CONGRUENCE KERNELS OF DISTRIBUTIVE PJP-SEMILATTICES

S. N. BEGUM, Sylhet, A. S. A. NOOR, Dhaka

(Received November 10, 2009)

Abstract. A meet semilattice with a partial join operation satisfying certain axioms is a JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we describe the largest PJP-congruence containing a filter as a class. Then we give several characterizations of congruence kernels and cokernels for distributive PJP-semilattices.

Keywords: semilattice, distributivity, pseudocomplementation, congruence, kernel ideal, cokernel

MSC 2010: 06A12, 06B10, 06B99, 06D15

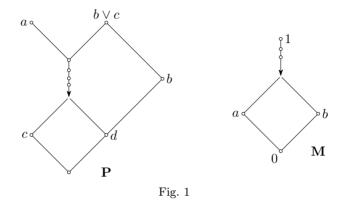
1. INTRODUCTION

Partial lattices have been studied by many authors. We refer the reader to [6], [7], [9], [10], [11] for partial lattices. Cornish and Noor [8], [12] have studied partial lattices which they preferred to call near lattices. A *near lattice* \mathbf{N} is a meet semilattice such that for any $a, b \in \mathbf{N}$, $a \lor b$ exists whenever there is a common upper bound of a, b. We also refer the reader to the recent publications [3], [4], [5] for near lattices. Throughout the paper by semilattice we mean the meet semilattice. First we introduce the notion of the JP-semilattice.

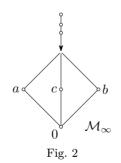
A meet semilattice $\mathbf{S} = \langle \mathbf{S}; \wedge, \vee \rangle$ with a partial binary operation \vee is said to be a *join partial semilattice* (or JP-semilattice) if for all $x, y, z \in S$,

- (i) $x \lor x$ exists and $x \lor x = x$;
- (ii) if $x \lor y$ exists, then $y \lor x$ exists and $x \lor y = y \lor x$;
- (iii) if $x \lor y, y \lor z, (x \lor y) \lor z$ exist, then $x \lor (y \lor z)$ exists and $(x \lor y) \lor z = x \lor (y \lor z)$;
- (iv) if $x \lor y$ exists, then $x = x \land (x \lor y)$;
- (v) if $y \lor z$ exists, then $(x \land y) \lor (x \land z)$ exists for all $x \in S$.

Observe that not every semilattice needs to be a JP-semilattice, for example, the semilattice **P** given in Figure 1 is not a JP-semilattice. Here $b \lor c$ exists, but $(a \land b) \lor (a \land c)$ does not. Moreover, it is easy to see that every near lattice is a JP-semilattice but the converse is not necessarily true, for example, the semilattice **M** given in Figure 1 is a JP-semilattice but not a near lattice.



A JP-semilattice **S** is said to be JP-distributive iff for all $x, y, z \in S$ such that $y \lor z$ exists one has $x \land (y \lor z) = (x \land y) \lor (x \land z)$ (remember the right-hand side exists by condition (v) above). It is evident that every distributive semilattice, considered as a JP-semilattice, is distributive (see [13]). However, the converse is not true. Consider the JP-semilattice \mathcal{M}_{∞} given by Figure 2. It is JP-distributive but not distributive as a semilattice. The authors have studied JP-distributive JP-semilattices in [1].



Let **S** be a JP-semilattice with smallest element 0 and let $a \in S$. An element $d \in S$ is called the *pseudocomplement* of $a \in S$ if $a \wedge d = 0$ and for all $x \in S$, $a \wedge x = 0$ implies $x \leq d$. Clearly the pseudocomplement of an element is unique whenever it exists. The pseudocomplement of an element $a \in S$ is denoted by a^* . A JP-semilattice is said to be a *pseudocomplemented JP-semilattice* (or simply a PJP-*semilattice*) if every element has a pseudocomplement.

Let \mathbf{S} be a pseudocomplemented JP-semilattice. The set

$$Sk(S) = \{a^* \colon a \in S\}$$

is called the *skeleton* of S. The elements of Sk(S) are called *skeletal*. It is evident that $\sup\{a^*, b^*\}$ in Sk(S) always exists and we denote it by $a^* \leq b^*$. That is, for any $a, b \in Sk(S)$ we have $a \leq b = \sup\{a, b\}$ in Sk(S). The following identities hold for PJP-semilattices as they hold for pseudocomplemented semilattices (see [9]). We often use the identities in this paper.

Lemma 1.1.

