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Abstract. For the static contact problem with limited interpenetration with the obstacle the existence
of solutions is proved. The frictionless case is studied at first, then the problem with Coulomb friction
is investigated as well. The body has nowhere a Dirichlet boundary value condition prescribed. In
both cases, if the prescribed bound of the interpenetratiom tends to 0, the solutions tend to a solution
of the appropriate unilateral contact problem.
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1 Introduction and basic notation

Contact problems represent an important theme of applied mathematics with many applica-
tions mostly in different mechanical problems. First, the unilateral problems respecting the
impenetrability of Mass (Signorini problems) have been studied. Then the problems with nor-
mal compliance have been introduced. Usually an infinite penetration of the body into the
obstacle has been allowed there which is obviously physically unrealistic.

In [4] a model allowing some, but a priori limited interpenetration of the body and the
obstacle has been introduced. The given limit of the interpenetration there is not reachable,
hence the variational formulation of its frictionless version has the form of an equation. Both
frictionless and frictional problem has been analysed there under the assumption of the existence
of a nondegenerate part of the boundary of the body, where the displacement is prescribed.

In this paper we extend the results of [4] to the case, where such a Dirichlet boundary
condition is nowhere required. Hence it represents a paralel to the paper [1], where the similar
problem was treated with the Signorini condition on the contact part of the boundary.

In the sequel by Hγ(M), γ > 0, the Sobolev spaces of the Hilbert type are denoted provided
γ is an integer. For other γ it denotes respective Sobolev-Slobodetskii spaces. Here M is a
domain (open connected) set in RN , its boundary or its part. For a linear operator (form)
L acting on a space X, ker L = {x ∈ X; L (x) = 0}. By int M the interior and by cl M
the closure of a set M in a topological space are denoted. To distinguish strong and weak
convergence, the notation → and ⇀ will be used, respectively.

∗The work presented here was partially supported by the Grant Agency of the Czech Republic under the
grant P201/12/0671 and by RVO 67985840.
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2 The static problem without friction

A contact problem of a body whose reference configuration is given by a bounded domain
Ω ⊂ Rd with dimension d ≥ 2 is considered. The boundary ∂Ω ≡ Γ of the body is Lipschitz
and consists of a contact part ΓC with a positive surface measures and a possible part ΓN on
which the boundary traction is prescribed such that the parts are disjoint. On ΓC there is a
contact with a rigid foundation, the measure of ΓN may be even zero. By u the displacement
field, by ε(u) the linearized strain tensor with coefficients εij(u) = 1

2
(∂xi

uj + ∂xj
ui), and by σ

the stress tensor are denoted. The linear constitutive law

(1) σ(u) = A ε(u)

with a possibly space–dependent tensor A = (aijk`)
d
i,j,k,`=1 is assumed. The fourth order tensor

has measurable entries, is symmetric,

(2) aijk` = ak`ij = ajik`, aijk` ∈ L∞(Ω) for every i, j, k, ` ∈ {1, . . . , N},

positively definite and bounded in the sense

d∑
i,j,k,`=1

aijk`(x) ξij ξk` ≥ a0|ξ|2 and
d∑

i,j,k,`=1

aijk`(x) ξij ηk` ≤ A0|ξ||η|(3)

for every symmetric tensors ξ = (ξij)
d
i,j=1, η = (ηij)

d
i,j=1 with norm |ξ| =

√∑d
i,j=1 |ξij|2 and

constants a0, A0 > 0 independent of x ∈ Ω. The normal component of the boundary traction
is denoted by σν = σν · ν, where ν is the unit outward normal. The contact model shall be a
normal compliance law of the type

σν(u) = −p(uν − g)

with some function p : R → R+ = [0, +∞]. The natural assumptions for p are p(y) = 0 for
y ≤ α with a constant α, p is non-decreasing, lim

y→β−
p(y) = +∞ with a β > α, and p(y) = +∞ for

y ≥ β. The third requirement here means that the interpenetration in the normal compliance
model is limited by β. The value of α may describe the contact of the first asperities, the
value of β the total flattening of the boundary such that no further interpenetration is possible.
However, we require only that

p : R → R+, p|(−∞,β) ∈ AC(−∞, β), lim
y→−∞

p(y) = 0,

lim
y↗β

p(y) = +∞, p is non-decreasing and

∫ y

−∞
p(s) ds < +∞, for y < β.

(4)

where the AC requirement signifies the absolute continuity on each closed bounded subinterval
of (−∞, β). Even this requirement can be weakened in this section, in fact only the existence
of a positive sequence {λn} ⊂ R such that λn ↘ 0, the derivatives p′(β − λn) exist for each
n ∈ N and p′(β − λn) ↗ +∞ is needed. However, this is not true for the problem studied in
the next section, the AC requirement is strictly needed there.

