LACUNARY WEAK STATISTICAL CONVERGENCE

FATIH NURAY, Afyonkarahisar

(Received February 15, 2010)

Abstract. The aim of this work is to generalize lacunary statistical convergence to weak lacunary statistical convergence and \mathcal{I} -convergence to weak \mathcal{I} -convergence. We start by defining weak lacunary statistically convergent and weak lacunary Cauchy sequence. We find a connection between weak lacunary statistical convergence and weak statistical convergence.

Keywords: weak convergence, statistical convergence, lacunary sequence, lacunary statistical convergence

MSC 2010: 40A05, 46A25

1. INTRODUCTION

A number sequence (x_k) is statistically convergent to L provided that for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} |\{k \leqslant n \colon |x_k - L| \ge \varepsilon\}| = 0$$

where the vertical bars indicate the number of elements in the enclosed set [2], [11].

By a lacunary sequence we mean an increasing integer sequence $\theta = (k_r)$ such that $k_0 = 0$ and $h_r := k_r - k_{r-1} \to \infty$ as $r \to \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_r := (k_{r-1}, k_r]$.

Let θ be a lacunary sequence; the number sequence (x_k) is lacunary statistically convergent to L provided that for every $\varepsilon > 0$,

$$\lim_{r} \frac{1}{h_r} |\{k \in I_r \colon |x_k - L| \ge \varepsilon\}| = 0$$

(see [3]). The space N_{θ} of N_{θ} -convergent sequences is defined by

$$N_{\theta} := \bigg\{ (x_k) \colon \text{ for some } L, \ \lim_r \frac{1}{h_r} \sum_{k \in I_r} |x_k - L| = 0 \bigg\}.$$

Let B be a Banach space, let (x_k) be a B-valued sequence, and $x \in B$.

1. The sequence (x_k) is weakly C_1 -convergent to x provided that for any f in the continuous dual B^* of B,

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} f(x_k - x) = 0.$$

2. The sequence (x_k) is weakly convergent to x provided that for any f in the continuous dual B^* of B,

$$\lim_{k} f(x_k - x) = 0.$$

In this case we write w-lim $x_k = x$.

3. The sequence (x_k) is norm statistically convergent to x provided that

$$\delta(\{k\colon \|x_k - x\| \ge \varepsilon\}) = 0$$

where $\delta(A) = \lim_{n \to \infty} n^{-1} |\{k \leq n \colon k \in A\}|.$

4. The sequence (x_k) is weakly statistically convergent to x provided that for any f in the continuous dual B^* of B, the sequence $(f(x_k - x))$ is statistically convergent to 0 (see [1]).

2. Weakly lacunary statistically convergent sequence

Definition 1. Let B be a Banach space, let (x_k) be a B-valued sequence, θ a lacunary sequence and $x \in B$.

1. The sequence (x_k) is norm lacunary statistically convergent to x provided that

$$\delta_r(\{k: \|x_k - x\| \ge \varepsilon\}) = 0$$

where $\delta_r(A) = \lim_r h_r^{-1} |\{k \in I_r \colon k \in A\}|.$

2. The sequence (x_k) is weakly lacunary statistically convergent to x provided that for any f in the continuous dual B^* of B, the sequence $(f(x_k - x))$ is lacunary statistically convergent to 0.

3. The sequence (x_k) is weakly N_{θ} -convergent to x provided that, for any f in the continuous dual B^* of B, the sequence $(f(x_k - x))$ is N_{θ} -convergent to 0.

Let WS and WS_{θ} denote the sets of all weakly statistically convergent and weakly lacunary statistically convergent sequences, respectively.

3. Weak lacunary statistically Cauchy sequence

In [5], Fridy and Orhan defined the lacunary statistical Cauchy sequence for a complex number sequence (x_k) as follows:

Let θ be a lacunary sequence. The sequence (x_k) is said to be lacunary statistically Cauchy if there is a subsequence $(x_{k'(r)})$ of x such that $k'(r) \in I_r$ for each r, $\lim x_{k'(r)} = x$ and for every $\varepsilon > 0$

$$\lim_{r} \frac{1}{h_r} |\{k \in I_r \colon |x_k - x_{k'(r)}| \ge \varepsilon\}| = 0.$$

Now we will give the definition of the weakly lacunary statistically Cauchy sequence for a *B*-valued sequence (x_k) .

