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Abstract. Several characterizations of 0-distributive posets are obtained by using the
prime ideals as well as the semiprime ideals. It is also proved that if every proper l-filter
of a poset is contained in a proper semiprime filter, then it is 0-distributive. Further, the
concept of a semiatom in 0-distributive posets is introduced and characterized in terms of
dual atoms and also in terms of maximal annihilator. Moreover, semiatomic 0-distributive
posets are defined and characterized. It is shown that a 0-distributive poset P is semi-
atomic if and only if the intersection of all non dense prime ideals of P equals (0]. Some
counterexamples are also given.
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1. Introduction

The concept of a 0-distributive lattice is introduced by Grillet and Varlet [3];

a lattice L with 0 is called 0-distributive if, for all a, b, c ∈ L, a ∧ b = 0 = a ∧ c

implies a ∧ (b ∨ c) = 0. Dually, one can define 1-distributive lattices; also see Varlet

[14]. Independently, Varlet [15] and Pawar and Thakare [12] extended the concept

of 0-distributivity in lattices to semilattices by different definitions; see also Jayaram

[6], Rach̊unek [13] and Pawar [10].

Pawar and Dhamke [11] extended the concept of 0-distributivity in lattices to

posets. Joshi and Waphare [7] have also introduced and studied the concept of

a 0-distributive poset which is completely independent of the definition introduced

by Pawar and Dhamke [11]. Jayaram [6] introduced the concept of a semiatom in

semilattices with 0 as a nonzero element a of a semilattice L with 0 if, for any

pair x, y ∈ L, x ∧ y = 0 implies either a ∧ x = 0 or a ∧ y = 0. Further, he

characterized semiatoms and semiatomicity in 0-distributive semilattices. We note
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that the 0-distributive lattices and 0-distributive semilattices have been studied by

many authors with help of prime ideals.

In this paper we generalize some results of Varlet [14], Jayaram [6] and Pawar

[10] for lattices and semilattices to posets by using the prime ideals as well as

the semiprimene ideals. Further, we introduce the concept of semiatoms in posets,

and characterize them in 0-distributive posets. Moreover, semiatomic 0-distributive

posets are defined and characterized.

We begin with the necessary concepts and terminology. For undefined notation

and terminology the reader is referred to Grätzer [2].

Let A ⊆ P . The set Au = {x ∈ P ; x > a for every a ∈ A} is called the upper

cone of A. Dually, we have the concept of the lower cone Al of A. We shall write

Aul instead of {Au}l and dually. The upper cone {a}u is simply denoted by au and

{a, b}u is denoted by (a, b)u. Similar notation is used for lower cones. Further, for

A, B ⊆ P , {A ∪ B}u is denoted by {A, B}u and for x ∈ P , the set {A ∪ {x}}u is

denoted by {A, x}u. Similar notation is used for lower cones. We note that A ⊆ Aul

and A ⊆ Alu. If A ⊆ B, then Bl ⊆ Al and Bu ⊆ Au. Moreover, Alul = Al,

Aulu = Au and {au}l = {a}l = al.

2. 0-distributive posets

In this paper, we consider the definition of a 0-distributive poset introduced by

Joshi and Waphare [7] as follows.

Definition 2.1. A poset P with 0 is called 0-distributive if, for x, y, z ∈ P ,

(x, y)l = {0} and (x, z)l = {0} together imply {x, (y, z)u}l = {0}.

Dually, we have the concept of a 1-distributive poset.

Now, we consider the concepts of an ideal and a prime ideal introduced by Halaš

[4] and Halaš and Rach̊unek [5].

Definition 2.2. A subset I of a poset P is called an ideal if a, b ∈ I implies

(a, b)ul ⊆ I. A proper ideal I is called prime if (a, b)l ⊆ I implies that either a ∈ I

or b ∈ I.

Dually, we have the concepts of a filter and a prime filter. Given a ∈ P , the subset

{x ∈ P ; x 6 a} is an ideal of P generated by a, denoted by (a]; we shall call (a]

a principal ideal. Dually, a filter [a) generated by a is called a principal filter.