The classical formulation of the contact problem with this contact response function follows:
Find a displacement field u : Ω → Rd such that

−Div(A ε(u)) = f in Ω,(5)

σ(u)ν = b on ΓN ,(6)

σν(u) = −p(uν − g),(7)

στ (u) = 0 on ΓC .(8)
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Here Div denotes the matrix divergence, (Div A)i =
∑d

j=1 ∂xj
aij, and the subscript τ refers

to the tangential component, στ = σν − σνν. For the data f , b and g the validity of the
assumption

f ∈ H1(Ω)∗, b ∈ H1/2(ΓN)∗, 0 ≤ g ∈ H1/2(ΓC)(9)

is required. Here and in the sequel the d–dimensional vectors, vector functions Rd → Rd

and their spaces are denoted by bold letters, i. e. for a suitable manifold M and γ > 0,
Hγ(M) ≡ Hγ(M ; Rd) ≡ (Hγ(M))d etc. We further assume that Ω is a bounded domain with
a Lipschitz boundary.

To introduce the weak formulation of the classical problem stated above, the set

(10) dom p := {v ∈ H1/2(ΓC); p(v) ∈ H1/2(ΓC)∗}

is needed. Observe that for each v ∈ dom p, p(v) belongs to L1(ΓC) which is obvious from
taking 〈p(v), 1〉ΓC

which is the L1(ΓC) norm of p(v).
The weak formulation of (5)–(8) is given by the following variational equation

Find u ∈ H1(Ω) with uν − g ∈ dom(p) such that for every v ∈ H1(Ω):

(11) 〈A ε(u), ε(v)− ε(u)〉Ω + 〈p(uν − g), vν − uν〉ΓC
= 〈`,v − u〉

Here ` denotes the functional 〈`,v〉 = 〈f , v〉Ω + 〈b,v〉ΓN
. Let us recall the standard week

formulation of the normal boundary traction

〈σν(u), wν〉ΓC
= 〈A ε(u), ε(w)〉Ω − 〈`,w〉 ∀w ∈ H1(Ω) with wt = 0 on Γ.(12)

As in [4] we introduce a sequence of approximate problems via an appropriate sequence of
approximations of the function p. Due to the assumptions to the function p there is a sequence
λk ↘ 0 such that the derivatives p′(β − λk) ↗ +∞ for k → +∞. Let us define the sequence of
approximate functions

(13) pk(y) =

{
p(y) ∀y ≤ β − λk,

min{p(y), p(β − λk) + p′(β − λk)(y − β + λk)} ∀y > β − λk.

It obviously holds pk ≤ pk+1 ≤ p, k ∈ N and

(14) pk(s) = pk(β) + p′(β − λk)(s− β) for any s ≥ β and any k ∈ N.

In both the classical and variational formulation of the approximate problems we simply replace
the function p by the function pk. Let us introduce

J : v 7→ 〈A ε(v), ε(v)〉Ω − 〈`,v〉+

∫
ΓC

P (vν − g) dxs with P : s 7→
∫ s

−∞
p(t) dt,(15)

Jk : v 7→ 〈A ε(v), ε(v)〉Ω − 〈`,v〉+

∫
ΓC

Pk(vν − g) dxs with Pk : s 7→
∫ s

−∞
pk(t) dt

for all k ∈ N.

(16)

Moreover, let us introduce the finite dimensional space R as the set of rigid motions (the
kernel of the strain tensor considered as a linear operator, cf. [3] or [5]) and the set K := {v ∈
H1(Ω); vn ≤ 0 a.e. in ΓC}. To be able to ensure the solvability of the variational equation (11)
as well as their approximations, the following requirement will be needed:

(17) 〈`,v〉 < 0 ∀v ∈ K ∩R \ {0}.

This condition physically means that the given forces press the body towards the obstacle and
it ensures the coercivity of the functionals J , Jk, k ∈ N. Indeed the following lemma holds:
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Lemma 1 Under the above stated assumptions to Ω, its partition of the boundary, the assump-
tions (1), (2), (3), (4), (9) and the pressure condition (17) we have

(18) lim inf
‖v‖H1(Ω)→+∞

J (v)

‖v‖H1(Ω)

> 0.

The same holds for the functional Jk, k ∈ N.

The proof of the assertion is made by contradiction. Since Pk ≤ Pk+1 ≤ P for any k ∈ N, it is
enough to prove it for k = 1. Without a loss of generality we may assume that p′(β − λ1) = 1.
Let there is a sequence {vm} ⊂ H1(Ω) with ‖vm‖H1(Ω) → +∞ such that

(19) J1(vm)/‖vm‖H1(Ω) → c ≤ 0.

Since p1 is nonnegative on R and the relation (14) is true, then for each t ≥ β it holds
P1(t) ≥ |β − t|2/2. Let Q denote the H1(Ω)-orthogonal complement to R in H1(Ω). Using
the decomposition vm = ym + zm with ym = πQvm, zm = πRvm and πX the appropriate
projections for X = Q, R we get

(20) lim
m→+∞

〈A ε(ym), ε(ym)〉Ω
‖vm‖H1(Ω)

= lim
m→+∞

(
〈A ε(ym), ε(ym)〉Ω

‖ym‖H1(Ω)

‖ym‖H1(Ω)

‖vm‖H1(Ω)

)
≤ ‖`‖H1(Ω)∗ .