(a) $a \leq a^{**}$; (b) $a \leq b$ implies $b^* \leq a^*$; (c) $a^* = a^{***}$; (d) $0^* = 1$, the largest element of S; (e) $a \wedge b^* = a \wedge (a \wedge b)^*$; (f) $a \in \operatorname{Sk}(S) \Leftrightarrow a = a^{**}$; (g) $a, b \in \operatorname{Sk}(S) \Rightarrow a \wedge b = (a \wedge b)^{**}$; (h) $a, b \in \operatorname{Sk}(S) \Rightarrow a \lor b = (a^* \wedge b^*)^*$.

As in the case of distributive lattices, JP-distributivity in JP-semilattices does not imply the existence of pseudocomplements. For example, consider the distributive JP-semilattice \mathcal{M}_{∞} given in Figure 2. Clearly, \mathcal{M}_{∞} is not pseudocomplemented. In this paper we concentrate our attention on distributive PJP-semilattices.

Let **S** be a PJP-semilattice. A semilattice congruence θ on *S* is called a JPcongruence on *S*, if $x_1 \equiv y_1(\theta)$ and $x_2 \equiv y_2(\theta)$ implies $x_1 \lor x_2 \equiv y_1 \lor y_2(\theta)$ whenever $x_1 \lor x_2$ and $y_1 \lor y_2$ exist. A JP-congruence θ on *S* is called a PJP-congruence on *S*, if $x \equiv y(\theta) \Rightarrow x^* \equiv y^*(\theta)$. A non-empty subset *I* of a JP-semilattice **S** is called an *ideal* of *S* if the following conditions hold:

- (i) if $i \in I$, $j \in S$ and $j \leq i$, then $j \in I$, and
- (ii) if $i, j \in I$ and $i \lor j$ exists, then $i \lor j \in I$.

In Section 2 we give a useful characterization of PJP-congruences. We also give a description of the smallest PJP-congruence containing a certain ideal as a class.

Let θ be a PJP-congruence on S. Then $\ker(\theta) = \{x \in S : x \equiv 0(\theta)\}$ is called the *kernel* of θ . A subset J of S is said to be a *congruence kernel* if $J = \ker(\theta)$ for some PJP-congruence θ on S. Observe that in the PJP-semilattice \mathbf{M} given in Figure 1, the ideal $I = \{0, a, b\}$ is not a kernel of any PJP-congruence on M. If $0 \equiv a(\theta)$ for any PJP-congruence θ on M, then $1 \equiv a^* = b(\theta)$, that is, $0 \equiv 1(\theta)$. Thus I is not a PJP-congruence kernel. An ideal I of a PJP-semilattice \mathbf{S} is called a *kernel*

ideal if $I = \ker(\theta)$ for some PJP-congruence θ on S. The set of all kernel ideals will be denoted by KI(S). Congruence kernels have been studied by Cornish [6] for pseudocomplemented distributive lattices and by Blyth [2] for pseudocomplemented semilattices. In this paper we characterize congruence kernels of distributive PJP-semilattices. In Section 3 we give characterizations of kernel ideals of distributive PJP-semilattices.

Let **S** be a PJP-semilattice. Let θ be a PJP-congruence on S. Then

$$Coker(\theta) = \{ x \in S \colon x \equiv 1(\theta) \}$$

is called the *cokernel* of θ . A subset J of S is said to be a *congruence cokernel* if $J = \text{Coker}(\theta)$ for some PJP-congruence θ on S. A filter F of S is called a *-*filter* if

$$f^{**} \in F \Rightarrow f \in F.$$

In Section 4, we study cokernel filters. Here we characterize *-filters as a cokernel filters.

2. PJP-congruences

For the basic properties of pseudocomplementation we refer the reader to [9]. First we have the following useful characterization of PJP-congruences.

Theorem 2.1. Let **S** be a PJP-semilattice. Then a JP-congruence θ on S is a PJP-congruence if and only if

$$x \equiv 0(\theta) \Rightarrow x^* \equiv 1(\theta).$$

Proof. If θ is a PJP-congruence, then clearly the condition holds. Conversely, let θ be a JP-congruence such that the condition holds. Let $x \equiv y(\theta)$. Then $x^* \wedge y \equiv x^* \wedge x = 0(\theta)$ and so $(x^* \wedge y)^* \equiv 1(\theta)$. This implies

$$\begin{aligned} x^* &= x^* \wedge 1 \\ &\equiv x^* \wedge (x^* \wedge y)^*(\theta) \\ &= x^* \wedge y^* \quad \text{(by Lemma 1.1 (e))}. \end{aligned}$$

Similarly, we have $y^* \equiv x^* \wedge y^*(\theta)$. Hence $x^* \equiv y^*(\theta)$ and therefore θ is a PJP-congruence.

The following theorem gives us a description of the smallest PJP-congruence containing a certain ideal as a class. **Theorem 2.2.** Let **S** be a distributive PJP-semilattice and let *I* be an ideal of *S* such that $i, j \in I$ implies $(i^* \wedge j^*)^* \in I$. Define a binary relation $\Theta(I)$ on *S* by

$$x \equiv y(\Theta(I))$$
 if and only if $x \wedge i^* = y \wedge i^*$ for some $i \in I$.

