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Abstract. Recall that a space X is a c-semistratifiable (CSS) space, if the compact sets of
X are Gδ-sets in a uniform way. In this note, we introduce another class of spaces, denoting
it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We
discuss some properties of k-c-semistratifiable spaces. We prove that a T2-space X is a
k-c-semistratifiable space if and only if X has a g function which satisfies the following
conditions:
(1) For each x ∈ X, {x} =

⋂
{g(x,n) : n ∈ N} and g(x,n+ 1) ⊆ g(x,n) for each n ∈ N.

(2) If a sequence {xn}n∈N of X converges to a point x ∈ X and yn ∈ g(xn, n) for each
n ∈ N, then for any convergent subsequence {ynk

}k∈N of {yn}n∈N we have that
{ynk

}k∈N converges to x.
By the above characterization, we show that if X is a submesocompact locally k-c-

semistratifiable space, then X is a k-c-semistratifible space, and the countable product of
k-c-semistratifiable spaces is a k-c-semistratifiable space. If X =

⋃
{Int(Xn) : n ∈ N} and

Xn is a closed k-c-semistratifiable space for each n, then X is a k-c-semistratifiable space.
In the last part of this note, we show that if X =

⋃
{Xn : n ∈ N} and Xn is a closed

strong β-space for each n ∈ N, then X is a strong β-space.

Keywords: c-semistratifiable space, k-c-semistratifiable space, submesocompact space, g
function, strong β-space
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1. Introduction

It is well known that the class of generalized metric spaces plays an important role

in general topology. Some of the known generalized metric spaces are semistratifiable
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spaces ([3]), k-semistratifiable spaces ([15]) and stratifiable spaces ([2]). The notion of

semistratifiable spaces was introduced by Creede in 1970 ([3]). In 1973, H.W.Martin

introduced the class of CSS spaces ([16]).

Let (X, T ) be a topological space and let C be the collection of all compact sets

of X . A space X is called a CSS space, if there is a function U : N × C → T such

that for each C ∈ C and n ∈ N there is an open set U(n, C) in X such that

(1) C =
⋂

{U(n, C) : n ∈ N};

(2) if C ∈ C , D ∈ C and C ⊆ D then U(n, C) ⊆ U(n, D) for each n ∈ N.

In other words, a CSS space is a space in which the compact subsets are Gδ-sets in

a uniform way. Let (X, T ) be a CSS space and let U be a CSS function for X . If for

any disjoint compact sets C and K of X there is n ∈ N such that U(n, C) ∩ K = ∅,

then X is called a k-CSS space. By the definitions, we know that every k-CSS space

is a CSS space, and every k-semistratifiable space is a k-CSS space.

In this note, we mainly give a characterization of k-CSS spaces in terms of certain

g functions. By this conclusion, we show that if X is a submesocompact locally

k-CSS space, then X is a k-CSS space. We also show that the countable product of

k-CSS spaces is a k-CSS space.

In [17] we showed that if X =
⋃

{Xn : n ∈ N} and Xn is a closed CSS space (or a

semistratifiable space) for each n ∈ N, then X is a CSS space (or a semistratifiable

space). In this note we show that if X =
⋃

{Int(Xn) : n ∈ N} and Xn is a closed

k-CSS space for each n ∈ N, then X is a k-CSS space.

In [7] the authors ask whether every Fσ-set of a β-space is a β-subspace. This

question is answered in [18]. Since the article [18] is in Chinese and the referee

suggested that we give a short description of the answer, we will give it in the last

part of this note. In [17] we showed that if X is the countable union of closed β-

subspaces, then X is a β-space. The class of strong β-spaces was introduced in [19]

and was studied in [19] and [10] (see section 3 for the definition of strong β-spaces).

In this note, we show that if X =
⋃

{Xn : n ∈ N} and Xn is a closed strong β-space

for each n ∈ N, then X is a strong β-space. Thus we have that a Fσ-set of a strong

β-space is a strong β-subspace.

Let (X, T ) be a topological space. A g function is a function from X ×N into the

topology T of X such that x ∈ g(x, n + 1) ⊆ g(x, n) for each x ∈ X and n ∈ N. We

use g to denote a g function throughout this paper.

