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Abstract. The aim of this work is to generalize lacunary statistical convergence to weak
lacunary statistical convergence and I-convergence to weak I-convergence. We start by
defining weak lacunary statistically convergent and weak lacunary Cauchy sequence. We
find a connection between weak lacunary statistical convergence and weak statistical con-
vergence.
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1. Introduction

A number sequence (xk) is statistically convergent to L provided that for every

ε > 0,

lim
n

1

n
|{k 6 n : |xk − L| > ε}| = 0

where the vertical bars indicate the number of elements in the enclosed set [2], [11].

By a lacunary sequence we mean an increasing integer sequence θ = (kr) such that

k0 = 0 and hr := kr − kr−1 → ∞ as r → ∞. Throughout this paper the intervals

determined by θ will be denoted by Ir := (kr−1, kr].

Let θ be a lacunary sequence; the number sequence (xk) is lacunary statistically

convergent to L provided that for every ε > 0,

lim
r

1

hr

|{k ∈ Ir : |xk − L| > ε}| = 0

(see [3]). The space Nθ of Nθ-convergent sequences is defined by

Nθ :=

{

(xk) : for some L, lim
r

1

hr

∑

k∈Ir

|xk − L| = 0

}

.
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Let B be a Banach space, let (xk) be a B-valued sequence, and x ∈ B.

1. The sequence (xk) is weakly C1-convergent to x provided that for any f in the

continuous dual B∗ of B,

lim
n

1

n

n
∑

k=1

f(xk − x) = 0.

2. The sequence (xk) is weakly convergent to x provided that for any f in the

continuous dual B∗ of B,

lim
k

f(xk − x) = 0.

In this case we write w-limxk = x.

3. The sequence (xk) is norm statistically convergent to x provided that

δ({k : ‖xk − x‖ > ε}) = 0

where δ(A) = limn n−1|{k 6 n : k ∈ A}|.

4. The sequence (xk) is weakly statistically convergent to x provided that for any

f in the continuous dual B∗ of B, the sequence (f(xk −x)) is statistically convergent

to 0 (see [1]).

2. Weakly lacunary statistically convergent sequence

Definition 1. Let B be a Banach space, let (xk) be a B-valued sequence, θ a la-

cunary sequence and x ∈ B.

1. The sequence (xk) is norm lacunary statistically convergent to x provided that

δr({k : ‖xk − x‖ > ε}) = 0

where δr(A) = limr h−1
r |{k ∈ Ir : k ∈ A}|.

2. The sequence (xk) is weakly lacunary statistically convergent to x provided that

for any f in the continuous dual B∗ of B, the sequence (f(xk − x)) is lacunary

statistically convergent to 0.

3. The sequence (xk) is weakly Nθ-convergent to x provided that, for any f in the

continuous dual B∗ of B, the sequence (f(xk − x)) is Nθ-convergent to 0.

LetWS andWSθ denote the sets of all weakly statistically convergent and weakly

lacunary statistically convergent sequences, respectively.
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3. Weak lacunary statistically Cauchy sequence

In [5], Fridy and Orhan defined the lacunary statistical Cauchy sequence for a

complex number sequence (xk) as follows:

Let θ be a lacunary sequence. The sequence (xk) is said to be lacunary statisti-

cally Cauchy if there is a subsequence (xk′(r)) of x such that k′(r) ∈ Ir for each r,

limxk′(r) = x and for every ε > 0

lim
r

1

hr

|{k ∈ Ir : |xk − xk′(r)| > ε}| = 0.

Now we will give the definition of the weakly lacunary statistically Cauchy sequence

for a B-valued sequence (xk).

Definition 2. Let B be a Banach space, (xk) a B-valued sequence, θ a lacunary

sequence and x ∈ B. The sequence (xk) is weakly lacunary statistically Cauchy if

there is a subsequence (xk′(r)) of (xk) such that k′(r) ∈ Ir for each r, w-limxk′(r) = x,

and for any f in the continuous dual B∗ of B and for every ε > 0

lim
r

1

hr

|{k ∈ Ir : |f(xk − xk′(r))| > ε}| = 0.

