the mapping
PBS(X)>
X — i Ur(0S) = 08 x (=70, 7
(ds(X) ( ) ( 0 0)

is C'—diffeomorphism with the inverse

()ﬁl) —y +&n(y): 9IS x (—79,70) = U (0S),

where the function n(y) = 7ds(y) € C1(9S) is the unit interior normal to dS.

The following Lemmas 4.3, 4.4 and 4.3 are related with the approximation
of the ”jump” term on S(t) in (2.3) of Definition 2.1 by the third term in the
viscosity fie, introduced in (3.1.4).

Lemma 4.3 Let S C RY be an open simply-connected set, having C?—smooth
boundary 0S. Let n be the unit interior normal to 0S. For any two functions
p,g € C(0S) withp-n=0 or g-n=0 on the boundary 95, we have

T(p): T(g) = %p - g, T(p)n-g= %p -g at any point of 9S. (4.2.2)
The matriz T(p) is defined by (3.3.13).
Proof. By the definition we have
X
T(p) : T(g) = 1 ”Zﬂ (pinj +pjni) (ginj + gjni) =
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that implies the first formula of (4.2.2). By the same way we obtain the second
one

1

T(p)n-g = Z 5 (pinj +pjni)nj ¢ gi

1| =1

{lp-g)+(p-n)(g-n)}. ]

NE

-
Il

N =

In Lemmas 4.4, 4.5 we consider that N = 3, taking into account that the
case N = 2 is a particular one of the case N = 3 (see the note, given in Lemma
3.3, i) ).

Lemma 4.4 For any smooth function x and vector-function &, we have

D(curl(x§)) = D1(Vx,§) + Da(x, &), (4.2.3)

where the symmetric matrices D1, Do are defined as
1
Di(Vx.€) = S{d®Vx+Vx@9+VxxSE)}+ Vxx Ve,

Dy(x,8) = XD+ 5 {V(Vn) x 6+ [V(Vx) x &]" )
with = curl(€) and S(€) = [VE]" — VE. (4.2.4)

The symbols ® and x denote the dyadic and the cross product of vectors, re-
spectively. In particular, the components (u ® 'v)m. =uvj, 1,5=1,2,3.

Proof. The following three identities are valid

curl(x§) = xcurl{ + Vx x §, V(x¢) =xVo +Vx ¢
V(Vx x &) =V(Vx) x §+ Vx x V&,

that implies
V(curl(x§)) ={Vx @9+ Vx x V&} + {xVyp + V(Vx) x &},
[V(curl(x€))]” = {$p@Vx+[Vx x VE }+{x [V¥]" +[V(Vx) x €]"}. (4.2.5)

In these formulas we consider that Vy is a column vector and

[w x 8,,v]"
uxVo=-Voxu, uxVvo=| [uxd,v]" (4.2.6)
[u x 3m3v]T
for smooth vectors u, v. Hence
[Vx x V&' = Vy x [VE]" = Vx x S(€) + Vy x VE. (4.2.7)
Combining (4.2.5) and (4.2.7), we derive (4.2.3)-(4.2.4). |
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Lemma 4.5 Let S C R? be an open simply-connected set, having C?—smooth
boundary 0S. Let n be the unit interior normal to 0S. For any two functions
&€ CY0S), ge C(0S), such that-n=0 or g-n=0 on the boundary 9S
with ¥ = curl(&), we have

(Di(n,&n)-g=v¢-g at any point of 08, (4.2.8)

where Di(n,é)n =2 {p @n+n®1p +nx S(€)} +n x VE.

Proof. Since 9 - n = 0, then we can check that n x S(€) = ¥ ® n. By the
same way as in Lemma 4.3, we obtain

i=1 | j=1

3 3
%[¢®n+n®¢+nx5(£)]n-g = Z Z[mj—i-;wjnz}nj gi =
1
2

= (¥-g)+5@n)(gmn). (429

By the definition of u x Vv (see (4.2.6)), we have

[nx ;& -n
mxVé) n=| nx09;¢& n | =0, (4.2.10)
[n X J,,€-n

since n X 0,,€] -n = [n x n] - 0, = 0. Combining (4.2.9)-(4.2.10), we derive
(4.2.8). |

In fact Lemmas 4.4, 4.5 can be shown directly for the case N = 2 with
significantly less calculations, than we present in the proof of these lemmas.