Then $\Theta(I)$ is the smallest PJP-congruence containing I as a class.

Proof. Clearly, $\Theta(I)$ is both reflexive and symmetric. To prove that it is transitive, let $x \equiv y(\Theta(I))$ and $y \equiv z(\Theta(I))$. Then $x \wedge i^* = y \wedge i^*$ and $y \wedge j^* = z \wedge j^*$ for some $i, j \in I$. Then by the assumption $k = (i^* \wedge j^*)^* \in I$. We have

$$x \wedge k^* = x \wedge (i^* \wedge j^*)^{**} = x \wedge (i^* \wedge j^*) \quad \text{(by Lemma 1.1 (b))}$$
$$= (x \wedge i^*) \wedge j^* = (y \wedge i^*) \wedge j^* = (y \wedge j^*) \wedge i^*$$
$$= (z \wedge j^*) \wedge i^* = z \wedge (i^* \wedge j^*) = z \wedge (i^* \wedge j^*)^{**}$$
$$= z \wedge k^*.$$

Hence $x \equiv z(\Theta(I))$. Thus $\Theta(I)$ is transitive.

Let $x \equiv y(\Theta(I))$ and $s \equiv t(\Theta(I))$. Then there are $i, j \in I$ with $k = (i^* \wedge j^*)^* \in I$ such that $x \wedge i^* = y \wedge i^*$ and $s \wedge j^* = t \wedge j^*$. Hence

$$(x \wedge s) \wedge k^* = (x \wedge s) \wedge (i^* \wedge j^*)^{**}$$

= $(x \wedge s) \wedge (i^* \wedge j^*)$ (by Lemma 1.1 (b))
= $(x \wedge i^*) \wedge (s \wedge j^*) = (y \wedge i^*) \wedge (t \wedge j^*)$
= $(y \wedge t) \wedge (i^* \wedge j^*)^{**}$
= $(y \wedge t) \wedge k^*$.

Also, if $x \lor s$ and $y \lor t$ exist, then

$$\begin{aligned} (x \lor s) \land k^* &= (x \land k^*) \lor (s \land k^*) \text{ as } S \text{ is a distributive JP-semilattice} \\ &= (x \land i^* \land j^*) \lor (s \land i^* \land j^*) \quad (\text{by Lemma 1.1 (b)}) \\ &= (y \land i^* \land j^*) \lor (t \land i^* \land j^*) \\ &= (y \land k^*) \lor (t \land k^*) \\ &= (y \lor t) \land k^* \text{ as } S \text{ is a distributive JP-semilattice} \\ &= (y \lor t) \land k^*. \end{aligned}$$

Hence $\Theta(I)$ is a JP-congruence. To prove that $\Theta(I)$ is a PJP-congruence, let $x \equiv 0(\Theta(I))$. Then $x \wedge i^* = 0 \wedge i^* = 0$. This implies $i^* \leq x^*$. Hence $x^* \wedge i^* = i^* = 1 \wedge i^*$. This implies $x^* \equiv 1(\Theta(I))$. Hence by Theorem 2.1, $\Theta(I)$ is a PJP-congruence.

Finally, let θ be a PJP-congruence containing I as a class and let $x \equiv y(\Theta(I))$. Then $x \wedge i^* = y \wedge i^*$ for some $i \in I$. Since θ is a PJP-congruence containing I as a class, we have $i \equiv 0(\theta)$. This implies $i^* \equiv 1(\theta)$. Hence

$$x = x \land 1 \equiv x \land i^*(\theta) = y \land i^* \equiv y \land 1(\theta) = y.$$

Therefore $\Theta(I)$ is the smallest congruence containing I as a class.

3. Kernel ideals

Not every ideal of a JP-distributive PJP-semilattice is a kernel ideal. For a counterexample, consider the distributive PJP-semilattice **M** given in Figure 1. Let $I = \{0, a, b\}$. Then I is an ideal of M but not a kernel ideal, since $0 \equiv a(\theta)$ for some PJP-congruence θ on M implies $1 \equiv b(\theta)$.

We have the following characterization of kernel ideals.

Theorem 3.1. An ideal I of a distributive PJP-semilattice **S** is a kernel ideal of **S** if and only if

$$i, j \in I \Rightarrow (i^* \wedge j^*)^* \in I.$$

Proof. Let *I* be a kernel ideal of **S**. Then $I = \ker \theta$ for some PJP-congruence θ . If $i, j \in I$, then $i \equiv 0(\theta)$ and $j \equiv 0(\theta)$. This implies immediately that $i^* \equiv 1(\theta)$ and $j^* \equiv 1(\theta)$. Hence $i^* \wedge j^* \equiv 1(\theta)$. This implies $(i^* \wedge j^*)^* \equiv 0(\theta)$. Thus $(i^* \wedge j^*)^* \in I$.