Definition 2. Let *B* be a Banach space, (x_k) a *B*-valued sequence, θ a lacunary sequence and $x \in B$. The sequence (x_k) is weakly lacunary statistically Cauchy if there is a subsequence $(x_{k'(r)})$ of (x_k) such that $k'(r) \in I_r$ for each *r*, w-lim $x_{k'(r)} = x$, and for any *f* in the continuous dual B^* of *B* and for every $\varepsilon > 0$

$$\lim_{r} \frac{1}{h_r} |\{k \in I_r \colon |f(x_k - x_{k'(r)})| \ge \varepsilon\}| = 0.$$

Theorem 3. A sequence (x_k) is weakly lacunary statistically convergent if and only if (x_k) is a weakly lacunary statistically Cauchy sequence.

Proof. Let (x_k) be a weakly lacunary statistically Cauchy sequence. Then for every $\varepsilon > 0$ we have

$$\begin{aligned} |\{k \in I_r \colon |f(x_k - x)| \ge \varepsilon\}| \\ \leqslant \left| \left\{ k \in I_r \colon |f(x_k - x_{k'(r)})| \ge \frac{\varepsilon}{2} \right\} \right| + \left| \left\{ k \in I_r \colon |f(x_{k'(r)} - x)| \ge \frac{\varepsilon}{2} \right\} \right|, \end{aligned}$$

hence we get that the sequence (x_k) is weakly lacunary statistically convergent. Let (x_k) be weakly lacunary statistically convergent to x and write $M_j = \{k \in \mathbb{N} : |f(x_k - x)| < 1/j\}$ for each $j \in \mathbb{N}$, $M_j \supseteq M_{j+1}$ and $|M_j \cap I_r|/h_r \to 1$ as $r \to \infty$. Choose m_1 such that $r \ge m_1$ implies $|M_1 \cap I_r|/h_r > 0$, i.e., $M_1 \cap I_r \neq \emptyset$. Next choose $m_1 < m_2$ such that $r \ge m_2$ implies $M_2 \cap I_r \neq \emptyset$. Then for each r satisfying $m_1 \le r \le m_2$, choose $k'(r) \in I_r$ such that $k'(r) \in I_r \cap M_1$. In this way, choose $m_{l+1} > m_l$ such that $r > m_{l+1}$ implies $M_{l+1} \cap I_r \neq \emptyset$. Then for all r satisfying $m_l \le r < m_{l+1}$, choose $k'(r) \in I_r \cap M_l$, i.e.,

$$|f(x_{k'(r)} - x)| < \frac{1}{l}.$$

Hence we get $k'(r) \in I_r$ for every r, and w-lim $x_{k'(r)} = x$. Also, we have, for every $\varepsilon > 0$,

$$\begin{aligned} \frac{1}{h_r} |\{k \in I_r \colon |f(x_k - x_{k'(r)})| \ge \varepsilon\}| \\ &\leqslant \frac{1}{h_r} \left| \left\{ k \in I_r \colon |f(x_{k(r)} - x)| \ge \frac{\varepsilon}{2} \right\} \right| + \frac{1}{h_r} \left| \left\{ k \in I_r \colon |f(x_{k'(r)} - x)| \ge \frac{\varepsilon}{2} \right\} \right|, \end{aligned}$$

whence (x_k) is a weakly lacunary statistically Cauchy sequence.

4. Inclusion theorems

In this section we first give a theorem that provides the relation between weak N_{θ} and weak lacunary statistical convergences. We also study the inclusions between weak statistical convergence and weak lacunary statistical convergence.

Theorem 4. Let θ be a lacunary sequence; then (x_k) is weakly N_{θ} -convergent to x if and only if (x_k) is weakly lacunary statistically convergent to x.