4.3 Transport equation
In this subsection let us consider open simply-connected sets S, S, being subsets
of RY with the boundaries 95, 9S, € C? for any integer index n > 1. In the

sequel we say that a sequence of sets S,, converges to S, S, LA S, in the sense
of boundaries if
dsn — dg in C]OC(RN).

Let us recall classical results of characteristic curves (see, for instance, [10,
Proposition 5.1], [25, Lemma 5.2]).

Lemma 4.6 Let {v,(t,x)}22, be a family of divergence free vector fields, uni-
formly bounded in L?(0,T;C2 (RN)). Letn,(t,-) : RV — RN be the solutions
of the Cauchy problem

o
5 (EY) = Vot m(ty)),  m(0y) =y Vye RY.
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Then: 1) the mappings N, (t,-) : RN — RN are C?-diffeomorphism, such that

det (W) =1 VY(t,y)€[0,T] x RY; (4.3.1)

2) for a suitable subsequence,
v, — Vv weakly in L*(0,T; Wli’f(RN))» Vp € [1, 00),
Moy M0 — My mt in C(0,T;CL.(RY)), (4.3.2)

where n(t,-) : RN — RN is C2-diffeomorphism, being the unique solution of

0
1Y) =v(tn(ty),  n0y) =y Vye RY

and satisfying (4.3.1) too;

3) if, in addition, S, N S, then n,(t,S,) = Su(t) LN S(t) = n(t,S),
uniformly in t € [0,T). In particular, for arbitrary o > 0 there exists
ng(o) > 0, such that for any n > ng we have

S(t) ClSn ()]s, Sp(t) C1S(#)[s  for all t€]0,T7;

4) let {¢o., }22 be a sequence, uniformly bounded in L (RYN). Let {¢,}°,
be unique solutions of

Db +div(ava) =0 in D((0,7) x BY),  6,(0,%) = don(x) in RV.

If
bon — o in L}OC(RN) for some ¢y € L}’;C(RN),

then for any p € [1,00)
Pn(t,%) = Gou(m, ! (1,%)) = d(t,x) = go(n ™" (t,x)) in C(0,T; L, (RY)),
where ¢ € L°(RN) is the unique solution of
op+div(ev) =0 in D'((0,T) x RY),  ¢(0,x) = ¢o(x) in RV,

Moreover, if ¢o € Char(RY), then ¢ € L>(0,T; Char(RY)).

4.4 'The compactness of the convective term

Let us start this section by the following very important result, in which we
introduce a “local” pressure p for the Navier-Stokes equations, written in a
sub-domain of Q7. The pressure p will be decomposed on the components
D = Dreg + OtPharm, Wwhere pres enjoys the same regularity properties as the
convective-viscous terms, while pparm is a harmonic function. The basic idea
of the concept of local pressure for the incompressible Navier-Stokes equations
was developed by Koch, Solonnikov [21] and Wolf [29].
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Lemma 4.7 Let us consider a time interval I = (t1,t2) and a domain B C RY
with a regular C? boundary. Assume that U € L*°(I; L?(B)), divU =0, T €
Li(I x B),1<q<2 andg € L*(I x B) satisfy the integral identity

/I . (Uaﬂl’ +T: Ve + gdz) dtdx = 0, (4.4.1)

for allp € D(I x B), divyp =0. Then there exist two functions preg € LI(I X
B) and pparm € L (I; LY(B)), satisfying

Apparm =0 in D'(I x B), / Pharm dX = 0, (4.4.2)
B

/IXB (U@ﬂ/)—i-']l‘ : v¢+g¢) dtdx:/

(pregdiV’l/} + Pharm atdlv'lp> dtdx
IxB

for any ¥ € D(I x B). In addition,
|Preglla(rx) < C|TllLarxn) + I8l L2(1xB)) =2 M,
[Pharm || o< (1:10(3)) < O(||U||L°°(I;L2(B)) + M) =L,
[Pharm || Lo (r;c2(q)) < CL for any open G C G C B (4.4.3)
with constants C depending only on q,I, B and G.