Conversely, let I be an ideal of S and suppose the condition holds. Then by Theorem 2.2, the binary relation $\Theta(I)$ on S defined by

$$x \equiv y(\Theta(I))$$
 if and only if $x \wedge i^* = y \wedge i^*$ for some $i \in I$

is a PJP-congruence containing the ideal I as a class. So it is enough to show that I is a kernel ideal of $\Theta(I)$. For all $i \in I$, by taking i = j in the condition we have $i^{**} \in I$. Hence

$$\begin{aligned} x &\equiv 0(\Theta(I)) \Leftrightarrow x \wedge i^* = 0 \text{ for some } i \in I \\ \Leftrightarrow x \leqslant i^{**} \text{ for some } i \in I \\ \Leftrightarrow x \in I. \end{aligned}$$

Thus I is a kernel ideal.

230

Theorem 3.2. Let **S** be a distributive PJP-semilattice. An ideal I of S is a kernel ideal if and only if

- (i) $i \in I$ implies $i^{**} \in I$;
- (ii) for every $i, j \in I$ there is $k \in I$ such that $i^* \wedge j^* = k^*$.

Proof. Let *I* be a kernel ideal. Then by taking i = j in Theorem 3.1 we have $i \in I \Rightarrow i^{**} \in I$. Thus (i) holds. Let $i, j \in I$. Put $k = (i^* \land j^*)^*$, then by Theorem 3.1, $k \in I$. Also $k^* = i^* \land j^*$. Thus (ii) holds.

Conversely, let I be an ideal and $i, j \in I$. Then by (ii), there is $k \in I$ such that $k^* = i^* \wedge j^*$. Thus by (i), $k^{**} = (i^* \wedge j^*)^* \in I$. Hence by Theorem 3.1, I is a kernel ideal.

Theorem 3.3. Let **S** be a distributive PJP-semilattice. A principal ideal I = (x] of S is a kernel ideal if and only if $x \in Sk(S)$.

Proof. Suppose I = (x] is a kernel ideal, then $x^{**} \in I$. This implies $x^{**} \leq x$. But $x \leq x^{**}$. Hence $x = x^{**} \in Sk(S)$.

Conversely, let I = (x] be a principal ideal and $x \in Sk(S)$. Then by Lemma 1.1 (f), we have $x = x^{**}$. Let $i, j \in I$. Then $i, j \leq x$. This implies $x^* \leq i^* \wedge j^*$. Thus $(i^* \wedge j^*)^* \leq x^{**} = x$. This implies $(i^* \wedge j^*)^* \in I$. Hence by Theorem 3.1, I is a kernel ideal.

It is well known that the binary relation $\psi(I)$ on a semilattice **S** defined by

 $x \equiv y(\psi(I))$ if and only if $x \land a \in I \Leftrightarrow y \land a \in I$ for any $a \in S$

is the largest semilattice congruence containing the ideal I as a class.

Now we have the following result for distributive JP-semilattices.

Theorem 3.4. Let **S** be a distributive JP-semilattice and let *I* be an ideal of *S*. Then $\psi(I)$ is the largest JP-congruence containing *I* as a class.

Proof. It is enough to show that $\psi(I)$ has the substitution property for the partial operation \vee . Let $x \equiv y(\psi(I))$, $s \equiv t(\psi(I))$ and let $x \vee s$, $y \vee t$ exist. Since **S** is a distributive JP-semilattice, for any $a \in S$ we have that $(x \wedge a) \vee (s \wedge a)$, $(y \wedge a) \vee (t \wedge a)$ exist and $(x \vee s) \wedge a = (x \wedge a) \vee (s \wedge a)$, $(y \vee t) \wedge a = (y \wedge a) \vee (t \wedge a)$. Thus

$$(x \lor s) \land a \in I \Leftrightarrow (x \land a) \lor (s \land a) \in I$$
$$\Leftrightarrow x \land a \in I \text{ and } s \land a \in I$$
$$\Leftrightarrow y \land a \in I \text{ and } t \land a \in I$$
$$\Leftrightarrow (y \land a) \lor (t \land a) \in I \Leftrightarrow (y \lor t) \land a \in I.$$

Thus $x \vee s \equiv y \vee t(\psi(I))$. Hence $\psi(I)$ is the largest JP-congruence.

The following result is a description of the largest PJP-congruence containing a kernel ideal as a class.

Theorem 3.5. Let **S** be a distributive PJP-semilattice. If I is a kernel ideal of S, then $\psi(I)$ is the largest PJP-congruence containing I as a class.