This yields

(21) lim
m→+∞

‖ym‖H1(Ω)

‖vm‖H1(Ω)

= 0.

This is obvious if the sequence {ym} is bounded. If there is a possible subsequence of {ym} such
that its norm tends to +∞, we shall denote it by {ym} again and we get (21) from (20) and the
coercivity of the employed bilinear form, hence {zm} is unbounded. For sm = vm/‖vm‖H1(Ω)

there is a subsequence tending weakly to some s0 in H1(Ω). The above used decomposition, the
relation (21) and the finite dimension of R give that this convergence is even strong in H1(Ω),
s0 ∈ R and ‖s0‖H1(Ω) = 1. Obviously smν → s0ν a.e. on ΓC . If s0ν > 0 on a set of a positive
measure in ΓC , then vmν → +∞ there, P1(vmν −g))/‖vm‖H1(Ω) ≥ |vmν −β−g|2/(2‖vm‖H1(Ω))
for m big enough and thus P1(vmν−g))/‖vm‖H1(Ω) → +∞ there too which contradicts to (19).
Hence s0 ∈ K , but to hold (19) it must be 〈`, s0〉 ≥ 0 which contradicts to (17). 2

Let us remark that the condition (17) cannot be required in case in which there is a nonzero
z ∈ R ∩K such that −z ∈ R ∩K . For such elements zν ≡ 0 on ΓC , hence their addition to
the argument do not influence the value of the operator p. The set R0 := {z ∈ R; z,−z ∈ K }
is a subspace of R. We can modify the pressure condition (17) in such a way that

(22) 〈`,R0〉 = {0} & 〈`,v〉 > 0 ∀v ∈ K ∩R ∩R⊥
0 \ {0},

i.e. only such given forces which press the body towards the obstacle and simultaneously do
not influence the tangentional rigid motions are admissible. It is easy to modify the proof of
Lemma 1 to prove the coercivity of J and Jk, k ∈ N, on R⊥

0 .
The functionals J , Jk, k ∈ N are obviously convex and lower semicontinuous, their

coercivity yields the existence of their minimizers. It is clear that this minimizer is a weak
solution of the corresponding problem because of the obvious fact that the directional derivative
of the operator P , Pk at a point v ∈ dom p, v ∈ dom pk and a direction w is 〈p(v), w〉ΓC

,
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〈pk(v), w〉ΓC
, respectively, (cf. [4]). Moreover, the set of minimizers of all those functionals is

bounded in H1(Ω) due to Lemma 1. Hence, if we have a sequence {uk} which are minimizers
of Jk, there must be a subsequence having an accumulation point u0 ∈ H1(Ω). The monotone
convergence theorem yields Jk(v) → J (v) for any v ∈ H1(Ω) and for any minimizer u of
J it holds Jk(uk) ≤ Jk(u). As uk → u in H1−δ(Ω) for any δ > 0, then ukν → u0ν almost
everywhere on ΓC . Then by Fatou lemma

(23)

∫
ΓC

P (u0ν − g) dxs ≤ lim inf
k→+∞

∫
ΓC

Pk(ukν − g) dxs ⇒ J (u0) ≤ lim inf
k→+∞

Jk(uk)

where the lower semicontinuity of the appropriate quadratic form related with A has beeen
employed in the last inequality. From (23) we have J (u0) ≤ J (u), hence u0 is a minimizer
of J and J (u0) = J (u). Moreover,

(24) lim sup
k→+∞

Jk(uk) ≤ J (u0) ⇒ J (u0) = lim
k→+∞

Jk(uk).

This yields Pk(ukν − g) → P (u0ν − g) a.e. in ΓC and 〈A ε(uk), ε(uk)〉Ω → 〈A ε(u0), ε(u0)〉Ω
hence 〈A ε(uk − u0), ε(uk − u0)〉Ω → 0 from which the strong convergence of πQuk to πQu0

in H1(Ω) follows. Because of the finite dimension of R we have finally uk → u0 in H1(Ω).
The following theorem holds:

Theorem 2 Under the introduced assumption on Ω, the parts of its boundary and the assump-
tions (1), (2). (3), (4), (9) and (17) or (22) there exists a weak solution to the problem (5–8).
Two solutions may differ only by an element of R∩ker ` such that the operator p(uν−g) is the
same for both solutions. If the function p happens to be strictly increasing, then the solution is
unique. The same facts hold for the approximate problems defined by means of the approximate
function pk. Any sequence of the solutions of the approximate problem having a weak accumu-
lation point in H1(Ω) must tend there strongly to a solution of the original problem. If (22)
holds, the problem is solvable, too, and the sum of any solution with an arbitrary element of R0

is again a solution of it. To get the convergence of a sequence of solutions of the approximate
problems to a solution of the original one, their projections to R0 must converge.