We are in a position to state the local stability property of solutions to
Navier-Stokes equations. We show the “weak” compactness of the convective
term stated in what follows. In the following lemma we follow [5], where it was
given a correction of the proof, given in [29].

Lemma 4.8 Let us assume that {U,,T,}52, on some cylinder I x B C Qr
satisfies the integral identity

/ [U,0p + T, : Vo + gop] dtdx =0,
IxB

for any ¥ € D(I x B), such that divep = 0. Furthermore, assume that
Unllz= 2y + IVURllr2x < €, divU, =0,  (4.4.4)
||Tn\|Lq(1xB) < C 1<g<?2, (4.4.5)

where the constants C are independent of n. Then, passing to a suitable subse-
quence, we have

U, — U weakly-(*) in L=(I;L*(B)) and weakly in L*(I;W'?(B)),
U,®U, ~UU weakly in L3?(I x B), (4.4.6)

where

U U: Vi didx = U®U: Vi didx (4.4.7)
IxB IxB

for any ¥ € D(I x B), divyp = 0.
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Proof. By Lemma 4.7 there exist the functions preg,n, Pharm,n satisfying the
integral identity

/ (Unat'z,b T, : Vib + g¢) dtdx —
IxB
/ (Progndives + Prarmndudivep) dtdx  (44.8)
IxB
for any @ € D(I x B). Moreover, in accordance with (4.4.3), (4.4.4), we have

that

[Preg,nllza(rxBy < Cs  |[Pharm,n Lo (r;0e(B)) < C,
lPharm,n |l o< 0,7:02(c)) < C(G) for any open G C G C B. (4.4.9)
By (4.4.4) and (4.4.9), passing to a suitable subsequence, we have
U, — U weakly-(*) in L*°(I;L*(B)) and weakly in L*(I;W"*(B)),
U,®9U, ~U®U weakly in L¥?(I x B),

Pharm,n — Pharm Weakly-(*) in L°°(I; LY(B)) and L*°(0,T; C*(@)),
Preg,n — Preg Weakly in LY(I x B). (4.4.10)

Hence, using (4.4.8)-(4.4.10), we can apply the Lions-Aubin argument [4]
and obtain

/ @lUn + Vplrlza‘r1'1'17/rb|2 dtdx — §0|U + Vpharm‘Q dth,
IxB IxB

for any ¢ € D(I x B) with supp(¢) C G. In other words, we have
U, + VDharmn — U + Vpharm  strongly in L? (I xG). (4.4.11)
Thus

/ U®U: VY dtdx = lim (U, ®U,): VY dtdx =
IxB

n—00 IxXB

lim ((Un + vpharm,n) ® Un) . V’l,[) dtdx—
IxB

n—oo

lim (Vpharm,n & (Un + Vpharm,n)) : V’lp dtdx—
IxB

n—oo
lim (VPharm,n ® VDharm,n) : VO dtdx = / (U U): Vi dtdx
n—=o JIxB IxB

for any ¥ € D(I x G), divep = 0. Indeed

/IXBWp@ Vp) : Vap dtdx = _/

1
(59IVBI 9 + Ap(Vp- ) didx =0
IxB 2

for p = Pharm,n, Pharm, respectively. Using that G is arbitrary, we finally deduce
(4.4.6)-(4.4.7). [ |
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5 Conclusion

In the article we have shown the global solvability of the motion of one rigid
body in the fluid, which includes collisions of the body with the boundary of the
domain. Our proof is based on the embedding results (3.3.16), (3.3.17), playing
a crucial role. We may generalize the result on the problem of the motion of
several rigid bodies, but one of main obstacles is absence of embedding results
for the space of bounded deformations LD?() in domains with cusps. We can
refer to a particular result [3], obtained for two-dimensional domains.
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