Proof. By Theorem 3.4, $\psi(I)$ is a largest JP-congruence. Let $x \equiv 0(\psi(I))$. Then $x \in I$. Now for any $a \in S$,

$$\begin{aligned} x^* \wedge a \in I \Rightarrow (x^* \wedge (x^* \wedge a)^*)^* \in I, \text{ by Theorem 3.1} \\ \Rightarrow (x^* \wedge a^*)^* \in I, \text{ by Lemma 1.1 (e)} \\ \Rightarrow a \in I, \text{ since } a \leqslant a^{**} \leqslant (x^* \wedge a^*)^* \\ \Rightarrow 1 \wedge a \in I. \end{aligned}$$

Also

$$1 \wedge a = a \in I \Rightarrow x^* \wedge a \in I.$$

Thus $x^* \equiv 1(\psi(I))$. Hence by Theorem 2.1, $\psi(I)$ is a PJP-congruence.

*-ideal. An ideal *I* of a JP-semilattice is called a *-*ideal* if it satisfies condition (i) of Theorem 3.2, that is,

$$i \in I$$
 implies $i^{**} \in I$.

Clearly, every kernel ideal of a distributive PJP-semilattice is a *-ideal. Consider the distributive PJP-semilattice **M** given in Figure 1. Here the ideal $I = \{0, a, b\}$ is a *-ideal but not a kernel ideal.

Theorem 3.6. Let **S** be a distributive PJP-semilattice. Every principal *-ideal I of **S** can be written as $(a^{**}]$ for some $a \in I$. Moreover, for any $a \in S$ the principal ideal $I = (a^{**}]$ is a kernel ideal.

Proof. Let *I* be a principal *-ideal of **S**. Then I = (a] for some $a \in S$. Since *I* is a *-ideal, for $a \in I$ we have $a^{**} \in I$. Thus $a^{**} \leq a$. But $a \leq a^{**}$. Hence $I = (a^{**}]$ for some $a \in S$.

Moreover, for any $a \in S$, since $a^{**} \in Sk(S)$, so by Theorem 3.3, $I = (a^{**}]$ is a kernel ideal.

Theorem 3.7. A *-ideal I of a distributive PJP-semilattice is a kernel ideal if and only if $i^{**} \leq j^{**} \in I$ for all $i, j \in I$.

Proof. For any $i, j \in I$ we have

$$(i^* \wedge j^*)^* = (i^{***} \wedge j^{***})^*$$
 by Lemma 1.1 (c)
= $i^{**} \leq j^{**}$ by Lemma 1.1 (h).

By Theorem 3.1, I is a kernel ideal if and only if $i, j \in I$ implies $i^{**} \leq j^{**} \in I$. \Box

Glivenko congruence. Let **S** be a distributive PJP-semilattice. The binary relation G on S defined by

$$x \equiv y(G) \Leftrightarrow x^{**} = y^{**}$$

is a semilattice congruence called the *Glivenko congruence*. It is evident that G is compatible with *. We shall show that G is a PJP-congruence.

Let I be an ideal. Define

$$I^0 = \{ x \in S \colon x \land i = 0 \text{ for all } i \in I \}.$$

Theorem 3.8. I^0 is a kernel ideal.

Proof. Let $x, y \in I^0$. Then $x \wedge i = y \wedge i = 0$ for all $i \in I$. Hence $i \leq x^*, y^*$ and consequently, $(x^* \wedge y^*)^* \leq i^*$. This implies $(x^* \wedge y^*)^* \wedge i \leq i^* \wedge i = 0$. Hence $(x^* \wedge y^*)^* \in I^0$. Thus by Theorem 3.1, I^0 is a kernel ideal.

Lemma 3.9. If $x \equiv y(\psi(I))$, then $[(x \land y^*)^* \land (x^* \land y)^*]^* \in I$.

Proof. Let $x \equiv y(\psi(I))$. Then $x \wedge x^* = 0 \equiv y \wedge x^*(\psi(I))$. Therefore $y \wedge x^* \in I$. Similarly, $x \wedge y^* \in I$. Hence $[(x \wedge y^*)^* \wedge (x^* \wedge y)^*]^* \in I$ as I is a kernel ideal. \Box

Theorem 3.10. Let I be a kernel ideal of a distributive PJP-semilattice **S**. Then $\psi(I) \wedge \psi(I^0) = G$.