Theorem 3. A sequence (xk) is weakly lacunary statistically convergent if and

only if (xk) is a weakly lacunary statistically Cauchy sequence.

P r o o f. Let (xk) be a weakly lacunary statistically Cauchy sequence. Then for

every ε > 0 we have

|{k ∈ Ir : |f(xk − x)| > ε}|

6

∣

∣

∣

{

k ∈ Ir : |f(xk − xk′(r))| >
ε

2

}∣

∣

∣
+

∣

∣

∣

{

k ∈ Ir : |f(xk′(r) − x)| >
ε

2

}∣

∣

∣
,

hence we get that the sequence (xk) is weakly lacunary statistically convergent.

Let (xk) be weakly lacunary statistically convergent to x and write Mj = {k ∈

N : |f(xk − x)| < 1/j} for each j ∈ N, Mj ⊇ Mj+1 and |Mj ∩ Ir|/hr → 1 as r → ∞.

Choose m1 such that r > m1 implies |M1 ∩ Ir|/hr > 0, i.e., M1 ∩ Ir 6= ∅. Next

choose m1 < m2 such that r > m2 implies M2 ∩ Ir 6= ∅. Then for each r satisfying

m1 6 r 6 m2, choose k′(r) ∈ Ir such that k′(r) ∈ Ir ∩ M1. In this way, choose

ml+1 > ml such that r > ml+1 implies Ml+1 ∩ Ir 6= ∅. Then for all r satisfying

ml 6 r < ml+1, choose k′(r) ∈ Ir ∩ Ml, i.e.,

|f(xk′(r) − x)| <
1

l
.
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Hence we get k′(r) ∈ Ir for every r, and w-limxk′(r) = x. Also, we have, for every

ε > 0,

1

hr

|{k ∈ Ir : |f(xk − xk′(r))| > ε}|

6
1

hr

∣

∣

∣

{

k ∈ Ir : |f(xk(r) − x)| >
ε

2

}∣

∣

∣
+

1

hr

∣

∣

∣

{

k ∈ Ir : |f(xk′(r) − x)| >
ε

2

}∣

∣

∣
,

whence (xk) is a weakly lacunary statistically Cauchy sequence. �

4. Inclusion theorems

In this section we first give a theorem that provides the relation between weak Nθ-

and weak lacunary statistical convergences. We also study the inclusions between

weak statistical convergence and weak lacunary statistical convergence.

Theorem 4. Let θ be a lacunary sequence; then (xk) is weakly Nθ-convergent

to x if and only if (xk) is weakly lacunary statistically convergent to x.

P r o o f. If ε > 0 and (xk) is weakly Nθ-convergent to x, we can write

lim
r

1

hr

∑

k∈Ir

|f(xk − x)| > lim
r

1

hr

∑

k∈Ir

|f(xk−x)|>ε

|f(xk − x)|

> ε|{k ∈ Ir : |f(xk − x)| > ε}|,

so (xk) is weakly lacunary statistically convergent to x.

Conversely, suppose that (xk) is weakly lacunary statistically convergent to x.

Since f ∈ B∗, f is bounded, say |f(xk − x)| 6 K for all k. Given ε > 0, we get

1

hr

∑

k∈Ir

|f(xk − x)| =
1

hr

∑

k∈Ir

|f(xk−x)|>ε

|f(xk − x)| +
1

hr

∑

k∈Ir

|f(xk−x)|<ε

|f(xk − x)|

6
K

hr

|{k ∈ Ir : |f(xk − x)| > ε}|+ ε,

so (xk) is weakly Nθ-convergent to x. �
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Theorem 5. For any lacunary sequence θ,WS-limxk = x impliesWSθ-limxk = x

if and only if lim infr kr/kr−1 > 1.