Proof of the ”uniqueness”: By the standard way we can see for a couple of such solutions
u(i), i = 1, 2, that πQu(1) = πQu(2) and moreover 〈p(u

(1)
ν − g)− p(u

(2)
ν − g), u

(1)
ν − u

(2)
ν 〉ΓC

= 0.

This and the monotonicity of p yields that u
(1)
ν = u

(2)
ν or p(u

(1)
ν − g) = p(u

(2)
ν − g) which

must be true also in the first case. If p happens to be strictly increasing, this yields u
(1)
n = u

(2)
n .

Condition (17) does not allow nonzero elements of R with vanishing normal part on the contact
boundary. Hence in this special case the solution must be unique. In general we know only that
0 = 〈`,u(1) −u(2)〉 = 〈`, πRu(1) − πRu(2)〉. The same argument holds also for the approximate
problems due to the monotonicity of pk.

Under the condition (22) the values of the functionals J , Jk, k ∈ N do not depend on
the elements of R0, but all above stated facts are true on its orthogonal complement. 2

Let us remark that a nontrivial space R0 occurs whenever ΓC is a segment or a part of a
(hyper)plane (in the dependence on the dimension d) or is composed of components such that
all of this has such a character. Observe that for strictly increasing p the construction of pk

ensures that it is strictly increasing, too. In this case all the problems have unique solution and
the strong H1(Ω) convergence of the whole {uk} to the solution u is valid.

Let us introduce

(25) Kg := {v ∈ H1(Ω); vn ≤ g a.e. in ΓC}.
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In this sense, the former introduced K is in fact K0. Under the assumption of Theorem 2 the
following proposition holds:

Proposition 3 Let us assume that p is such that p ≡ 0 on (−∞, 0] and p > 0 on (0, +∞).
Let us have for any such β > 0 a fixed problem (11) called Pβ. Let a sequence {βm} be such
that βm ↘ 0 and let {um} ⊂ H1(Ω) be a sequence of respective solutions to the problems Pβm.
Under the validity of (17) there exists a subsequence having a weak limit u0 in that space, u0

solves the following Signorini problem

(26) u ∈ Kg and 〈A ε(u), ε(v)− ε(u)〉Ω ≥ 〈`,v − u〉 ∀v ∈ Kg

and the convergence of the sequence must be even strong in H1(Ω). If (22) holds, we can take a
fixed πR0(uβ), β > 0 and the assertion remains true, the limit has obviously the same projection
to R0.

Proof. Defining Jβ as in (15) for p = pβ, we have for any β > 0 and any solution of Pβ that
Jβ(uβ) ≤ Jβ(0) = 0. Moreover, the following estimate must hold

(27) ‖πQuβ‖H1(Ω) + ‖pβ(uβν − g)‖H1/2(ΓC)∗ ≤ C

with C independent of β > 0. Indeed, by putting v = 0 in (11) and using p(−g) = 0 we
get from monotonicity of pβ that 〈pβ(uβν − g), uβν〉ΓC

≥ 0. This and (3) yields the uniform
estimate of the first summand. The estimate of the second one is for the solution of (11)
straightforward. Under assumption (17) we can now repeat the proof of Lemma 1 and prove
the uniform coercivity of Jβm on H1(Ω) by contradiction. The sequence vm chosen to satisfy

(28) Jβm(vm)/‖vm‖H1(Ω) → c ≤ 0 as m → +∞

is such that vm ∈ dom(pβm), i.e. vmν < βm + g a.e. on ΓC . Then any accumulation point
of the sequence sm = vm/‖vm‖H1(Ω), m ∈ N must belong to K , the convergence of the

appropriate subsequence to it is strong, therefore its H1(Ω) norm equals 1 from the same
reason as in that proof. The assumption (28) contradicts the assumption (17) for each such
accumulation point and we are done. Hence the set of all solutions of problems Pβm , m ∈ N
is bounded. The reflexivity of H1(Ω) yealds the existence of a subsequence having its weak
limit we denote as u0. Since umν < g + βm a.e. on ΓC , u0 must belong to Kg. Then there
is a subsequence (we denote it by βm again) such that pβm(umν − g)) ⇀ θ in H1/2(ΓC)∗ and
〈pβm(umν − g)), umν − g)〉ΓC

→ Θ which is nonnegative because of the monotonicity of all pβm

and the fact that pβm(0) = 0, m ∈ N. We pass to the limit m →∞ in (11) for β = βm. Using
the weak lower semicontinuity of the quadratic form associated with the bilinear form A we
find

〈A ε(u0), ε(v − u0)〉Ω + 〈θ, vν − g〉ΓC
−Θ ≥ 〈`,v − u0〉.(29)

For the test function v = u0 in (11) we obtain that

〈θ, u0ν − g〉ΓC
≥ Θ.(30)

On the other hand, for each v ∈ Kg we have pβm(vν−g) = 0 and therefore, via the monotonicity
of pβm ,

0 ≤ lim
m→+∞

〈pβm(umν − g)− pβm(u0ν − g), umν − u0ν〉ΓC

= Θ − 〈θ, u0ν − g〉ΓC
.