Proof. Let $x \equiv y(\psi(I) \land \psi(I^0))$. Then by Lemma 3.9, we have $[(x \land y^*)^* \land (x^* \land y)^*]^* \in I$ and $[(x \land y^*)^* \land (x^* \land y)^*]^* \in I^0$ whence $[(x \land y^*)^* \land (x^* \land y)^*]^* = 0$. This implies

$$x \wedge y^* \leq (x \wedge y^*)^{**} \leq [(x \wedge y^*)^* \wedge (x^* \wedge y)^*]^* = 0.$$

Thus $x \wedge y^* = 0$. Hence $y^* \leq x^*$. Similarly, $x^* \leq y^*$. This implies $x^* = y^*$ and consequently, $x^{**} = y^{**}$. Hence $x \equiv y(G)$.

Conversely, let $x \equiv y(G)$. Since $a \equiv a^{**}(G)$ for any $a \in S$, we have $x \wedge a \equiv x \wedge a^{**}(G)$, $y \wedge a \equiv y \wedge a^{**}(G)$ and $x \wedge a \equiv y \wedge a^{**}(G)$. Hence $(x \wedge a)^{**} = (x \wedge a^{**})^{**}$, $(y \wedge a)^{**} = (y \wedge a^{**})^{**}$ and $(x \wedge a)^{**} = (y \wedge a^{**})^{**}$. Now for any $a \in S$,

$$\begin{split} x \wedge a &\in I \Leftrightarrow (x \wedge a)^{**} \in I \text{ as } I \text{ is a kernel ideal of } S \\ &\Leftrightarrow (y \wedge a^{**})^{**} \in I \\ &\Leftrightarrow (y \wedge a)^{**} \in I \\ &\Leftrightarrow y \wedge a \in I. \end{split}$$

Also, for all $i \in I$,

$$x \wedge a \in I^0 \Leftrightarrow (x \wedge a) \wedge i = 0 \Leftrightarrow x \wedge (a \wedge i) = 0 \Leftrightarrow x \leqslant (a \wedge i)^* \Leftrightarrow x^{**} \leqslant (a \wedge i)^* \Leftrightarrow y^{**} \leqslant (a \wedge i)^* \Leftrightarrow y \leqslant (a \wedge i)^* \Leftrightarrow y \wedge (a \wedge i) = 0 \Leftrightarrow y \wedge a \in I^0.$$

Hence $x \equiv y(\psi(I) \wedge \psi(I^0))$. Therefore $G = \psi(I) \wedge \psi(I^0)$.

Corollary 3.11. *G* is a PJP-congruence.

Proof. This is immediate from the fact that $\psi(I) \wedge \psi(I^0)$ is a PJP-congruence.

4. Congruence cokernels

Let **S** be a JP-semilattice. A non-empty subset F of S is called a *filter* of S if

- (i) $a \in F$ and $b \in S$ with $a \leq b$ implies $b \in F$, and
- (ii) $a, b \in F$ implies $a \wedge b \in F$.

Now we have the following lemma.

Lemma 4.1. Let S be a JP-semilattice. Then every cokernel of S is a filter.

Proof. Let $F = \text{Coker}(\theta)$ for some PJP-congruence θ . If $x, y \in F$, then $x \equiv 1(\theta)$ and $y \equiv 1(\theta)$. Hence $x \wedge y \equiv 1(\theta)$. Thus $x \wedge y \in F$. Now let $x \in F$ and $x \leq y$. Then $x = x \wedge y \equiv 1 \wedge y(\theta) = y$. Thus $y \equiv 1(\theta)$. Hence $y \in F$. Therefore F is a filter.

Let **S** be a JP-semilattice and let F be a filter of **S**. Define a binary relation $\Theta(F)$ on S by

$$x \equiv y(\Theta(F))$$
 if and only if $x \wedge f = y \wedge f$ for some $f \in F$.

Theorem 4.2. Let F be a filter of a distributive JP-semilattice **S**. Then the relation $\Theta(F)$ on S is a JP-congruence containing F as a class. Moreover, if **S** has a largest element 1, then $\Theta(F)$ is the smallest JP-congruence containing F as a class.

Proof. Clearly $\Theta(F)$ is an equivalence relation. Let $x \equiv y(\Theta(F))$ and $s \equiv t(\Theta(F))$. Then $x \wedge f_1 = y \wedge f_1$ and $s \wedge f_2 = t \wedge f_2$ for some $f_1, f_2 \in F$. This implies

$$(x \land s) \land (f_1 \land f_2) = (x \land f_1) \land (s \land f_2) = (y \land f_1) \land (t \land f_2) = (y \land t) \land (f_1 \land f_2)$$

Since $f_1 \wedge f_2 \in F$, we have $x \wedge s \equiv y \wedge t(\Theta(F))$.

Also, if $x \lor s$ and $y \lor t$ exist, then

$$(x \lor s) \land (f_1 \land f_2) = (x \land f_1 \land f_2) \lor (s \land f_1 \land f_2)$$
$$= (y \land f_1 \land f_2) \lor (t \land f_1 \land f_2) = (y \lor t) \land (f_1 \land f_2).$$

Thus $\Theta(F)$ is a JP-congruence. Clearly, $\Theta(F)$ contains F as a class.