A nonempty subset Q of a poset P is called an up directed set, if Q ∩ (x, y)u 6= ∅

for any x, y ∈ Q. Dually, we have the concept of a down directed set. If an ideal I

(filter F ) is an up (down) directed set of P , then it is called a u-ideal (l-filter).
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Beran [1] defined the concept of an I-atom in lattices and has shown that this

concept plays a crucial role in the study of ideals.

Definition 2.3. Let I be an ideal of a poset P . An element i ∈ P is called an

I-atom if the following conditions hold.

(i) i /∈ I, and

(ii) for x ∈ P , if x < i, then x ∈ I.

For the sake of completeness we note that an element p of a poset P is called an

atom if

(i) 0 ≺ p if 0 is the least element of P , or

(ii) p is a minimal element of P if P has no least element,

where 0 ≺ p means there is no element x ∈ P such that 0 < x < p holds. Dually, we

have the concept of a coatom of P .

R em a r k s 2.4. (1) Consider the ideal I = (a] of the poset P depicted in Figure 1.

Observe that b is an I-atom of P but not an atom. Also, a is an atom of P but not

an I-atom and c is both an I-atom and an atom.

(2) Let P be a poset. From the definitions of an atom and an I-atom we observe

the following.

(i) If P has the least element 0, then i ∈ P is a (0]-atom if and only if i is an atom

of P .

(ii) If P has no least element, then i ∈ P is a ϕ-atom if and only if i is an atom

of P .

1

b

a

0

c

Figure 1

Throughout this section, P denotes a poset with 0. Now, we consider the concept

of a semiprime ideal in posets introduced by Kharat and Mokbel [8].

Definition 2.5. An ideal I of a poset P is called semiprime if (a, b)l ⊆ I and

(a, c)l ⊆ I together imply {a, (b, c)u}l ⊆ I.

Dually, we have the concept of a semiprime filter. The set of all semiprime ideals

of a poset P forms a complete lattice with respect to set inclusion (see Kharat and

Khalid [9]).
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For an ideal I and a nonempty subset A of a poset P , define a subset I : A of P

as follows:

I : A = {z ∈ P ; (a, z)l ⊆ I, ∀ a ∈ A};

if A = {a}, then we write I : a instead of I : {a}. It is clear that I : A =
⋂

a∈A

I : a

and I ⊆ I : x ∀x ∈ P .

From the definition of a semiprime ideal, it is clear that a poset P is 0-distributive

if and only if (0] is semiprime.

Lemma 2.6. (Kharat and Mokbel [8]). Let I be an ideal of a poset P . Then I

is semiprime if and only if I : x is an ideal for all x ∈ P , in fact, a semiprime ideal.

Moreover, if P is finite, then I is semiprime if and only if I : i is a principal prime

ideal for all I-atoms of P .

An immediate consequence of Lemma 2.6:

Corollary 2.7. Let P be a poset with 0. Then the following statements are

equivalent:

(i) P is a 0-distributive poset,

(ii) (0] : x is an ideal for all x ∈ P ,

(iii) (0] : A is an ideal for every nonempty subset A of P ,

(iv) (0] : x is a semiprime ideal for all x ∈ P ,

(v) (0] : A is a semiprime ideal for every nonempty subset A of P .

We need the following result to obtain a characterization of 0-distributive posets.

Proposition 2.8. Let P be a poset with 0. If every proper l-filter of a poset P

is contained in a proper semiprime filter, then P is 0-distributive.