In this note, all spaces are assumed to be at least Hausdorff spaces. The set of all

positive integers is denoted by N. If U and V are families of subsets of X such that

for each U ∈ U there exists V ∈ V such that U ⊆ V , then we write U ≺ V . We put

U ∧ V = {U ∩ V : U ∈ U and V ∈ V }. If X is a space, then we denote by C the

collection of all compact subsets of X and by 2X the collection of all closed subsets
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of X . If a sequence {xn}n∈N of X converges to a point x of X , then we denote it by

{xn}n∈N → x. In notions and terminology we will follow [4], [8] and [13].

2. On k-CSS spaces

We begin this section by showing how k-c-semistratifiable spaces are related to five

types of spaces that have already been studied. The six types of spaces are defined

based on different ways of writing certain closed sets as Gδ-sets in a uniform way.

The definitions follow.

Definition 2.1. Let 2X be the family of all closed subsets of a topological space

(X, T ) and consider four properties that a function U : N× 2X → T may have:

(1) For each F ∈ 2X and each n ∈ N, U(n + 1, F ) ⊆ U(n, F ) and if F1 ⊆ F2 are in

2X then U(n, F1) ⊆ U(n, F2) for each n ∈ N.

(2) For each F ∈ 2X , F =
⋂

{U(n, F ) : n ∈ N} =
⋂

{U(n, F ) : n ∈ N}.

(3) For each F ∈ 2X , F =
⋂

{U(n, F ) : n ∈ N} and if K is compact and K ∩F = ∅,

then for some n ∈ N, K ∩ U(n, F ) = ∅.

(4) For each F ∈ 2X , F =
⋂

{U(n, F ) : n ∈ N}.

A space (X, T ) that has a function U satisfying (1) and (2) is called stratifiable

([2]); a space with a function U satisfying (1) and (3) is called k-semistratifiable

([15]), and a space with a function U satisfying (1) and (4) is called semistratifiable

([3]).

Each class of spaces in Definition 2.1 has a well-developed theory. Next, we replace

the collection 2X by the collection C of all compact subsets of (X, T ) in each of

properties (1) through (4).

Definition 2.2. Let C be the family of all compact subsets of a topological space

(X, T ) and consider four properties that a function U : N× C → T may have:

(1) For each C ∈ C and each n ∈ N, U(n + 1, C) ⊆ U(n, C) and if C1 ⊆ C2 are in

C then U(n, C1) ⊆ U(n, C2) for each n ∈ N.

(2) For each C ∈ C , C =
⋂

{U(n, C) : n ∈ N} =
⋂

{U(n, C) : n ∈ N}.

(3) For each C ∈ C , C =
⋂

{U(n, C) : n ∈ N} and if K is compact and K ∩C = ∅,

then for some n ∈ N, K ∩ U(n, C) = ∅.

(4) For each C ∈ C , C =
⋂

{U(n, C) : n ∈ N}.

A c-stratifiable (CS) space ([11]) is a space that has a function U : N × C → T

with properties (1) and (2). A k-c-semistratifiable (k-CSS) space is a space that

has a function U : N × C → T with properties (1) and (3). A space is called c-

semistratifiable (CSS) ([16]) if it has a function U : N× C → T with properties (1)

and (4). The function U is called a CS function for X , k-CSS function for X , and

CSS function for X , respectively.
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The above definitions make the implications in the following diagram clear:

stratifiable ⇒ k-semistratifiable ⇒ semistratifiable

⇓ ⇓ ⇓

c-stratifiable ⇒ k-c-semistratifiable ⇒ c-semistratifiable

We thank the referee for pointing out how to make it clear how naturally the topic

of this paper fits into classical topology.

Theorem 2.3. If X is a first countable k-CSS space, then X is a CS space.

P r o o f. Let U be a k-CSS function for X . For each F ∈ 2X , F =
⋂

{U(n, F ) :

n ∈ N}. We claim that F =
⋂

{U(n, F ): n ∈ N}. Suppose there is a point y ∈
⋂

{U(n, F ) : n ∈ N} \ F . Let {Vn(y) : n ∈ N} be a decreasing neighborhood base of

the point y inX . Since y 6∈ F and F is closed inX , we have that {Vn(y)\F : n ∈ N} is

a decreasing neighborhood base of the point y inX . Thus (Vn(y)\F )∩U(n, F ) 6= ∅ for

each n. If yn ∈ (Vn(y)\F )∩U(n, F ), then {yn}n∈N → y. Thus {y}∪{yn : n ∈ N} = C

is a compact subset of X and F ∩C = ∅. Thus there is n ∈ N such that U(n, F )∩C =

∅. This contradicts the fact that yn ∈ U(n, F ). Thus F =
⋂

{U(n, F ): n ∈ N}, and

hence U is a CS function for X . �

Theorem 2.4. If (X, T ) is a k-CSS space and Y ⊆ X , then Y is a k-CSS space.

