SOME COHOMOLOGICAL ASPECTS OF THE BANACH FIXED POINT PRINCIPLE

Ludvík Janoš, Claremont

(Received September 20, 2010)

Abstract. Let $T: X \rightarrow X$ be a continuous selfmap of a compact metrizable space X. We prove the equivalence of the following two statements: (1) The mapping T is a Banach contraction relative to some compatible metric on X. (2) There is a countable point separating family $\mathcal{F} \subset \mathcal{C}(X)$ of non-negative functions $f \in \mathcal{C}(X)$ such that for every $f \in \mathcal{F}$ there is $g \in \mathcal{C}(X)$ with $f=g-g \circ T$.

Keywords: Banach contraction, cohomology, cocycle, coboundary, separating family, core MSC 2010: 54H25, 54H20

1. Introduction and notation

The object of our study is a continuous selfmap T of a compact metrizable space X. Let $\mathcal{C}(X)$ and $\mathcal{M}(X)$ denote the set of all continuous real-valued functions and the set of all compatible metrics on X, respectively. Regarding $\mathcal{C}(X)$ as an abelian group, we convert it to an $(\mathbb{N},+)$-module defining the action of $n \in \mathbb{N}$ on $f \in \mathcal{C}(X)$ by

$$
n \cdot f=f \circ T^{n},
$$

where T^{n} is the nth iteration of T. In most textbooks on homological algebra only group-actions are treated, whereas $(\mathbb{N},+)$ is only a commutative monoid reflecting the fact that T need not have an inverse. But it was shown by S. Maclane, H. Cartan, A. Bakakhanian [1] and others that the homology and cohomology theory of monoids is almost identical with that of groups. In our case only one-cohomology will be relevant. By a one-chain we understand a map

$$
\varphi: \mathbb{N} \rightarrow \mathcal{C}(X)
$$

with $\varphi(0)=0 \in \mathcal{C}(X)$. The cochain φ is a cocycle if it is of the form

$$
\varphi(n)=f+1 \cdot f+2 \cdot f+\ldots+(n-1) \cdot f, \quad n \in \mathbb{N}
$$

where f is a function in $\mathcal{C}(X)$. If f is of the form $g-1 \cdot g$ with $g \in \mathcal{C}(X)$ then the cocycle is a coboundary. In this case we have

$$
\sum_{k=0}^{n-1} k \cdot f=g-n \cdot g, \quad n \in \mathbb{N}
$$

and by abuse of language we call the function itself a coboundary. If $\mathcal{F} \subset \mathcal{C}(X)$ is a family of functions we say \mathcal{F} is point separating if for any $x, y \in X, x \neq y$, there is $f \in \mathcal{F}$ with $f(x) \neq f(y)$. A selfmap $T: X \rightarrow X$ is a Banach contraction if for some $c \in[0,1)$ and $d \in M(X)$ we have

$$
d(T x, T y) \leqslant c d(x, y), \quad x, y \in X
$$

We will prove

Theorem 1. The selfmap T is a Banach contraction if and only if there is a countable point separating family $\mathcal{F} \subset \mathcal{C}(X)$ of nonnegative coboundaries.

2. Proof of the theorem

We prove first the easier "only if" part. Thus let T be a c-contraction on a compact metric space (X, d). Let $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ be a countable dense subset of X and for every $k \in \mathbb{N}$ consider the orbit $\mathcal{O}\left(x_{k}\right)=\left\{T^{n} x_{k}: n \in \mathbb{N}\right\}$. We define the function f_{k} as the distance from $x \in X$ to the orbit $\mathcal{O}\left(x_{k}\right)$, i.e. $f_{k}(x)=d\left(x, \mathcal{O}\left(x_{k}\right)\right.$. It is obvious that $f_{k} \in \mathcal{C}(X)$ and that $\sum_{n=0}^{\infty} f_{k}\left(T^{n} x\right)$ converges uniformly to some continuous function $g_{k} \in \mathcal{C}(X)$, so that $f_{k}(x)=g_{k}(x)-g_{k}(T x), x \in X$, showing that this f_{k} is a coboundary. It is also easy to see that the family $\mathcal{F}=\left\{f_{k}: k \in \mathbb{N}\right\}$ is point separating, which completes the "only if" part of the proof.