P r o o f. Suppose that every proper l-filter of a poset P is contained in a proper

semiprime filter and (x, y)l = {0} = (x, z)l. Suppose on the contrary that there exists

a nonzero element a ∈ P such that a ∈ {x, (y, z)u}l. We have {x, (y, z)u}lu ⊆ [a) and

since [a) is a proper l-filter of P , there exists a proper semiprime filter F of P such

that [a) ⊆ F . But x ∈ [a) ⊆ F and (y, z)u ⊆ [a) ⊆ F , so we have (x, z)u ⊆ F and

(y, z)u ⊆ F . By semiprimeness of F , we obtain {z, (x, y)l}u ⊆ F . Since (x, y)l = {0},

we get zu = {z, 0}u ⊆ F and so z ∈ F . Now, since x, z ∈ F and (x, z)l = {0}, we

get P = {0}u = (x, z)lu ⊆ F . Thus F = P , which is a contradiction to the fact that

F is proper. �

The following corollary is an immediate consequence of Proposition 2.8.
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Corollary 2.9. Let P be a poset with 0. If every proper l-filter of the poset P is

contained in a prime filter, then P is 0-distributive.

Lemma 2.10 (Kharat and Mokbel [8]). Let I be a semiprime ideal and K an

l-filter of a finite poset P for which I ∩ K = ∅. Then there exists a semiprime filter

F of P such that K ⊆ F and I ∩ F = ∅.

As a consequence of Proposition 2.8 and Lemma 2.10, we have the following char-

acterization of 0-distributivity in finite posets.

Corollary 2.11. Let P be a finite poset with 0. Then P is 0-distributive if and

only if every proper l-filter of a poset P is contained in a proper semiprime filter.

The following result due to Halaš and Rach̊unek [5], is useful to characterize 0-

distributive posets.

Lemma 2.12 (Halaš and Rach̊unek [5]). Let I be a prime ideal of a poset P .

Then P − I is a filter in P . Moreover, P − I is a prime filter if and only if I is an

u-ideal. In this case, P − I is an l-filter.

Lemma 2.13 (Kharat and Mokbel [9]). Every l-filter of a finite poset P is prin-

cipal.

Let I be a proper ideal of a poset P . Then I is said to be a maximal ideal of P

if the only ideal properly containing I is P . A maximal filter, more usually known

as an ultrafilter, is defined dually. Also, we have the concepts of minimal ideal and

minimal filter.

Now, we establish the following characterization.

Theorem 2.14. Let P be a finite poset with 0. Then the following statements

are equivalent:

(i) P is 0-distributive,

(ii) every maximal l-filter is prime,

(iii) the set theoretic complement of every maximal l-filter is a minimal prime u-

ideal,

(iv) every proper l-filter is disjoint with some prime u-ideal.

P r o o f. (i) ⇒ (ii) Suppose that P is 0-distributive and K is a maximal l-filter

of P . Since P is finite, K is principal by Lemma 2.13, sayK = [q), where q is an atom

in P . We are going to prove that K is a prime filter. Now, suppose that (x, y)u ⊆ [q)

and x, y /∈ [q). We must have (x, q)l = {0} = (y, q)l; otherwise, if (x, q)l 6= {0}, then

there exists a nonzero element z ∈ P such that z ∈ (x, q)l. Since q is an atom, we
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get z = q, and this implies x ∈ [q), a contradiction to the assumption. Now, by

0-distributivity we get {q, (x, y)u}l = {0}. But (x, y)u ⊆ [q) implies q ∈ (x, y)ul and

consequently we have q = 0, a contradiction to the fact that q is an atom.

(ii) ⇒ (iii) Suppose that every maximal l-filter of P is prime and K is a maximal

l-filter. We have to show that I = P −K is a minimal prime u-ideal. By assumption,

K is a prime l-filter and by the dual of Lemma 2.12, I is a prime u-ideal. Now, if

there exists a prime u-ideal J of P such that J ⊂ I, then there is an element x ∈ P

such that x ∈ I = P − K and x /∈ J . By Lemma 2.12, P − J is an l-filter and

K ⊂ P − J , as x ∈ P − J and x /∈ K. This is a contradiction to the maximality of

K. Thus I is a minimal prime u-ideal as required.

(iii) ⇒ (iv) Suppose that the set theoretic complement of every maximal l-filter

of P is a minimal prime u-ideal and K is an arbitrary proper l-filter. Observe that

for every such K, (0] ∩ K = ∅. Since P is finite, there exists a maximal l-filter, say

F , such that K ⊆ F and (0] ∩ F = ∅. In fact, F is a maximal l-filter of P . Hence

I = P − F is a prime u-ideal and I ∩ K = ∅.