P r o o f. Let U be a k-CSS function for X . For each compact subset C of the

subspace Y , we know that C is a compact subset of X . Put U1(n, C) = U(n, C)∩Y ;

hence U1(n, C) is an open subset of the subspace Y . We can see that the function

U1 : N × CY → T ∩ Y is a k-CSS function for Y , where CY is the family of all

compact subsets of the subspace Y . �

Theorem 2.5. Let X be a k-CSS space. If f : X → Y is a perfect map, then Y

is a k-CSS space.

P r o o f. Let CX denote the collection of all compact subsets of X and let CY

denote the collection of all compact subsets of Y . Let U be a k-CSS function for

X . For each K ∈ CY , we know that f−1(K) ∈ CX since f is a perfect map. Let

U1(n, K) = Y \ f(X \ U(n, f−1(K))) for each n ∈ N.

Since f−1(K) ⊆ U(n, f−1(K)), we have K ⊆ U1(n, K) and U1(n, K) is an open

subset of Y for each n ∈ N. So K ⊆
⋂

{U1(n, K) : n ∈ N}. If y /∈ K, then

f−1(y) ∩ f−1(K) = ∅. Thus there exists x ∈ f−1(y) such that x /∈ f−1(K). Since

f−1(K) =
⋂

{U(n, f−1(K)) : n ∈ N}, there is n ∈ N such that x /∈ U(n, f−1(K)).

Hence y /∈ Y \ f(X \ U(n, f−1(K))) = U1(n, K), so K =
⋂

{U1(n, K) : n ∈ N}. If
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C ∈ CY , K ∈ CY and K ∩ C = ∅, then f−1(K) ∩ f−1(C) = ∅. Thus there exists

n ∈ N such that U(n, f−1(K)) ∩ f−1(C) = ∅. Thus U1(n, K) ∩ C = ∅. It is obvious

that U1(n, K1) ⊆ U1(n, K2) if K1 ∈ CY , K2 ∈ CY , and K1 ⊆ K2. Hence Y is a

k-CSS space. �

Theorem 2.6. Let (X, T ) be a space. The space (X, T ) is a k-CSS space if

and only if there exists a function F : N × T ′ → 2X , where T ′ = {V : X \ V is a

compact subset of X and V ∈ T } is such that the following conditions holds for

each V ∈ T ′:

(1)
⋃

{F (n, V ) : n ∈ N} = V and F (n, V ) ⊆ F (n + 1, V ) for each n ∈ N;

(2) if V1, V2 ∈ T ′ and V1 ⊆ V2, then F (n, V1) ⊆ F (n, V2) for each n ∈ N;

(3) if C is a compact subset of X and C ⊆ V for some V ∈ T ′, then there exists

n ∈ N such that C ⊆ F (n, V ).

P r o o f. ⇒: Let U be a k-CSS function for X . For each V ∈ T ′, we know that

X \ V is a compact subset of X . Thus X \ V =
⋂

{U(n, X \ V ) : n ∈ N}, and hence

V =
⋃

{X \ U(n, X \ V ) : n ∈ N}. If F (n, V ) = X \ U(n, X \ V ) for each n ∈ N,

then F (n, V ) is closed in X . Thus both the conditions (1) and (2) of the theorem are

satisfied. Since C is compact, C ⊆ V , and V ∈ T ′, we have that X \V is a compact

set and C ∩ (X \ V ) = ∅. Thus there is n ∈ N such that C ∩ U(n, X \ V ) = ∅, i.e.,

C ⊆ X \ U(n, X \ V ) = F (n, V ).

⇐: Suppose F : N×T ′ → 2X is a function which satisfies the conditions (1), (2),

and (3) of the theorem. If K is a compact subset of X , then X \ K ∈ T ′. Thus
⋃

{F (n, X\K) : n ∈ N} = X\K, and hence we have
⋂

{X\F (n, X\K) : n ∈ N} = K.

Let U(n, K) = X \ F (n, X \ K) for each n. We can easily show that U is a k-CSS

function for X . �

Theorem 2.7. If X = Y1 ∪ Y2, Y1 and Y2 are closed k-CSS subspaces of X , then

X is a k-CSS space.