Proof. If $\varepsilon > 0$ and (x_k) is weakly N_{θ} -convergent to x, we can write

$$\lim_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} |f(x_{k} - x)| \ge \lim_{r} \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\ |f(x_{k} - x)| \ge \varepsilon}} |f(x_{k} - x)| \\ \ge \varepsilon |\{k \in I_{r} \colon |f(x_{k} - x)| \ge \varepsilon\}|,$$

so (x_k) is weakly lacunary statistically convergent to x.

Conversely, suppose that (x_k) is weakly lacunary statistically convergent to x. Since $f \in B^*$, f is bounded, say $|f(x_k - x)| \leq K$ for all k. Given $\varepsilon > 0$, we get

$$\frac{1}{h_r} \sum_{k \in I_r} |f(x_k - x)| = \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |f(x_k - x)| \ge \varepsilon}} |f(x_k - x)| + \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |f(x_k - x)| < \varepsilon}} |f(x_k - x)|$$
$$\leqslant \frac{K}{h_r} |\{k \in I_r \colon |f(x_k - x)| \ge \varepsilon\}| + \varepsilon,$$

so (x_k) is weakly N_{θ} -convergent to x.

Theorem 5. For any lacunary sequence θ , WS-lim $x_k = x$ implies WS_{θ}-lim $x_k = x$ if and only if lim inf_r $k_r/k_{r-1} > 1$.

Proof. k_r/k_{r-1} will be denoted by q_r . If $\liminf_r q_r > 1$ there exist $\eta > 0$ such that $1 + \eta \leq q_r$ for all sufficiently large r, which implies that

$$\frac{h_r}{k_r} \ge \frac{1}{1+\eta}.$$

If $x_k \to x(WS)$, then for every $\varepsilon > 0$ and for sufficiently large r we have

$$\frac{1}{k_r} |\{k \leqslant k_r \colon |f(x_k - x)| \ge \varepsilon\}| \ge \frac{1}{k_r} |\{k \in I_r \colon |f(x_k - x)| \ge \varepsilon\}| \\ \ge \frac{\eta}{1 + \eta} \frac{1}{h_r} |\{k \in I_r \colon |f(x_k - x)| \ge \varepsilon\}|;$$

this proves sufficiency. Conversely, if we suppose that $\liminf_r q_r = 1$, then following the idea in [4], we can find a sequence (x_k) such that $(x_k) \notin WS_{\theta}$ but $(x_k) \in WS$. \Box

Theorem 6. For any lacunary sequence θ , WS $_{\theta}$ -lim $x_k = x$ implies WS-lim $x_k = x$ if and only if $\limsup_r k_r/k_{r-1} < \infty$.

Proof. If $\limsup_r q_r < \infty$, then there is a K > 0 such that $q_r < K$ for all r. Suppose that $x_k \to x(WS_\theta)$, and let $M_r = |\{k \in I_r \colon |f(x_k - x)| \ge \varepsilon\}|$. Since WS_{θ} - $\lim x_k = x$, given $\varepsilon > 0$, there is an $r_0 \in \mathbb{N}$ such that $M_r/h_r < \varepsilon$ for all $r > r_0$. Now let $M = \max\{M_r \colon 1 \le r \le r_0\}$ and let n be any integer satisfying $k_{r-1} < n \le k_r$. Then we can write

$$\begin{aligned} \frac{1}{n} |\{k \leqslant n \colon |f(x_k - x)| \geqslant \varepsilon\}| &\leqslant \frac{1}{k_{r-1}} |\{k \leqslant k_r \colon |f(x_k - x)| \geqslant \varepsilon\}| \\ &= \frac{1}{k_{r-1}} \{M_1 + M_2 + \ldots + M_{r_0} + M_{r_0+1} + \ldots + M_r\} \\ &\leqslant \frac{M}{k_{r-1}} r_0 + \frac{1}{k_{r-1}} \left\{ h_{r_0+1} \frac{M_{r_0+1}}{h_{r_0+1}} + \ldots + h_r \frac{M_r}{h_r} \right\} \\ &\leqslant \frac{r_0 M}{k_{r-1}} + \frac{1}{k_{r-1}} \left(\sup_{r > r_0} \frac{M_r}{h_r} \right) \{h_{r_0+1} + \ldots + h_r\} \\ &\leqslant \frac{r_0 M}{k_{r-1}} + \varepsilon \frac{k_r - k_{r_0}}{k_{r-1}} \\ &\leqslant \frac{r_0 M}{k_{r-1}} + \varepsilon q_r \\ &\leqslant \frac{r_0 M}{k_{r-1}} + \varepsilon K, \end{aligned}$$

and the sufficiency follows immediately.