(iv) ⇒ (i) Suppose that every proper l-filter of P is disjoint with some prime u-

ideal and (x, y)l = {0} = (x, z)l. If there exists a nonzero element a of P such that

a ∈ {x, (y, z)u}l, then we have a ∈ xl∩(y, z)ul, and so x ∈ [a) and (y, z)u ⊆ [a). Since

[a) is an l-filter, there exists a prime u-ideal I such that I ∩ [a) = ∅. By Lemma 2.12,

D = P − I is a prime filter which also contains [a). Hence x ∈ D and (y, z)u ⊆ D,

and by primeness of D we must have either x, y ∈ D or x, z ∈ D. Suppose x, y ∈ D,

then we have P = 0u = (x, y)lu ⊆ D, a contradiction to the fact that D is a proper

subset being prime. Similarly, we get a contradiction in the case when x, z ∈ D.

Consequently, we must have a = 0, and so P is 0-distributive. �

1

w1 x1 y1 z1

w2 x2 y2 z2

z3

a b c

t

0

Figure 2
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R em a r k 2.15. Consider the infinite 0-distributive poset Q depicted in Figure 2.

Observe that the filter F =
⋃
{{wi, xi, yi, zi}; i = 1, 2, . . .}∪{1} is a maximal l-filter

of Q. However, it is not prime as (a, b)u ⊆ F and neither a nor b is in F . Therefore,

the condition of finiteness on P in the statement of Theorem 2.14 is necessary.

Theorem 2.16. Let P be a finite poset with 0. Then the following statements

are equivalent:

(i) P is 0-distributive,

(ii) if (0] : x ∩ F = ∅ for every l-filter F and for every x ∈ P , then there exists

a prime filter D in P containing F and disjoint with (0] : x.

P r o o f. (i) ⇒ (ii) Suppose that P is 0-distributive and for x ∈ P , denote

I = (0] : x. Suppose F is an l-filter such that I ∩ F = ∅. By Lemma 2.13, F is

principal, say F = [d). Now d /∈ I, therefore there exists an I-atom i of P such

that i 6 d and i /∈ I. Observe that d /∈ I : i, as if d ∈ I : i, then i ∈ (d, i)l ⊆ I,

a contradiction to the fact that i is an I-atom. In view of Lemma 2.6, I : i is

a principal prime ideal. We claim that D = P − I : i is the required filter. By

Lemma 2.12, D is prime. Since d /∈ I : i, we have d ∈ D and hence F = [d) ⊆ D.

Finally, since I ⊆ I : i, we get I ∩ D = ∅.

(ii) ⇒ (i) Suppose (x, y)l = {0} = (x, z)l and there exists a nonzero element a

of P such that a ∈ {x, (y, z)u}l. Since a 6 x, we have (0] : x ∩ [a) = ∅, as if

b ∈ (0] : x ∩ [a), then (x, b)l = {0} and a 6 b, and hence (x, a)l = {0} which implies

a = 0, a contradiction. Observe that [a) is an l-filter, and by (ii) there exists a prime

filter D such that [a) ⊆ D and (0] : x∩D = ∅. Since D is prime and (y, z)u ⊆ D, we

have y ∈ D or z ∈ D. Suppose y ∈ D. Since x ∈ D, we have P = {0}u = (x, y)lu ⊆ D

and thus D = P , a contradiction to the fact that D is a proper subset being prime.