P r o o f. Let U1 and U2 be k-CSS functions for Y1 and Y2, respectively. For

each compact subset F of X and n ∈ N, if we set U(n, F ) = X \ [(Y1 \ U1(n, F ∩

Y1)) ∪ (Y2 \ U2(n, F ∩ Y2))], then F ⊆ U(n, F ) and U(n, F ) is an open subset of

X . If E is a compact subset of X and E ∩ F = ∅, then there is n ∈ N such that

U1(n, F∩Y1)∩(E∩Y1) = ∅, and there ism ∈ N such that U2(m, F∩Y2)∩(E∩Y2) = ∅.

If l > max{n, m}, then we have U1(l, F ∩Y1)∩ (E ∩Y1) = ∅ and U2(l, F ∩Y2)∩ (E ∩

Y2) = ∅. So U(l, F ) ∩ E = ∅. We can show that the function U satisfies the other

conditions of a k-CSS function. Hence U is a k-CSS function for X . �
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In 1986 ([5]) and in 1988 ([12]), Z.M.Gao and S. Lin gave a characterization for

k-semistratifiable spaces by a g function. In what follows, we give a characterization

for k-CSS spaces by a g function.

If X is a compact CSS space, then X is a compact semistratifiable space. Thus

we have the following lemma.

Lemma 2.8. If X is a compact CSS space, then X is a metrizable space.

Lemma 2.9 ([1]). Let (X, T ) be a space. The space (X, T ) is a CSS space if

and only if there is a function g : X × N → T , such that

(1)
⋂

{g(x, n) : n ∈ N} = {x} and g(x, n + 1) ⊆ g(x, n) for each n ∈ N;

(2) if a sequence {xn}n∈N of X converges to y, then
⋂

{g(xn, n) : n ∈ N} ⊆ {y}.

This g function is called a CSS g function for X .

Theorem 2.10. A topological space (X, T ) is k-CSS if and only if there is a

function g : X × N → T which satisfies the following conditions:

(1) for each x ∈ X , {x} =
⋂

{g(x, n) : n ∈ N} and g(x, n + 1) ⊆ g(x, n) for each

n ∈ N;

(2) if a sequence {xn}n∈N converges to x and yn ∈ g(xn, n) for each n ∈ N, then

any convergent subsequence {ynk
}k∈N of {yn}n∈N converges to x.

P r o o f. ⇒: Let U be a k-CSS function for X . For each x ∈ X and n ∈ N, we

define g(x, n) = U(n, {x}). Thus g(x, n + 1) ⊆ g(x, n) for each n ∈ N and {x} =
⋂

{g(x, n) : n ∈ N}. We assume that the sequences {xn}n∈N and {yn}n∈N satisfy the

condition (2) of the theorem. Let {ynk
}k∈N be a convergent subsequence of {yn}n∈N.

We will show that {ynk
}k∈N → x. Suppose {ynk

}k∈N → y and y 6= x. Without loss

of generality, we can assume that ynk
6= xm for eachm and nk. Since {xnk

}k∈N → x,

we know that K1 = {xnk
: k ∈ N} ∪ {x} and K2 = {ynk

: k ∈ N} ∪ {y} are compact

sets and K1 ∩ K2 = ∅. Therefore there is m ∈ N such that U(m, K1) ∩ K2 = ∅. For

each nk > m, we have g(xnk
, nk) = U(nk, {xnk

}) ⊆ U(m, {xnk
}) ⊆ U(m, K1). Since

ynk
∈ K2, we have ynk

6∈ U(m, K1) and hence we have ynk
/∈ g(xnk

, nk). This is a

contradiction with ynk
∈ g(xnk

, nk). Hence {ynk
}k∈N → x.

⇐: Suppose X has a g function which satisfies the conditions (1) and (2).

We first show that X is a CSS space.

Let {xn}n∈N converge to x. If z ∈
⋂

{g(xn, n) : n ∈ N}, then z ∈ g(xn, n) for each

n ∈ N. If yn = z for each n ∈ N, then the sequence {yn}n∈N is convergent. By the

condition (2), we have {yn}n∈N → x, so z = x. Thus
⋂

{g(xn, n) : n ∈ N} ⊆ {x},

and hence X is a CSS space by Lemma 2.9.

Let C be any non-empty compact subset of X . We set U(n, C) =
⋃

{g(x, n) : x ∈

C}. Let D be a compact subset of X and C ∩ D = ∅. We will show that there is
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n ∈ N such that U(n, C) ∩ D = ∅. By Lemma 2.8 we have that C and D are two

metrizable subspaces of X .