Moreover, assume that S has a largest element 1. Let θ be any congruence on S containing F as a class. Assume $x \equiv y(\Theta(F))$. Then $x \wedge f = y \wedge f$ for some $f \in F$. This implies $x = x \wedge 1 \equiv x \wedge f(\theta)$. Similarly, $y \equiv y \wedge f(\theta)$. Hence $x \equiv y(\theta)$. Thus $\Theta(F)$ is the smallest JP-congruence containing F as a class.

The following result is the description of the smallest PJP-congruence containing a filter as a class.

Theorem 4.3. Let **S** be a PJP-semilattice and let F be a filter of S. Then $\Theta(F)$ is the smallest PJP-congruence containing F as a class.

Proof. By Theorem 4.2, $\Theta(F)$ is a JP-congruence containing F as a class. Let $x \equiv 0(\Theta(F))$. Then $x \wedge f = 0$ for some $f \in F$. This implies $f \leq x^*$. Thus $x^* \in F$. Hence $x^* \equiv 1(\Theta(F))$. Hence by Theorem 2.1, we have that $\Theta(F)$ is a PJP-congruence. Corollary 4.4. Every filter of a PJP-semilattice is a cokernel.

Proof. It is clear from the fact that for any filter F of **S** we have

$$x \in F \Leftrightarrow x \equiv 1(\Theta(F)).$$

*-filters. First we prove the following useful result.

Lemma 4.5. Let **S** be a distributive PJP-semilattice. If $a \lor b$ exists, then

$$(a \lor b)^* = a^* \land b^*.$$

Proof. We have $(a \lor b) \land (a^* \land b^*) = (a \land a^* \land b^*) \lor (b \land a^* \land b^*) = 0 \lor 0 = 0$. Let $(a \lor b) \land x = 0$. Then $(a \land x) \lor (b \land x) = 0$. Hence $a \land x = 0$ and $b \land x = 0$. This implies $x \leqslant a^*, b^*$. Hence $x \leqslant a^* \land b^*$. Therefore $(a \lor b)^* = a^* \land b^*$.

For every filter F of S define

$$F_* = \{ x \in S : x^* \in F \}.$$

Lemma 4.6. Let **S** be a distributive PJP-semilattice and F a filter of **S**. Then F_* is a kernel ideal of **S**.

Proof. Let $x, y \in F_*$. Then $x^*, y^* \in F$. If $x \vee y$ exists, then by Lemma 4.5 we have $(x \vee y)^* = x^* \wedge y^* \in F$ as F is a filter. Hence $x \vee y \in F_*$. Let $x \in F_*$ and $y \leq x$. Then $y^* \geq x^* \in F$. This implies $y^* \in F$. Thus $y \in F_*$. Hence F_* is an ideal.

To prove that F_* is a kernel ideal, let $x, y \in F_*$. Then $x^*, y^* \in F$ so that $(x^* \wedge y^*)^{**} = x^* \wedge y^* \in F$ and consequently $(x^* \wedge y^*)^* \in F_*$. Hence by Theorem 3.1, F_* is a kernel ideal.

For every $I \in KI(S)$ define

$$I_* = \{ x \in S \colon x^* \in I \}.$$

Lemma 4.7. Let **S** be a distributive PJP-semilattice and I a kernel ideal of **S**. Then I_* is a *-filter of **S**.

Proof. Let $x, y \in I_*$. Then $x^*, y^* \in I$. So by Theorem 3.1, we have $(x \wedge y)^* = (x \wedge y)^{***} = (x^{**} \wedge y^{**})^* \in I$. Hence $x \wedge y \in I_*$. Now let $x \in I_*$ and $y \ge x$. Then $y^* \le x^* \in I$ so that $y^* \in I$ and consequently, $y \in I_*$. Hence I_* is a filter. Let $x^{**} \in I_*$. Then $x^* = x^{***} \in I$ and hence $x \in I_*$. Therefore I_* is a *-filter. \Box

The following theorem is a characterization of *-filters.

Theorem 4.8. A filter F of a JP-distributive PJP-semilattice is a *-filter if and only if $(F_*)_* = F$.

Proof. Let $(F_*)_* = F$ and let $x^{**} \in F$. Since F is a filter, F_* is a kernel ideal. Hence $x^* \in F_*$ and so $x \in (F_*)_* = F$. Thus F is a *-filter.