(31)

6



Since (30) and (31) yield Θ = 〈θ, u0ν − g〉ΓC
(observe that since θ ≥ 0 and u0 ≤ g, this implies

Θ ≤ 0, therefore it is 0), we have proved that u0 is a solution of (26). Since such a subsequence
can be extracted from any subsequence of the original {βm}, the whole sequence must have the
above qualities and we are done.

Moreover, if we take u0 − um as a test function in equation (11) for β = βm, it gives us
that 〈A ε(um), ε(um − u0)〉Ω → 0. The ellipticity of A then imply the strong convergence of
πQum to πQu0 in H1(Ω) while the convergence of the projections to R is strong due to the
finite dimension of R.

For the case (22) we can make all above estimates with the given choice of πR0(uβ) as well
and all above taken consequences remain valid. 2

3 The static problem with Coulomb friction

Here we solve the problem in which the condition (8) is replaced by

uτ = 0 ⇒ |στ | ≤ F (u)|σν |,

uτ 6= 0 ⇒ στ = −F (u)|σν |
uτ

|uτ |
(32)

which is the classical Coulomb friction law with the (given) coefficient of friction F . The
conditions (5)–(7) remain unchanged. Due to (7) the term |σν | in (32) can be replaced by
p(uν − g).

The weak formulation is based on the following pointwise weak formulation of the friction
law:

στ · (vτ − uτ ) + F (u)|σν |
(
|vτ | − |uτ |

)
≥ 0 for every v ∈ Rd.

It is given by the variational inequality
Find u ∈ H1(Ω) with uν − g ∈ dom(p) such that for every v ∈ H1(Ω):

〈A ε(u), ε(v − u)〉Ω + 〈p(uν − g), vν − uν〉ΓC

+〈F (u) p(uν − g), |vτ | − |uτ |〉ΓC
≥ 〈`,v − u〉

(33)

We shall solve the problem under the introduced assumption on Ω, the parts of its boundary
and the assumptions (1), (2), (3), (4), (9) and (17) or (22). Moreover, we shall require that ΓC

is of the class C2+δ for some δ > 0. The nonnegative coefficient of friction F may depend on
the space variable and both on the tangential and normal component of the displacement u on
ΓC , the last one may describe its dependence on the normal indentation. Moreover, F satisfies
the Carathéodory condition on ΓC × Rd, ΓF := cl{x ∈ ΓC ;∃[y, z] ∈ Rd−1 × R, F (x, y, z) 6=
0} ⊂ int ΓC and ‖F‖L∞(ΓC) ≤ CF for the constant CF precised later. These assumptions are
standard and have been used for the Signorini problem just in [1] and then in [3].

However, to prove (7) after the all limit processes, the following additional assumption to
the surface geometry of ΓC is needed (cf [4], Lemma 6): ΓC is composed from at most final
amount of component with a positive mutual distance. The relative boundary of each of those
components is Lipschitz.

3.1 Approximations of the frictional contact problem and regularity
of their solutions

Since the first paper proving the solvability of a unilateral contact problem with Coulomb
friction [6] it is well known that there is mostly necessary to approximate suitably the original
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problem and to prove a certain reguarity of solutions to that problem to be able to find a
solution of the original problem by means of the appropriate limit process. To construct such
approximate problems we simply replace the function p by the functions pk, k ∈ N, introduced
in (13). However, due to the presence of the nondifferentiable friction term the variational
formulations of these problems preserve still the form of variational inequalities. Therefore we
regularize the norm |·| by a smooth convex approximation Φµ with the properties |Φµ(v)−|v|| ≤
µ, Φµ(v) ≥ 0 and |∇Φµ(v)| ≤ 1 for every v ∈ Rd. This leads to the corresponding variational
inequality:
Find u ∈ H1(Ω) such that for every v ∈ H1(Ω):

〈A ε(u), ε(v − u)〉Ω + 〈pk(uν − g), vν − uν〉ΓC

+〈F (u) pk(uν − g), Φµ(vτ )− Φµ(uτ )〉ΓC
≥ 〈`,v − u〉

(34)

Since Φµ is convex with continuous derivatives, this variational inequality is equivalent to the
variational equation
Find u ∈ H1(Ω) such that for every v ∈ H1(Ω):

〈A ε(u), ε(v)〉Ω + 〈pk(uν − g), vν〉ΓC

+ 〈F (u) pk(uν − g)∇Φµ(uτ ),vτ 〉ΓC
= 〈`,v〉

(35)