Suppose U(n, C) ∩ D 6= ∅ for each n ∈ N. Then there exists xn ∈ C such that

g(xn, n)∩D 6= ∅ for each n ∈ N. We choose a point yn such that yn ∈ g(xn, n)∩D for

each n ∈ N. Since {xn : n ∈ N} ⊆ C and C is metrizable, the sequence {xn}n∈N has

a convergent subsequence {xnk
}k∈N. If we assume that {xnk

}k∈N → x, then x ∈ C.

Without loss of generality, we assume that {nk}k∈N is an increasing sequence. For

any k ∈ N, if n ∈ N and nk−1 6 n < nk(n0 = 0), then we set x∗

n = xnk
, and hence

g(x∗

n, n) = g(xnk
, n) and g(xnk

, nk) ⊆ g(xnk
, n). If nk−1 6 n < nk(n0 = 0) then we

set y∗

n = ynk
, and hence y∗

n = ynk
∈ g(xnk

, nk) ⊆ g(xnk
, n) = g(x∗

n, n). The sequence

{x∗

n}n∈N converges to x. Since the compact subspace D is metrizable and y∗

n ∈ D

for each n ∈ N, the sequence {y∗

n}n∈N has a convergent subsequence {y∗

nm
}m∈N. For

each n ∈ N, y∗

n ∈ g(x∗

n, n), we know that the sequence {y∗

nm
}m∈N converges to x.

Since D is closed, we have x ∈ D. So x ∈ C ∩ D, which contradicts C ∩ D = ∅.

Thus there exists n ∈ N such that U(n, C) ∩ D = ∅. It is obvious that the function

U satisfies the other conditions of a k-CSS function for X . Hence X is a k-CSS

space. �

The g function which appears in Theorem 2.10 is called a k-CSS g function for X .

In [17] it is proved that the countable product of CSS spaces is a CSS space. The

following theorem shows that k-CSS spaces also have the countable product property.

Theorem 2.11. Let X =
∏

n∈N

Xn. If Xn is a k-CSS space for each n ∈ N, then

X is a k-CSS space.

P r o o f. For each i ∈ N, since Xi is a k-CSS space, let gi be a k-CSS function for

Xi which satisfies the conditions of Theorem 2.10. For any x = (xi : i ∈ N) ∈ X and

n ∈ N we define g(x, n) =
∏

i6n

gi(xi, n) ×
∏

i>n

Xi. It is clear that {x} =
⋂

{g(x, n) :

n ∈ N} and g(x, n + 1) ⊆ g(x, n) for each n ∈ N. Let xn = (xi
n : i ∈ N) ∈ X ,

yn = (yi
n : i ∈ N) ∈ g(xn, n) for each n ∈ N, and let the sequence {xn}n∈N converge

to z = (zi : i ∈ N) ∈ X . Assume the sequence {yn}n∈N has a convergent subsequence

{ynk
}k∈N. For each i ∈ N and each n > i we have yi

n ∈ gi(x
i
n, n). Since the sequence

{xn}n∈N converges to z, the sequence {xi
n}n∈N converges to zi. Since gi is a k-CSS g

function for Xi and the subsequence {yi
nk
}k∈N is convergent, so {yi

nk
}k∈N converges

to zi. So the sequence {ynk
}k∈N converges to z. Hence X is a k-CSS space. �

In [1] it is proved that in the class of submetacompact spaces, locally CSS is

equivalent to CSS. In what follows, we show that in the class of submesocompact

spaces, locally k-CSS is equivalent to k-CSS.
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Definition 2.12 ([14]). A space X is called a submesocompact space if for any

open cover U of X there is a sequence of open covers {Un : n ∈ N} such that Un is

an open refinement of U , i.e. Un ≺ U for each n ∈ N, and for each compact set C

of X there is n ∈ N such that |{V ∈ Un : V ∩ C 6= ∅}| < ω.

Definition 2.13. A space X is called locally k-CSS if for each x ∈ X there exists

a neighborhood Vx of x such that Vx is a k-CSS subspace of X .

Theorem 2.14. Let X be a submesocompact space. If X is a locally k-CSS

space, then X is a k-CSS space.