Conversely, let F be a *-filter. Then

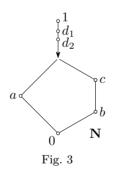
$$\begin{aligned} x \in (F_*)_* \Leftrightarrow x^* \in F_* \\ \Leftrightarrow x^{**} \in F \\ \Leftrightarrow x \in F \quad (\Rightarrow \text{ as } F \text{ is a *-filter and } \Leftarrow \text{ as } F \text{ is a filter}). \end{aligned}$$

D-filter. A filter F of a PJP-semilattice **S** is called a D-*filter* if it contains the dense filter $D = \{x \in S : x^* = 0\}.$

Theorem 4.9. Every *-filter is a D-filter but the converse is not true.

Proof. Let F be a *-filter and let $d \in D$. Then $d^{**} = 1 \in F$ which implies that $d \in F$. Hence F contains D. Thus F is a D-filter.

To prove the converse is not true, consider the distributive PJP-semilattice N given in Figure 3. The filter [c) is a D-filter but not a *-filter.



Let **S** be a PJP-semilattice. A PJP-congruence θ on S is called a *boolean congruence* if the factor PJP-semilattice **S**/ θ is a Boolean lattice.

Theorem 4.10. A PJP-congruence θ is a boolean congruence if and only if $x \equiv x^{**}(\theta)$ for all $x \in X$.

Proof. This is immediate from the fact that $([x](\theta))^* = [x^*](\theta)$.

Theorem 4.11. Let **S** be a distributive PJP-semilattice. Then the following conditions are equivalent:

- (i) every D-filter is a *-filter;
- (ii) $\Theta(D)$ is a boolean congruence.

Proof. (i) \Rightarrow (ii). For each $x \in S$ we have that $F = [x^{**}) \lor D$ is a D-filter and hence F is a *-filter. Since $x^{**} \in F$, we have $x \in F$. Thus $x = x^{**} \land d$ for some $d \in D$. This implies $x \land d = x^{**} \land d$. Hence $x \equiv x^{**}\Theta(D)$. Therefore, by Theorem 4.10, $\Theta(D)$ is a boolean congruence.

(ii) \Rightarrow (i). Let *F* be a D-filter. By (ii), $\Theta(D)$ is a boolean congruence. Hence by Theorem 4.10 $x \equiv x^{**}(\Theta(D))$. Thus $x \wedge d = x^{**} \wedge d$ for some $d \in D$. If $x^{**} \in F$, then $x^{**} \wedge d \in F$ as $D \subseteq F$. Hence $x \wedge d \in F$ and consequently, $x \in F$. Thus *F* is a *-filter.

Acknowledgement. We would like to thank Jane Pitkethly at La Trove University, Australia for her valuable suggestions and some English corrections of this paper.

References

- [1] S. N. Begum, A. S. A. Noor: Some characterizations of modular and distributive JP-semilattices. Submitted.
- [2] T. S. Blyth: Ideals and filters of pseudo-complemented semilattices. Proc. Edinb. Math. Soc., II. Ser. 23 (1980), 301–316.
 zbl
- [3] I. Chajda, M. Kolařík: Ideals, congruences and annihilators on nearlattices. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 45 (2006), 43–52.
 zbl
- [4] I. Chajda, M. Kolařík: A decomposition of homomorphic images of near lattices. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 45 (2006), 43–52.

 $^{\mathrm{zbl}}$

 \mathbf{zbl}

- [5] I. Chajda, M. Kolařík: Nearlattices. Discrete Math. 308 (2008), 4906–4913.
- [6] W. H. Cornish: Congruence on distributive pseudo-complemented lattices. Bull. Austral. Math. Soc. 82 (1973), 161–179.
- [7] W. H. Cornish, R. C. Hickman: Weakly distributive semilattices. Acta Math. Acad. Sci. Hungar. 32 (1978), 5–16.
- [8] W. H. Cornish, A. S. A. Noor: Standard elements in a nearlattice. Bull. Austral. Math. Soc. 26 (1982), 185–213.
- [9] G. Grätzer: Lattice Theory: First Concepts and Distributive Lattices. Freeman, 1971.
- [10] G. Grätzer: General Lattice Theory. Birkhäuser, 1978.
- [11] R. C. Hickman: Distributivity in Semilattices. Ph.D. Thesis, The Flinders University of South Australia, 1978.
- [12] A. S. A. Noor, W. H. Cornish: Multipliers on a nearlattice. Comment Math. Univ. Carolin. 27 (1986), 815–827. zbl

 [13] P. V. Ramana Murty, V. V. Rama Rao: Characterization of certain classes of pseudo complemented semi-lattices. Algebra Universalis 4 (1974), 289–300.
zbl

Authors' addresses: S. N. Begum, Department of Mathematics, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh, e-mail: snaher@yahoo.com; A. S. A. Noor, Department of Mathematics and Physics, East West University, 43 Mohakhali, Dhaka 1212, Bangladesh, e-mail: noor@ewubd.edu.