Similarly, we get a contradiction in the case when z ∈ D. Consequently, we must

have a = 0, and therefore P is 0-distributive. �

R em a r k 2.17. We note that for the proof of (ii)⇒ (i), the condition of finiteness

on P is not necessary, but it is necessary for the proof of (i) ⇒ (ii). Indeed, consider

the infinite 0-distributive poset Q depicted in Figure 2 and an l-filter F = {1} ∪

{w1, w2, ...}. Observe that (0] : z1 ∩ F = ∅, where (0] : z1 = {0, t, a, b, c}. But there

does not exist a prime filter D of Q for which F ⊆ D and (0] : z ∩ D = ∅ hold.
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3. Semiatomic 0-distributive posets

Definition 3.1. A nonzero element a of a poset P with 0 is called a semiatom

if for any pair x, y ∈ P , (x, y)l = {0} implies either (a, x)l = {0} or (a, y)l = {0}.

Clearly, every atom is a semiatom but the converse is not true in general. Consider

the poset P depicted in Figure 1 and observe that b is a semiatom of P but not

an atom. For a poset P , introduce the set A(P ) = {(0] : x; x ∈ P}. Observe

that (A(P ),⊆) is a poset with P as the greatest element and for x 6 y in P ,

(0] : y ⊆ (0] : x. An ideal I of P is called dense if (0] : I = {0}, where (0] : I = {z ∈

P ; (z, x)l ⊆ (0] ∀x ∈ I}, otherwise it is called non dense. An element x of P is dense

if (0] : x = {0}. Also, the set (0] : I is called a maximal annihilator if (0] : I 6= P

and (0] : I ⊆ (0] : B 6= P together imply (0] : I = (0] : B for any nonempty subset B

of P .

Lemma 3.2 (Kharat and Mokbel [8]). Let I be a semiprime ideal of a poset P .

Then the following statements hold for x, a, b ∈ P :

(i) (a, b)l ⊆ I : x if and only if (x, a, b)l ⊆ I,

(ii) {x, (a, b)u}l ⊆ I if and only if (a, b)ul ⊆ I : x,

(iii) I : x = P if and only if x ∈ I.

Note: The statement (i) does not require semiprimeness.

The following theorem presents several characterizations of the semiatoms of 0-

distributive posets that are equivalent.

Theorem 3.3. Let a be a nonzero element of a 0-distributive poset P . Then the

following statements are equivalent.

(i) a is a semiatom of P ,

(ii) (0] : a = (0] : b for all 0 6= b 6 a,

(iii) (0] : a is a prime ideal of P ,

(iv) (0] : a is a dual atom of the poset (A(P ),⊆),

(v) (0] : a is a maximal annihilator of P .

P r o o f. (i)⇒ (ii) Suppose that a is a semiatom of P and b is a nonzero element

of P such that b 6 a. It is enough to show that (0] : b ⊆ (0] : a, as the converse

inclusion is trivial. Suppose z ∈ (0] : b, then we have (b, z)l = {0}. Since a is

a semiatom and (a, b)l 6= {0}, we must have (a, z)l = {0}. Hence z ∈ (0] : a as

required.

(ii) ⇒ (iii) Suppose that (0] : a = (0] : b for all 0 6= b 6 a. Since (0] is a semiprime

ideal, by Lemma 2.6, (0] : a is an ideal. To show that (0] : a is prime let (x, y)l ⊆

(0] : a and x /∈ (0] : a. We have (a, x)l 6= {0}, therefore there exists z ∈ P such
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that z ∈ (a, x)l and z 6= 0. In other words, 0 6= z 6 a. By assumption we must

have (0] : a = (0] : z. Now, since z 6 x and (x, y)l ⊆ (0] : a = (0] : z, we get

(z, y)l ⊆ (0] : z. By Lemma 3.2 (i), we have (z, z, y)l ⊆ (0], thus y ∈ (0] : z = (0] : a,

as required.