P r o o f. Let W = {W (α) : α ∈ Λ} be an open cover of X such that W (α)

is a k-CSS subspace for each α ∈ Λ, where Λ is a well ordered set. Let gα be a

k-CSS function for the subspace W (α) as described in Theorem 2.10. Let C be the

collection of all compact subsets of X .

Since X is a submesocompact space, there is a sequence {Un : n ∈ N} of open

covers of X such that Un ≺ W for each n ∈ N, and for any C ∈ C there exists n ∈ N

such that |{U : U ∈ Un and U ∩ C 6= ∅}| < ω.

For any n ∈ N, α ∈ Λ, we set V (n, α) =
⋃

{U : U ∈ Un, U ⊆ W (α), U 6⊆ W (β) for

each β < α}; then V (n, α) ⊆ W (α).

For any x ∈ X there is U ∈ Un such that x ∈ U . If α = min{β : U ⊆ W (β) and

β ∈ Λ}, then U ⊆ V (n, α). Thus x ∈ V (n, α). So we have that if Vn = {V (n, α) : α ∈

Λ} then the collection Vn is an open cover of X for each n, and for any C ∈ C there

exists n ∈ N such that |{V : V ∈ Vn, V ∩ C 6= ∅}| < ω. For each x ∈ X there is

n ∈ N such that ord(x, Vn) < ω, where ord(x, Vn) = |{V : V ∈ Vn, x ∈ V }|. For

each x ∈ X and n ∈ N, we define A(x, n) as follows: If ord(x, Vn) < ω, then set

A(x, n) = {α ∈ Λ: x ∈ V (n, α)}; if ord(x, Vn) > ω then we choose any α ∈ Λ such

that x ∈ V (n, α) and set A(x, n) = {α}.

By the definition of A(x, n), we know that it is a finite set. Now we set g(x, n) =
⋂

{gα(x, n)∩ (
⋂

{V (j, α) : j 6 n}) : α ∈
⋃

{A(x, i) : i 6 n}}. Thus g(x, n) is an open

subset of X and x ∈ g(x, n + 1) ⊆ g(x, n) for each n ∈ N.

If α(x) ∈ A(x, 1), then g(x, n) ⊆ gα(x)(x, n) for each n ∈ N. Thus x ∈
⋂

{g(x, n) :

n ∈ N} ⊆
⋂

{gα(x)(x, n) : n ∈ N} = {x}.

Let {xn}n∈N and {yn}n∈N be two sequences, such that {xn}n∈N → x and yn ∈

g(xn, n) for each n ∈ N. Let {ynk
}k∈N be any convergent subsequence of {yn}n∈N.

In what follows, we will show that {ynk
}k∈N → x.

We assume {ynk
}k∈N → y. If K1 = {ynk

: k ∈ N} ∪ {y} and K2 = {xn : n ∈

N} ∪ {x}, then K = K1 ∪ K2 is compact.

Thus there is l ∈ N such that |{U : U ∈ Ul, U ∩K 6= ∅}| < ω, and hence |{V : V ∈

Vl, V ∩ K 6= ∅}| < ω. So ord(xn, Vl) < ω for each n ∈ N.
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Since X =
⋃

Vl, there is V (l, α) ∈ Vl such that x ∈ V (l, α). Since {xn}n∈N → x,

there exists n1 ∈ N such that xn ∈ V (l, α) for each n > n1. Since ord(xn, Vl) < ω

and xn ∈ V (l, α) for n > n1, we have α ∈ A(xn, l) and hence yn ∈ g(xn, n) ⊆

gα(xn, n) if n > n1. Since {xn : n > n1} → x and the sequence {yn}n∈N has a

convergent subsequence {ynk
}k∈N, and {xn : n > n1} ⊆ V (l, α) ⊆ W (α), we know

that {ynk
: nk > n1} → x by the k-CSS property of W (α). So y = x, hence X is a

k-CSS space. �

Corollary 2.15. If X is a paracompact locally k-CSS space, then X is a k-CSS

space.

Theorem 2.16. If X =
⋃

{Int(Xn) : n ∈ N} and Xn is a closed k-CSS space for

each n ∈ N, then X is a k-CSS space.

P r o o f. By Theorem 2.7, we can assume that Xm ⊆ Xm+1 for each m ∈ N. For

each m ∈ N, let Um be a k-CSS function for Xm. For any compact set F of X and

m ∈ N, we have that F ∩ Xm =
⋂

{Um(n, F ∩ Xm) : n ∈ N}, where Um(n, F ∩ Xm)

is an open subset of Xm. Since Xm is closed in X , the set U∗

m(n, F ∩ Xm) =

Um(n, F ∩Xm)∪(X \Xm) is an open subset ofX . We know that F ⊆ U∗

m(n, F ∩Xm)

for each m ∈ N and n ∈ N.