P r o o f. kr/kr−1 will be denoted by qr. If lim inf
r

qr > 1 there exist η > 0 such

that 1 + η 6 qr for all sufficiently large r, which implies that

hr

kr

>
1

1 + η
.

If xk → x(WS), then for every ε > 0 and for sufficiently large r we have

1

kr

|{k 6 kr : |f(xk − x)| > ε}| >
1

kr

|{k ∈ Ir : |f(xk − x)| > ε}|

>
η

1 + η

1

hr

|{k ∈ Ir : |f(xk − x)| > ε}|;

this proves sufficiency. Conversely, if we suppose that lim infr qr = 1, then following

the idea in [4], we can find a sequence (xk) such that (xk) /∈ WSθ but (xk) ∈ WS. �

Theorem 6. For any lacunary sequence θ,WSθ-limxk = x impliesWS-lim xk = x

if and only if lim supr kr/kr−1 < ∞.

P r o o f. If lim supr qr < ∞, then there is a K > 0 such that qr < K for all r.

Suppose that xk → x(WSθ), and let Mr = |{k ∈ Ir : |f(xk − x)| > ε}|. Since WSθ-

limxk = x, given ε > 0, there is an r0 ∈ N such that Mr/hr < ε for all r > r0. Now

let M = max{Mr : 1 6 r 6 r0} and let n be any integer satisfying kr−1 < n 6 kr.

Then we can write

1

n
|{k 6 n : |f(xk − x)| > ε}| 6

1

kr−1
|{k 6 kr : |f(xk − x)| > ε}|

=
1

kr−1
{M1 + M2 + . . . + Mr0

+ Mr0+1 + . . . + Mr}

6
M

kr−1
r0 +

1

kr−1

{

hr0+1
Mr0+1

hr0+1
+ . . . + hr

Mr

hr

}

6
r0M

kr−1
+

1

kr−1

(

sup
r>r0

Mr

hr

)

{hr0+1 + . . . + hr}

6
r0M

kr−1
+ ε

kr − kr0

kr−1

6
r0M

kr−1
+ εqr

6
r0M

kr−1
+ εK,

and the sufficiency follows immediately.

Conversely, if we suppose that lim supr qr = ∞, then following the idea in [4], we

can find a sequence (xk) such that (xk) /∈ WS but (xk) ∈ WSθ. �
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Combining Theorems 5 and 6 we get

Theorem 7. Let θ be a lacunary sequence; then WS = WSθ if and only if

1 < lim infr kr/kr−1 6 lim supr kr/kr−1 < ∞.

Theorem 8. If x ∈ WS ∩ WSθ, then WSθ-limx = WS-limx.

P r o o f. Suppose WS-lim x = x and WSθ-limx = y and x 6= y. For ε < 1
2 |x− y|

we get

lim
n

1

n
|{k 6 n : |f(xk − y)| > ε}| = 1.

Consider the kmth term of the weak statistical limit expression n−1|{k 6 n :

|f(xk − y)| > ε}| :

1

km

∣

∣

∣

∣

{

k ∈
m
⋃

r=1

Ir : |f(xk − y)| > ε

}∣

∣

∣

∣

=
1

km

m
∑

r=1

|{k ∈ Ir : |f(xk − y)| > ε}|(1)

=
1

∑m

r=1 hr

m
∑

r=1

hrtr,

where tr = h−1
r |{k ∈ Ir : |f(xk − y)| > ε}| → 0 because WSθ-limx = y. Since θ is

a lacunary sequence, (1) is a regular weighted mean transform of tr, and therefore

it, too, tends to zero as m → ∞. Also, since this is a subsequence of {n−1|{k 6

n : |f(xk − y)| > ε}|}, we infer that

lim
n

1

n
|{k 6 n : |f(xk − y)| > ε}| 6= 1,

and this contradiction shows that we can’t have x 6= y. �

5. Weak strong almost convergence and

weak lacunary statistical convergence

The idea of almost convergence was introduced by Lorentz [9]. Later Maddox [10]

and (independently) Freedman at al. [6] introduced the notion of the strong almost

convergence. Now we will introduce the notions of weakly almost convergence and

weakly strong almost convergence for sequences in a Banach space.