Unlike the coercive problem solved in [4] we are not able to use Lemma 3.1.2 from [3]
directly, because its proof is based on the Schauder fixed–point theorem and to this some
kind of coercivity and unique solvability of a suitable approximate problem is needed. Hence
we prove an analogous assertion here for this case. Let us assume that (17) is satisfied. We
replace in the fricton term F (u)pk(uν − g) by F (w)pk(wν − g) for some given w (like it is
in problems with Tresca friction, where F (w)pk(wν − g) is a given friction force. For such
approximation of (35) the solution is found as a minimum of the continuous functional v 7→
Jk(v) +

∫
ΓC

F (w)pk(wν − g)Φµ(vτ ) dx + η‖πRv‖L2(Ω) for any η > 0. Unlike the previous

section, all the projections here and in the sequel are meant as L2(Ω)–projections. In Lemma 1
we have proved the uniform coercivity of the convex functional Jk, the remaining terms are
non-negative and convex, too. The additional term with πRv makes the functional strictly
convex on H1(Ω), hence there is a unique minimizer of such functional. Moreover, just from
the uniform coercivity of Jk all minimizers of such functionals are uniformly bounded in H1(Ω)
independently of η and w. The operator I mapping any w ∈ L2(ΓC) to the solution of this
problem is well defined. Therefore, taking in mind that the trace operator acts from H1(Ω) to
H1/2(Γ ), we can use the Schauder fixed point technique to prove the existence of the following
problem
Find u ∈ H1(Ω) such that for every v ∈ H1(Ω):

〈A ε(u), ε(v)〉Ω + 2η〈πRu, πRv〉Ω + 〈pk(uν − g), vν〉ΓC

+ 〈F (u) pk(uν − g)∇Φµ(uτ ),vτ 〉ΓC
= 〈`,v〉

(36)

For any sequence ηm → 0 we can find a subsequence such that the appropriate solutions um of
(36) tend weakly to some limit u in H1(Ω). Then the traces converge strongly in Lq(Γ ) with
q ∈ [1, 2+2/(d− 2)) if d ≥ 3 and q ∈ [1,∞) for d = 2. Due to the linear growth of the function
pk at +∞ and the properties of coefficient of friction F it is easy to see that such u solves the
problem (35).

The case of condition (22) is similar, because the functionals Jk do not depend on elements
of R0 at all (the tensors and the normal component of their traces on ΓC vanish). However,
since these elements may influence the frictional term via the tangential displacement on the
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boundary, we construct in this case the coercive approximation of the problem in the following
way: For a nonnegative parameter ζ we look for u ∈ H1(Ω) such that for every v ∈ H1(Ω):

2ζ〈πR0u, v〉Ω + 〈A ε(u), ε(v)〉Ω + 〈pk(uν − g), vν〉ΓC

+ 〈F (u) pk(uν − g)∇Φµ(uτ ),vτ 〉ΓC
= 〈`,v〉.

(37)

This problem is related with the functional v 7→ Jk(v) + ζ‖πR0v‖2
L2(Q) and this is coercive on

H1(Ω) uniformly with respect to k. Although problems described by (37) and by (36) look very
similar, observe that the introduction of η was only to solve the auxiliary problem (35) while
the parameter ζ will be kept to the very end of the solving of the problem in question. Then
for a fixed parametrer ζ we can proceed with the same fixed-point and strict convexification
idea as in the case of (17) to prove after similar considerations the solvability of (37).

This, the equivalence of the appropriate problem with the variational inequality for Φµ and
the non-negativity of the friction term then yields

Lemma 4 Under assumptions of Theorem 2 and the assumptions to the coefficient of friction
F stated in the introductory part of this section there exists a solution of the variational equation
(35) if (17) is satisfied. In the case of (22) there exists a solution of (37). In both cases the
H1(Ω) norms of all solutions are bounded by a constant independent of the smoothing parameter
µ and the approximation parameter k.

The limit process with the parameter µ ↘ 0 is, on the base of estimates of Lemma 4, similar
to the process with η ↘ 0. So we can extend the validity of Lemma 4 to the problem (33) with
pk instead of p if condition (17) is satisfied. Under condition (22) the term 2ζ〈πR0u, v − u〉Ω
must be added there, hence the inequality has the form

2ζ〈πR0u, v − u〉Ω + 〈A ε(u), ε(v − u)〉Ω + 〈pk(uν − g), vν − uν〉ΓC

+ 〈F (u) pk(uν − g), |vτ | − |uτ |〉ΓC
≥ 〈`,v − u〉 ∀v ∈ H1(Ω).