For each n ∈ N, we define U(n, F ) =
⋂

{U∗

m(n, F ∩ Xm) : m 6 n}. Thus F ⊆

U(n, F ) for each n ∈ N and U(n, F ) is an open subset of X . For any compact subset

C of X , if C ∩F = ∅ then there is m ∈ N such that C ⊆
⋃

{Int(Xi) : i 6 m} ⊆ Xm.

Thus there is n ∈ N such that C∩Um(n, F ∩Xm) = ∅. Thus C∩U∗

m(n, F ∩Xm) = ∅.

We can assume that n > m. Thus C ∩ (
⋂

{U∗

k (n, F ∩ Xk) : k 6 m}) = ∅, and

hence C ∩ U(n, F ) = ∅. If F and E are two compact sets and F ⊆ E, we have

U(n, F ) ⊆ U(n, E). Thus X is a k-CSS space. �

Recall that a spaceX is a σ-space ifX has a σ-discrete closed network. It is known

that any stratifiable space is a σ-space, and more generally so is any k-semistratifiable

space ([6]). Every σ-space is semistratifiable, and hence every σ-space is perfect.

In [11] it is pointed out that the space in Example 6.2 which appears in [11] is a

Hausdorff CS space which is neither regular nor perfect. Such a space is CS but not

semistratifiable. Thus such a space is not a σ-space.

Every Moore space is a semistratifiable space. So we have:

P r o b l e m 2.17. Is every Moore space a k-CSS space?

P r o b l e m 2.18. Is locally k-CSS equivalent to k-CSS in the class of submeta-

compact spaces?
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We know that c-stratifiable ⇒ k-c-semistratifiable ⇒ c-semistratifiable.

We have not found an appropriate example to show the first arrow cannot be

reversed.

In [11] it is pointed out that the space in Example 6.3 which appears in [11] is a

T1 and CSS first countable space, but it is not CS. Such a space is not k-CSS by

Theorem 2.3.

We have known that large classes of topological spaces are CSS.

Recall that a space X has a quasi-Gδ(2)-diagonal provided there is a sequence

{Un : n ∈ N} of collections of open sets with the property that, given distinct points

x, y ∈ X , there is n with x ∈ St2(x, Un) ⊆ X \ {y}.

Proposition 19 (cf. [17]). If X has a quasi-Gδ(2)-diagonal, then X is a CSS

space.

Proposition 20 (cf. [16]). The space (X, T ) is CSS provided one of the following

conditions holds:

(1) X is a σ♯-space, i.e., X has a σ-closure-preserving collection C of closed sets

with the property that if x 6= y are points of X , then there is C ∈ C such that

x ∈ C and y 6∈ C;

(2) X has a G∗

δ-diagonal.

P r o b l e m 2.21. Let X be a space and let one of the following conditions hold:

(1) X has a quasi-Gδ(2)-diagonal;

(2) X is a σ♯-space;

(3) X has a G∗

δ-diagonal.

Is the space X k-CSS?

3. On strong β-spaces

A space X is called a β-space ([9]) if there is a function g : X × N → T , where

T denotes the topology of X , satisfying

(1) x ∈ g(x, n + 1) ⊆ g(x, n) for each x ∈ X and n ∈ N;

(2) if y ∈
⋂

n∈N

g(xn, n) for some y ∈ X , then the sequence {xn}n∈N has a cluster

point.

The function g is called a β function for X .

A space (X, T ) is called a strong β-space ([19]) if there is a function g : X ×N →

T , satisfying

(1) x ∈ g(x, n + 1) ⊆ g(x, n) for each x ∈ X and n ∈ N;
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(2) if y ∈
⋂

n∈N

g(xn, n) for some y ∈ X , then {xn}n∈N has a compact closure.

The function g is called a strong β function for X .

Lemma 3.1. If X = X1 ∪ X2, where Xi is a closed strong β-subspace of X for

i ∈ {1, 2}, then X is a strong β-space.

P r o o f. For each i ∈ {1, 2}, the subspace Xi is a strong β-space, and hence

there exists a function gi described in the definition of the strong β-space. For each

x ∈ X1 \ X2 and each n ∈ N, let g(x, n) = g1(x, n) \ X2. Thus x ∈ g(x, n) and

g(x, n) is an open subset of X for each x ∈ X1 \ X2 and n ∈ N. Similarly, let

g(x, n) = g2(x, n) \ X1 if x ∈ X2 \ X1.