(iii) ⇒ (iv) Suppose that (0] : a is a prime ideal of P . We shall prove that it is

a dual atom of A(P ). Now, suppose (0] : a ⊂ (0] : x ⊆ P . Then there exists an

element z ∈ (0] : x and z /∈ (0] : a, hence (x, z)l = {0} ⊆ (0] : a and z /∈ (0] : a. By

primeness of (0] : a, we must have x ∈ (0] : a. Thus x ∈ (0] : x, which yields x = 0,

and therefore (0] : x = P . Consequently, (0] : a is a dual atom in A(P ).

(iv) ⇒ (v) Suppose that (0] : a is a dual atom of the poset (A(P ),⊆) and (0] :

a ⊆ (0] : B 6= P for a nonempty subset B of P . Observe that B 6⊆ (0] : a. Indeed, if

B ⊆ (0] : a holds, then B ⊆ (0] : B =
⋂

b∈B

(0] : b. Thus b ∈ (0] : b for all b ∈ B and

hence B = {0}, which implies (0] : B = P , a contradiction. Therefore there exists

x ∈ B such that x /∈ (0] : a.

Now, let y ∈ (0] : B. We have to show that y ∈ (0] : a. Since y ∈ (0] : B and x ∈ B,

then we have (x, y)l = {0}. Observe that (a, y)l ⊂ al. Indeed, if (a, y)l = al holds,

then a 6 y. Since (x, y)l = {0}, we get (x, a)l = {0}, and this implies x ∈ (0] : a,

a contradiction to the fact that x /∈ (0] : a. Thus there exists z ∈ (a, y)l and z < a.

Now z < a implies (0] : a ⊆ (0] : z.

We claim that (0] : a ⊂ (0] : z. Indeed, suppose (0] : a = (0] : z. Now from

(x, y)l = {0} and z 6 y we get (x, z)l = {0}. Hence x ∈ (0] : z = (0] : a, a contra-

diction to the fact that x /∈ (0] : a. Therefore (0] : a ⊂ (0] : z ⊆ P . By assumption,

(0] : z = P which yields z = 0. Therefore (a, y)l = {0}, and so y ∈ (0] : a. Thus we

obtain (0] : B ⊆ (0] : a, as required.

(v) ⇒ (i) Suppose that (0] : a is a maximal annihilator of P and (x, y)l = {0} so

that x /∈ (0] : a. To prove that a is a semiatom, it is enough to show that y ∈ (0] : a.

Since (a, x)l 6= {0}, there exists a nonzero element z ∈ P such that z ∈ (a, x)l. We

have two cases:

(1) If z = a, then a 6 x and therefore y ∈ (0] : x ⊆ (0] : a.

(2) If z < a, then (0] : a ⊆ (0] : z 6= P , as z 6= 0. By assumption, (0] : a = (0] : z.

Since (z, y)l = {0}, we have y ∈ (0] : z = (0] : a, and therefore a is a semiatom. �

Lemma 3.4. Every non dense prime ideal of a 0-distributive poset P is of the

form (0] : a for some semiatom a of P . In fact, every nonzero element of (0] : I is

a semiatom.

P r o o f. Suppose I is a non dense prime ideal of P . We claim that I = (0] : a

for every nonzero a ∈ (0] : I. Suppose z ∈ (0] : a, then by primeness of I we have

z ∈ I, as (a, z)l = {0} ⊆ I and a /∈ I. Thus (0] : a ⊆ I. Now, if z ∈ I holds, then
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(0] : I ⊆ (0] : z, and this implies a ∈ (0] : z, i.e., z ∈ (0] : a. Thus I = (0] : a, which

is prime by assumption. Now, by Theorem 3.3, a is a semiatom of P . �

We introduce the notion of a semiatomic poset as follows.

Definition 3.5. A poset P with 0 is called semiatomic if for each nonzero ele-

ment x of P , there is a semiatom a ∈ P such that a 6 x.

The following theorem is a characterization of semiatomic 0-distributive posets.