Conversely, if we suppose that $\limsup_r q_r = \infty$, then following the idea in [4], we can find a sequence (x_k) such that $(x_k) \notin WS$ but $(x_k) \in WS_{\theta}$.

Combining Theorems 5 and 6 we get

Theorem 7. Let θ be a lacunary sequence; then WS = WS_{θ} if and only if $1 < \liminf_r k_r/k_{r-1} \leq \limsup_r k_r/k_{r-1} < \infty$.

Theorem 8. If $x \in WS \cap WS_{\theta}$, then WS_{θ} -lim x = WS-lim x.

Proof. Suppose WS-lim x = x and WS_{θ}-lim x = y and $x \neq y$. For $\varepsilon < \frac{1}{2}|x - y|$ we get

$$\lim_{n} \frac{1}{n} |\{k \leq n \colon |f(x_k - y)| \ge \varepsilon\}| = 1.$$

Consider the k_m th term of the weak statistical limit expression $n^{-1}|\{k \leq n : |f(x_k - y)| \ge \varepsilon\}|$:

(1)
$$\frac{1}{k_m} \left| \left\{ k \in \bigcup_{r=1}^m I_r \colon |f(x_k - y)| \ge \varepsilon \right\} \right| = \frac{1}{k_m} \sum_{r=1}^m |\{k \in I_r \colon |f(x_k - y)| \ge \varepsilon\}|$$
$$= \frac{1}{\sum_{r=1}^m h_r} \sum_{r=1}^m h_r t_r,$$

where $t_r = h_r^{-1} |\{k \in I_r : |f(x_k - y)| \ge \varepsilon\}| \to 0$ because WS_{θ} -lim x = y. Since θ is a lacunary sequence, (1) is a regular weighted mean transform of t_r , and therefore it, too, tends to zero as $m \to \infty$. Also, since this is a subsequence of $\{n^{-1} | \{k \le n : |f(x_k - y)| \ge \varepsilon\}|\}$, we infer that

$$\lim_{n} \frac{1}{n} |\{k \leqslant n \colon |f(x_k - y)| \ge \varepsilon\}| \neq 1,$$

and this contradiction shows that we can't have $x \neq y$.

5. Weak strong almost convergence and weak lacunary statistical convergence

The idea of almost convergence was introduced by Lorentz [9]. Later Maddox [10] and (independently) Freedman at al. [6] introduced the notion of the strong almost convergence. Now we will introduce the notions of weakly almost convergence and weakly strong almost convergence for sequences in a Banach space.

Definition 9. Let *B* be a Banach space, (x_k) be a *B*-valued sequence and let *f* be in the continuous dual B^* of *B*. Sequence (x_k) is said to be weakly almost convergent to *x* if

$$\lim_{n} \frac{1}{n} \sum_{i=m+1}^{m+n} f(x_i - x) = 0$$

uniformly in m.

Definition 10. Let *B* be a Banach space, (x_k) be a *B*-valued sequence and let *f* be in the continuous dual B^* of *B*. Sequence (x_k) is said to be weakly strongly almost convergent to *x* if

$$\lim_{n} \frac{1}{n} \sum_{i=m+1}^{m+n} |f(x_i - x)| = 0$$

uniformly in m.

Let WN_{θ} , WS_{θ} , WAC and [WAC] denote the sets of all weakly N_{θ} -convergent, all weakly statistically convergent, all weakly almost convergent and all weakly strongly almost convergent sequences, respectively.

Lemma 11. $[WAC] = \bigcap_{\theta \in \mathcal{L}} WN_{\theta}.$

Proof is similar to the proof of Theorem 3.1 in [6].