(38)

However, the passage from the problem with the approximate functions pk to the original
problem with the function p is a completely different story. While by the use of functions pk

the friction term represents a compact perturbation of the frictionless problem only, this is
certainly not true for the problem with p. To be able to perform this limit procedure for the
friction term, we need the regularity of traces of solutions of the problem with pk, because with
the a priori estimate in H1(Ω) and its trace consequences we have only weak convergences in
its components which are not enough to justify the convergence of their product. Such proof
of regularity needs some more regularity of the imput data, namely

(39) aijkl are Lipschitz on Ω′, g ∈ H1(ΓC) and f ∈ H−1/2(Ω′),

where the open set Ω′ ⊂ Ω is such that ΓC ⊂ ∂Ω′. It has been performed in [4] with the help of
localization, local rectification of the boundary and translation method in detail. Since in this
point there is no difference between our problem solved and the coercive problem solved there,
we omit here the cumbersome proof and postpone the kind reader to quite extensive appendices
of [4]. We only remark that such estimates do not depend on the additional norm in the case
of the validity of (22), because the depend only on the local behaviour of the first derivatives
of the solution. The derivation of such regularity result requires to have ‖F‖L∞(ΓC×Rd) < CF

which constant is given by two special trace-type estimates valid for some localized version of
the elasticity system on a half-space Q = Rd−1 × R+ with the boundary S = Rd−1 × {0}. The
estimates are formulated for for the energy norm

‖u‖A =
(
〈A ε(u), ε(u)〉Q

)1/2
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and a suitable extension operator E : H1/2(S) → H1(Ω). They are given by:

‖uτ‖2
H1/2(S)

≤ C
(1)
0 ‖u‖2

A + c1‖u‖2
L2(S) ∀u ∈ H1(Q)(40)

‖E w‖2
A ≤ C

(2)
0 ‖w‖2

H1/2(S) + c2‖w‖2
L2(S) ∀w ∈ H1/2(S) with

wτ = 0 on S.
(41)

The upper bound for the admissible coefficient of friction is

CF =

√
C

(1)
0 C

(2)
0 .(42)

Proposition 5 Let the assumptions of Theorem 2 with the assumption (17), moreover, the
assumption (39) and the assumptions about F from the introductory part of this section be
valid with the constant CF defined in (42). Then for any C2–smooth cut-off function ρ with

ΓF ⊂ supp ρ ∩ ∂Ω ⊂ ΓC

and every solution u of problem (33) with the compliance function pk it holds

‖ρu‖H1(Γc) + ‖ρpk(uν − g)‖L2(Γc) ≤ Cρ(43)

with a constant Cρ independent of k. For the case of (22) we prove the same for the variational
problem (38).

Remark. The upper bound CF for the coefficient of friction can be calculated for various cases;
for isotropic material with Poisson ratio ν it takes the values

F =


√

3− 4ν

2− 2ν
for d = 2,√

3− 4ν

4− 4ν
for d ≥ 3,

see [3], Formula (3.1.40). A more general formula to the first one valid for 2D orthotropic
material has been derived in [2] (formula (17) there). The bound for a general material is√

3a0/(4A0) for any dimension.

3.2 Existence of solutions to the contact problem with friction

Let us concentrate at first to the case of the validity of (17). The estimate of Lemma 4 and the
estimate (43) yield that there is a subsequence denoted again by {pk} such that the solutions
uk tend weakly to some u in H1(Ω), ρuk ⇀ ρu in H1(ΓC) and ρpk(ukν − g) ⇀ ρpk(uν − g)
in L2(ΓC). In fact, in general there is some limit ρθ of the last sequence, but under the
additional assumption to the geometry of ΓC introduced in the introductory part of this section
θ = p(uν − g), cf. Lemma 6 of [4]. By the standard compact imbedding theorem

ρuk → ρu in Lp̂(ΓF ) for any p̂ ∈
[
2 +

4

d− 3

)
for any d > 3,

for any p̂ ∈ [2,∞) for d = 2, 3, and for p̂ = ∞ if d = 2.

(44)

Moreover, F (uk) → F (u) in Lq̂(ΓF ) for any q̂ ∈ [1,∞). Assume a fixed function ρ ∈ C2(cl Ω)
is such that ρ(cl Ω) = [0, 1], ρ|ΓF ≡ 1 and dist(supp ρ, ΓN) > 0. For a general function w ∈
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H1(Ω) we take the test function v = uk + ρw in (33) with the function pk. The above
mentioned convergences are sufficient to prove that (33) with the function p is satisfied for the
test function v = u + ρw. The friction term vanishes if we take v = uk + (1 − ρ)w as the
test function in (33) with pk and it becomes an equation. Thanks to Lemma 6 in [4] the limit
process proves the validity of (33) with p for the function u + (1 − ρ)w, thus u is a weak
solution of the original problem.

If (22) holds, we prove similarly the existence of solutions to the problem

2ζ〈πR0u, v − u〉Ω+〈A ε(u), ε(v − u)〉Ω + 〈p(uν − g), vν − uν〉ΓC

+ 〈F (u) p(uν − g), |vτ | − |uτ |〉ΓC
≥ 〈`,v − u〉, v ∈ H1(Ω).