Theorem 3.6. Let P be a 0-distributive poset. Then the following statements

are equivalent:

(i) P is semiatomic,

(ii) each (0] : x ∈ A(P ) such that (0] : x 6= P is the intersection of dual atoms in

A(P ),

(iii) (0] =
⋂
{I; I is a non dense prime ideal of P},

(iv) (0] : I = (0], where I =
⋃
{(0] : I1; I1 = (0] : a and a is a semiatom in P}.

P r o o f. (i) ⇒ (ii) Suppose that P is semiatomic and (0] : x ∈ A(P ) is such that

(0] : x 6= P . We know from Theorem 3.3 that for every semiatom a of P , (0] : a is

a dual atom of A(P ). Consider the set B =
⋂
{(0] : a; a 6 x and a is a semiatom

in P}; we show that (0] : x = B. Suppose z ∈ (0] : x. Then (x, z)l = {0} which

yields (a, z)l = {0} for any semiatom of P with a 6 x. Hence z ∈ (0] : a, in other

words, (0] : x ⊆ B. Now, let b ∈ B. If (x, b)l 6= {0}, then there exists a nonzero

element d such that d ∈ (x, b)l. Since P is semiatomic, there exists a semiatom c

such that c 6 d 6 b. Now c is a semiatom, b ∈ B, so we have b ∈ (0] : c, which

implies cl = (c, b)l = {0}, a contradiction to the fact that c is a semiatom. Therefore

we must have (x, b)l = {0} and so b ∈ (0] : x. Consequently (0] : x = B.

(ii) ⇒ (iii) Suppose that (ii) holds and x 6= 0. We have to show that x /∈
⋂
{I; I

is a non dense prime ideal of P}. Clearly (0] : x 6= P and by (ii), there exists a dual

atom (0] : a = I1 (where a is a semiatom of P ) of A(P ) such that (0] : x ⊆ (0] : a 6= P .

Observe that x /∈ (0] : a, otherwise x ∈ (0] : a would imply a ∈ (0] : x ⊆ (0] : a,

which yields a = 0, a contradiction to the fact that a 6= 0. Now, since (0] : a is a dual

atom of A(P ), by Theorem 3.3, I1 is a prime ideal of P . In fact, I1 is a non dense

prime ideal, as (0] : I1 6= {0} since a ∈ (0] : I1. Thus x /∈
⋂
{I; I is a non dense

prime ideal of P}, which proves (iii).

(iii) ⇒ (iv) Suppose that (iii) holds and I =
⋃
{(0] : I1; I1 = (0] : a and a

is a semiatom in P}. Suppose (0] : I 6= (0], i.e., there exists a nonzero element

x ∈ (0] : I. Therefore by assumption, x /∈ J for some non dense prime ideal J of P .

By Lemma 3.4, J = (0] : b for some semiatom b ∈ P and since x /∈ J , we have

(b, x)l 6= {0}. Since b ∈ (0] : J , we have b ∈ I. But we have x ∈ (0] : I and b ∈ I,

thus (b, x)l = {0}, which is a contradiction.
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(iv) ⇒ (i) Suppose (iv) holds and x is a nonzero element of P . By (iv), we have

x /∈ (0] : I, where I =
⋃
{(0] : I1; I1 = (0] : a and a is a semiatom in P}. Therefore

(b, x)l 6= {0} for some b ∈ I. Consider an element a ∈ (b, x)l such that a 6= 0.

We show that a is a semiatom. First, observe that in view of (iv) b ∈ I implies

b ∈ (0] : I1, where I1 = (0] : c for some semiatom c of P . Now suppose (y, z)l = {0}.

Then either (c, y)l = {0} or (c, z)l = {0}, as c is a semiatom in P , and so y ∈ I1 or

z ∈ I1. But a 6 b and b ∈ (0] : I1, therefore a ∈ (0] : I1 and y or z is in I1. Hence

y ∈ (0] : a or z ∈ (0] : a. Thus a is a semiatom of P that satisfies a 6 x. �

A c k n ow l e d g em e n t. The authors are grateful to the anonymous referee for

several helpful suggestions.
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