To prove the "if" part suppose $\mathcal{F} \subset \mathcal{C}(X)$ is a family with the above mentioned properties. Let $f \in \mathcal{F}$. Since f is a coboundary there is $g \in \mathcal{C}(X)$ with $f(x)=$ $g(x)-g(T x), x \in X$. The equation

$$
\sum_{k=0}^{n-1} f\left(T^{k} x\right)=g(x)-g\left(T^{n} x\right)
$$

shows that the infinite sum $\sum_{k=0}^{\infty} f\left(T^{k} x\right)$ exists due to the fact that $f \geqslant 0, g$ is continuous and the space X is compact. This implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} f\left(T^{k} x\right)=0, x \in X \tag{2.1}
\end{equation*}
$$

We will show that the orbit

$$
\mathcal{O}(x)=x, T x, T^{2} x, \ldots, T^{n} x, \ldots
$$

converges for every $x \in X$. Assume that for some x it is not true. Then there are two distinct points, say $y_{1} \neq y_{2}$ towards which two subsequences of $\mathcal{O}(x)$ converge. But then 1 implies that $f\left(y_{1}\right)=f\left(y_{2}\right)=0$. Since f is an arbitrary element of \mathcal{F} this implies that \mathcal{F} fails to separate y_{1} from y_{2}, a desired contradiction. This yields that the orbit $\mathcal{O}(x)$ converges and since $\lim [\mathcal{O}(x)]=T \lim [\mathcal{O}(x)]$ the limit is a fixed point, say x^{*}. From the equality

$$
f\left(x^{*}\right)=g\left(x^{*}\right)-g\left(T x^{*}\right)=0
$$

it follows that T cannot have more fixed points than one since otherwise \mathcal{F} would not separate them. Thus T has a unique fixed point x^{*} toward which every orbit converges. We will show also that T has no periodic points. Suppose a point $x \in X$ has period $p \geqslant 2$, i.e. $T^{p} x=x$. Since

$$
f(x)+f(T x)+\ldots+f\left(T^{p-1} x\right)=g(x)-g\left(T^{p} x\right)=0
$$

we obtain that

$$
f(x)+f(T x)+\ldots+f\left(T^{p-1} x\right)=0
$$

implying that $f\left(T^{k} x\right)=0$ for $k=0,1, \ldots, p-1$ which would again clash with the separation property of \mathcal{F}. This also shows how strong the argument of separation is.

In the final stage of our proof the function g appearing in $f(x)=g(x)-g(T x)$ will play an important role. Note that it is not uniquely determined by f, since $g+c$, with c any constant, can replace g. Thus we can choose the function g which corresponds to $f \in \mathcal{F}$ by setting $g\left(x^{*}\right)=0$. Since

$$
\sum_{k=0}^{n-1} f\left(T^{k} x\right)=g(x)-g\left(T^{n} x\right)
$$

and the orbit converges to x^{*} it follows that the infinite sum $\sum_{k=0}^{\infty} f\left(T^{k} x\right)$ converges to the function g.

One of our previous results (see [1]) is that T is a Banach contraction if and only if the core of T, core $(T)=\bigcap\left\{T^{n}(X): n \in \mathbb{N}\right\}$ is a singleton. It is known that the core is a nonempty compact T-invariant subset of X and that the restriction of T to the core is surjective. Thus, to conclude our proof we will assume that $|\operatorname{core}(T)| \geqslant 2$ and deduce from it a contradiction. Since the fixed point x^{*} is in the core there is in the core another point, say y, distinct from x^{*}. Since T maps the core onto itself every point in it has at least one pre-image in the core. Since there are no periodic points we can construct an inverse orbit from y, i.e. a sequence $\left\{y_{k}\right\}_{k=0}^{\infty}$ of distinct points with $T y_{k+1}=y_{k}, k \in \mathbb{N}$. We observe that there must be at least one $f \in \mathcal{F}$ with $f(y)>0$ since otherwise \mathcal{F} would not separate y from x^{*}. Let g be the function corresponding to f and consider the sequence $\left\{g\left(y_{k}\right)_{k=0}^{\infty}\right\}$. Since $g\left(y_{k+1}\right) \geqslant g\left(y_{k}\right), k \in \mathbb{N}$ and $g(x) \geqslant f(x)$ for every $x \in X$ the limit of this sequence exists and is positive. Let $m>0$ be the limit. Let Z denote the set of all points in the core obtainable as limits of subsequences from $\left\{y_{k}\right\}_{k=0}^{\infty}$. It follows that for any $z \in Z$ we have $g(z)=m>0$. We consider the orbit $\mathcal{O}(z)$. Let $\left\{y_{k(i)}\right\}$ where $k(1)<k(2)<\ldots \rightarrow \infty$ be the subsequence of $\left\{y_{k}\right\}$ the limit of which is z. Then $T z$ is obtained as the limit of $\left\{y_{k(i)-1}\right\}$. From this we see that $\mathcal{O}(z) \subset Z$ and the sequence $\left\{g\left(T^{n} z\right)\right\}_{n=0}^{\infty}$ is the sequence of constants $m>0$. But since $\left\{T^{n} z\right\}$ converges to x^{*} we obtain the desired contradiction since $g\left(x^{*}\right)=0$. Thus the core of T is the singleton $\left\{x^{*}\right\}$ which concludes the proof.

References

[1] A. Bakakhanian: Cohomological Methods in Group Theory. Marcel Dekker, New York, 1972.
[2] L. Janoš: The Banach contraction mapping principle and cohomology. Comment. Math. Univ. Carolin. 41 (2000), 605-610.

Author's address: Ludvík Janoš, PO Box 1563, Claremont, CA 91711, USA.