(45)

For the solutions of the problem with ζ > 0 we have the ζ–independent H1(Ω)–estimate of
their πR⊥0

projections and also the estimate (43) does not depend on ζ. Let a sequence ζk ↘ 0.
Then we have two possibilities:
1. The sequence {uk} of the corresponding solutions to (45) is bounded in H1(Ω). Then there
is a subsequence tending to a limit u there and with the help of (44) and Lemma 6 of [4] we
prove that u is a solution of (33).
2. ‖uk‖H1(Ω) → +∞. Then there is a subsequence we shall index again by k such that

uk/‖uk‖H1(Ω) → q in H1(Ω) and q ∈ R0. Taking v = 0 in (45), multiplying it by ‖uk‖−1
H1(Ω)

and passing to the limit k → +∞ we get

(46) lim
k→+∞

〈F (uk) p(ukν − g), |ukτ/‖uk‖H1(Ω)|〉ΓC
= 0 and lim

k→+∞
‖ζkuk‖H1(Ω) = 0.

Due to the a estimate (43) we may assume F (uk) p(ukν − g) ⇀ S0 in L2(ΓC). We prove by
contradiction that S0 = 0. Let S0 > 0 on a set M with a positive surface measure in ΓF . For
the elements of R0 normal components of their traces vanish on ΓC and from (46) also qτ is
zero on M . Since q is an element of R, q : x 7→ Bx + r, x ∈ cl Ω, with a constant r ∈ Rd

and an antisymmetric matrix B = −B⊥ ∈ Rd,d. As there must be a point x ∈ M and its open
convex neighbourhood U such that mesd−1(M ∩U ) > 0, by taking differences q(y)− q(x) for
y ∈ M ∩U we deduce B = 0 but then also r = 0 which contradicts the fact that ‖q‖H1(Ω) = 1.

Via the limit procedure in (38) we get then that the limit u satisfies for any v ∈ H1(Ω) the
inequality

〈A ε(u), ε(v − u)〉Ω + 〈p(uν − g), vν − uν〉ΓC
≥ 〈`,v − u〉

which is identical to (11). However, we need the identification S0 = F (u)p(uν − g) to be
able to say that in this case the solution of (33) happens to have zero friction, i.e. we need
F (uk) → F (u). This is obvious only if F does not depend on the tangential part of the
solution, because its normal part does not depend on elements of R0.

We have proved the following theorem:

Theorem 6 Let the assumptions on Ω, the parts of its boundary extended by the assumption
to ΓC in the introductory part of this section, the assumptions (1), (2), (3), (4), (9), (39) and
the assumptions to the coefficient of friction F stated in the introductory part of this section
be satisfied. Moreover, let assumption (17) be satisfied. Then there exists a weak solution to
the problem (5, 6, 7, 32). If the condition (22) is satisfied, the same holds under the additional
condition that F does not depend on the tangential part of the solution.

Let us remark that the identification problem in the case of (22) does not occur at the
Signorini problem with the Coulomb friction, cf. [3], page 193 including Theorem 3.2.7 there.
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With the same assumption to p as in Proposition 3 we can again prove that for any sequence
βk ↘ 0 there is its subsequence tending to a solution u ∈ Kg of the unilateral problem

(47) 〈A ε(u), ε(v)− ε(u)〉Ω + 〈F |σν(uν)|, |vτ | − |uτ |〉ΓC
≥ 〈`,v − u〉 ∀v ∈ Kg.

Let us treat the assertion under the validity of (17) at first. Because of the non-negativity of
the friction term, the H1(Ω) estimates of solutions to problems with pβk

remain independent
of βk. Then the same is true for the estimates (43). The reflexivity of the employed spaces
yields the existence of a subsequence, we denote it {βk} again, such that it has a weak limit
u in H1(Ω) and the traces in (43) converge in their corresponding spaces. As in the proof of
Proposition 3 we prove that u ∈ Kg. Denoting θ the weak limit of pβk

(ukν − g), we get from
the monotonicity of βk that for any v ∈ Kg for the term d(u,v) ≡ 〈θ, vν − uν〉ΓC

≤ 0. The
use of the decomposition of the test functions with the help of the fixed cut–off function ρ, the
appropriate limit process and Lemma 6 of [4] gives us the variational inequality

〈A ε(u), ε(v)− ε(u)〉Ω + d(u,v) + 〈F |σν(uν)|, |vτ | − |uτ |〉ΓC
≥ 〈`,v − u〉 ∀v ∈ Kg.

and we are done.
In the case of (22) we have again the projections of solutions to the space R0 unestimated.

Hence we proceed as in the proof of Theorem 6. If they happen to be bounded, we can proceed
as in the previous case. If they are not bounded, we get as in that proof F (u)σν(u) = 0. We
have proved

Proposition 7 Under assumption of Theorem 6 and Propositon 3 for any sequence βk ↘ 0
there is a subsequence and subsequence of weak solutions to the corresponding normal compliance
problems such that they converge to a weak solution to the Signorini problem with Coulomb
friction.
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[6] J. Nečas, J. Jarušek, and J. Haslinger: On the solution of the variational inequality to the
Signorini problem with small friction. Boll. Unione Mat. Ital. 5 (17 B) (1980), 796–811.

12

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