Definition 9. Let B be a Banach space, (xk) be a B-valued sequence and let

f be in the continuous dual B∗ of B. Sequence (xk) is said to be weakly almost

convergent to x if

lim
n

1

n

m+n
∑

i=m+1

f(xi − x) = 0

uniformly in m.
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Definition 10. Let B be a Banach space, (xk) be a B-valued sequence and let

f be in the continuous dual B∗ of B. Sequence (xk) is said to be weakly strongly

almost convergent to x if

lim
n

1

n

m+n
∑

i=m+1

|f(xi − x)| = 0

uniformly in m.

Let WNθ, WSθ, WAC and [WAC] denote the sets of all weakly Nθ-convergent, all

weakly statistically convergent, all weakly almost convergent and all weakly strongly

almost convergent sequences, respectively.

Lemma 11. [WAC] =
⋂

θ∈L

WNθ.

Proof is similar to the proof of Theorem 3.1 in [6].

Theorem 12. If L denotes the set of all lacunary sequences, then

[WAC] =
⋂

θ∈L

WSθ.

P r o o f. By Lemma 12 and Theorem 4, we have

[WAC] =
⋂

θ∈L

WNθ =
⋂

θ∈L

WSθ.

�

6. Weak I-convergence

The concept of the I-convergence is a generalization of statistical convergence and

is based on the notion of the ideal I of subsets of the set N of positive integers. A

non-void class I ⊆ 2N is called an ideal if I is additive (i.e., A, B ∈ I ⇒ A ∪ B ∈ I)

and hereditary (i.e., A ∈ I and B ⊆ A ⇒ B ∈ I).

An ideal I is said to be non-trivial if I 6= 2N. A non-trivial ideal I is said to be

admissible if I contains every finite subset of N. For any ideal I there is a filter F(I)

corresponding to I, given by

F(I) = {K ⊆ N : N \ K ∈ I}.
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Definition 13. Let B be a Banach space, let (xk) be a B-valued sequence, and

x ∈ B. The sequence (xk) is norm I-convergent to x provided that

{k ∈ N : ‖xk − x‖ > ε} ∈ I.

Definition 14. Let B be a Banach space, let f be in the continuous dual B∗

of B, let (xk) be a B-valued sequence, and x ∈ B. The sequence (xk) is weakly

I-convergent to x provided that

{k ∈ N : |f(xk − x)| > ε} ∈ I.

If I = Ifin the ideal of all finite subsets of N, we have the usual weak convergence.

Denote by Iδ the class of all K ⊂ N with

δ(K) = lim
n→∞

1

n
|{k 6 n : k ∈ K}| = 0,

then Iδ is a non-trivial admissible ideal, and the Iδ-convergence coincides with the

weak statistical convergence.

Denote by Iθ the class of all K ⊂ N with

δr(K) = lim
r→∞

1

hr

|{k ∈ Ir : k ∈ K}| = 0,

then Iθ is a non-trivial admissible ideal, Iθ-convergence coincides with the weak

lacunary statistical convergence.

Definition 15. Let B be a Banach space, (xk) a B-valued sequence and let f

be in the continuous dual B∗ of B, and x ∈ B. The sequence (xk) is weakly I∗-

convergent to x if and only if there exists a set M = {m1 < m2 < . . . < mk < . . .} ⊆

N, M ∈ F(I) such that limk f(xmk
− x) = 0.

Let WI and WI∗ denote the sets of all weakly I-convergent and all weakly I∗-

convergent sequences, respectively.

Theorem 16. Let I be an admissible ideal. If WI∗-limxk = x, then WI-

limxk = x.

P r o o f. By assumption there is a set L ∈ I such that for M = N \ L = {m1 <

m2 < . . . < mk < . . .} we have

(2) lim
k

f(xkm
− x) = 0.