If x ∈ X1 ∩ X2 then let g(x, n) = (g1(x, n) ∪ (X \ X1)) ∩ (g2(x, n) ∪ (X \ X2)) for

each n ∈ N. Thus g(x, n) is an open subset of X for each x ∈ X1 ∩ X2 and each

n ∈ N.

For each x ∈ X , if x ∈ X2 \ X1 then x 6∈ g(y, n) for each y ∈ X1 \ X2 and each

n ∈ N. Similarly, we have that x 6∈ g(y, n) for each n ∈ N, if x ∈ X1 \ X2 and

y ∈ X2 \ X1.

For each x ∈ X and each n ∈ N, we have that x ∈ g(x, n + 1) ⊆ g(x, n). If

y ∈
⋂

n∈N

g(xn, n) for some y ∈ X , then there is i ∈ {1, 2} such that y ∈ Xi. We

assume i = 1. Thus xn 6∈ X2 \ X1, and hence xn ∈ X1 for each n ∈ N. Thus

y ∈
⋂

n∈N

g1(xn, n). So the closure of the sequence {xn}n∈N is compact. Thus X is a

strong β-space. �

Theorem 3.2. If X =
⋃

{Xn : n ∈ N} and Xn is a closed strong β-space for each

n ∈ N, then X is a strong β-space.

P r o o f. For each m ∈ N, we can assume that Xm ⊆ Xm+1 by Lemma 3.1.

For each m ∈ N, let gm be a strong β function for Xm. For each x ∈ X , let

m(x) = min{m : m ∈ N and x ∈ Xm}. For each n ∈ N, let g(x, n) = (gm(x)(x, n) ∪

(X \ Xm(x))) \ Xm(x)−1 if n 6 mx; otherwise let

g(x, n) =

[

⋂

m(x)6k6n

(gk(x, n) ∪ (X \ Xk))

]

\ Xm(x)−1.

Thus g(x, n) is an open subset of X and x ∈ g(x, (n + 1)) ⊆ g(x, n) for each x ∈ X

and each n ∈ N.

If x ∈
⋂

n∈N

g(xn, n) for some x ∈ X , then xn ∈ Xm(x) for each n ∈ N. If n > m(x)

then g(xn, n) ∩ Xm(x) ⊆ gm(x)(x, n). Thus x ∈
⋂

{gm(x)(xn, n) : n > m(x)}. So the

closure of {xn : n > m(x)} is compact. Thus X is a strong β-space. �
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We know that every closed subspace of a strong β-space is a strong β-space. So

we have the following corollary.

Corollary 3.3. If (X, T ) is a strong β-space, then every Fσ-subset of X is a

strong β-subspace.

In [7] the authors ask whether every Fσ-subset of a β-space is a β-subspace. This

question is answered in [18]. A short description of the answer follows.

Lemma 3.4. If X = X1∪X2, where Xi is a closed β-subspace of X for i ∈ {1, 2},

then X is a β-space.

P r o o f. The proof is analogous to the proof of Lemma 3.1. �

Theorem 3.5 (cf. [18, Theorem 1]). If (X, T ) is a β-space, then every Fσ-subset

of X is a β-subspace.

P r o o f. Let U =
⋃

{Fn : n ∈ N}, where Fn is closed in X for each n ∈ N. Thus

Fn is a β-subspace for each n. By Lemma 3.4, we can assume that Fn ⊆ Fn+1 for

each n ∈ N. Let g : X ×N → T be a β function for X . For each x ∈ U , let m(x) be

the smallest index such that x ∈ Fm(x). Thus x 6∈ Fm(x)−1, where F0 = ∅. We define

g′(x, n) = (U ∩ g(x, n)) \ Fm(x)−1. If x ∈ g′(yn, n) for each n ∈ N, then yn ∈ Fm(x)

for each n. Thus x ∈ g(yn, n) for each n ∈ N, and hence {yn}n∈N has a cluster point

y in X . Since yn ∈ Fm(x) for each n ∈ N and Fm(x) is closed in X , we have that

y ∈ Fm(x). Thus y ∈ U . So the function g′ : U ×N → T ∩ U is a β function for the

subspace U , and hence U is a β-subspace. �
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