Let ε > 0. By (2), there exists k0 ∈ N such that |f(xmk
− x)| < ε for each k > k0.

Then since I is admissible, we get

{k ∈ N : |f(xmk
− x)| > ε} ⊂ L ∪ {m1 < m2 < . . . < mk0

} ∈ I.

�
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Definition 17 (see [8]). An admissible ideal I ⊂ 2N is said to satisfy the con-

dition (AP) if for every countable family of mutually disjoint sets {A1, A2, . . .} be-

longing to I there exists a countable family of sets {B1, B2, . . .} such that Aj △ Bj

is a finite set for j ∈ N and B =
∞
⋃

j=1

Bj ∈ I.

Theorem 18. Let I ⊂ 2N be an admissible ideal. If the ideal I has property (AP),

then for an arbitrary sequence (xk) ∈ X ,WI-lim(xk) = x impliesWI∗-lim(xk) = x.

P r o o f. Suppose that I satisfies condition (AP). Let WI-lim(xk) = x. Then

{k ∈ N : |f(xkm
− x)| > ε} ∈ I for ε > 0. Put A1 = {k ∈ N : |f(xkm

− x)| > 1}

and Ak = {k ∈ N : 1/k 6 |f(xkm
− x)| 6 1/(k + 1)} for k > 2, k ∈ N. Obviously

Ai ∩ Aj = ϕ for i 6= j. By condition (AP) there exists a sequence of sets (Bk)k∈N

such that Aj △ Bj are finite sets for j ∈ N and B =
∞
⋃

j=1

Bj ∈ I. It is sufficient to

prove that for M = N \ B we have

(3) lim
k→∞
k∈M

f(xk − x) = 0.

Let ξ > 0. Choose k ∈ N such that 1/(k + 1) < ξ. Then {k ∈ N : |f(xk − x)| > ξ} ⊂
n+1
⋃

j=1

Aj . Since Aj △Bj , j = 1, 2, . . . , n+1 are finite sets there exists k0 ∈ N such that

(4)

n+1
⋃

j=1

Bj ∩ {k ∈ N : k > k0} =

n+1
⋃

j=1

Aj ∩ {k ∈ N : k > k0}.

If k > k0 and k /∈ B, then k /∈
n+1
⋃

j=1

Bj and by (4), k /∈
n+1
⋃

j=1

Aj . But then |f(xk −x)| <

1/(k + 1) < ξ; so (3) holds. �

7. Weak I-limit points and weak I-cluster points

Definition 19. Let B be a Banach space, (xk) a B-valued sequence, let f be in

the continuous dual B∗ of B and x ∈ B.

(a) An element x ∈ X is said to be a weak I-limit point of (xk) provided that

there exists a set M = {m1 < m2 < . . . < mk < . . .} ⊆ N such that M /∈ I and

lim
k→∞,k∈M

f(xk − x) = 0.

(b) An element x ∈ X is said to be a weak I-cluster point of (xk) if and only if for

each ε > 0 we have {k ∈ N : |f(xk − x)| < ε} /∈ I.
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Let WI(Λx) and WI(Γx) denote the sets of all WI-limit and WI-cluster points

of x, respectively.

Theorem 20. Let I be an admissible ideal. Then for each sequence (xk) ∈ B we

have WI(Λx) ⊂ WI(Γx).

P r o o f. Let x ∈ WI(Λx). Then there exists a set M = {m1 < m2 < . . . <

mk < . . .} /∈ I such that

(5) lim
k→∞

f(xmk
− x) = 0.

Take ϑ > 0. According to (5) there exists k0 ∈ N such that for k > k0 we have

|f(xmk
− x)| < ϑ. Hence {k ∈ N : |f(xk − x)| < ϑ} ⊃ M \ {m1, m2, . . . , mk0

} and

{k ∈ N : |f(xk − x)| < ϑ} /∈ I, which means that x ∈ WI(Γx). �

A c k n ow l e d g em e n t. The author is grateful to the referee for his kind remarks

which improved the presentation of the paper.
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