Theorem 12. If \mathcal{L} denotes the set of all lacunary sequences, then

$$[WAC] = \bigcap_{\theta \in \mathcal{L}} WS_{\theta}.$$

Proof. By Lemma 12 and Theorem 4, we have

$$[WAC] = \bigcap_{\theta \in \mathcal{L}} WN_{\theta} = \bigcap_{\theta \in \mathcal{L}} WS_{\theta}.$$

6. Weak \mathcal{I} -convergence

The concept of the \mathcal{I} -convergence is a generalization of statistical convergence and is based on the notion of the ideal \mathcal{I} of subsets of the set \mathbb{N} of positive integers. A non-void class $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if \mathcal{I} is additive (i.e., $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$) and hereditary (i.e., $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$).

An ideal \mathcal{I} is said to be non-trivial if $\mathcal{I} \neq 2^{\mathbb{N}}$. A non-trivial ideal \mathcal{I} is said to be admissible if \mathcal{I} contains every finite subset of \mathbb{N} . For any ideal \mathcal{I} there is a filter $\mathcal{F}(\mathcal{I})$ corresponding to \mathcal{I} , given by

$$\mathcal{F}(\mathcal{I}) = \{ K \subseteq \mathbb{N} \colon \mathbb{N} \setminus K \in \mathcal{I} \}.$$

Definition 13. Let *B* be a Banach space, let (x_k) be a *B*-valued sequence, and $x \in B$. The sequence (x_k) is norm \mathcal{I} -convergent to x provided that

$$\{k \in \mathbb{N} \colon \|x_k - x\| \ge \varepsilon\} \in \mathcal{I}$$

Definition 14. Let *B* be a Banach space, let *f* be in the continuous dual B^* of *B*, let (x_k) be a *B*-valued sequence, and $x \in B$. The sequence (x_k) is weakly \mathcal{I} -convergent to *x* provided that

$$\{k \in \mathbb{N} \colon |f(x_k - x)| \ge \varepsilon\} \in \mathcal{I}.$$

If $\mathcal{I} = \mathcal{I}_{\text{fin}}$ the ideal of all finite subsets of \mathbb{N} , we have the usual weak convergence. Denote by \mathcal{I}_{δ} the class of all $K \subset \mathbb{N}$ with

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \leqslant n \colon k \in K\}| = 0,$$

then \mathcal{I}_{δ} is a non-trivial admissible ideal, and the \mathcal{I}_{δ} -convergence coincides with the weak statistical convergence.

Denote by \mathcal{I}_{θ} the class of all $K \subset \mathbb{N}$ with

$$\delta_r(K) = \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r \colon k \in K\}| = 0,$$

then \mathcal{I}_{θ} is a non-trivial admissible ideal, \mathcal{I}_{θ} -convergence coincides with the weak lacunary statistical convergence.

Definition 15. Let *B* be a Banach space, (x_k) a *B*-valued sequence and let *f* be in the continuous dual B^* of *B*, and $x \in B$. The sequence (x_k) is weakly \mathcal{I}^* -convergent to *x* if and only if there exists a set $M = \{m_1 < m_2 < \ldots < m_k < \ldots\} \subseteq \mathbb{N}, M \in \mathcal{F}(\mathcal{I})$ such that $\lim_k f(x_{m_k} - x) = 0$.

Let \mathcal{WI} and \mathcal{WI}^* denote the sets of all weakly \mathcal{I} -convergent and all weakly \mathcal{I}^* convergent sequences, respectively.

Theorem 16. Let \mathcal{I} be an admissible ideal. If \mathcal{WI}^* -lim $x_k = x$, then \mathcal{WI} -lim $x_k = x$.

Proof. By assumption there is a set $L \in \mathcal{I}$ such that for $M = \mathbb{N} \setminus L = \{m_1 < m_2 < \ldots < m_k < \ldots\}$ we have

(2)
$$\lim_{k} f(x_{k_m} - x) = 0.$$

Let $\varepsilon > 0$. By (2), there exists $k_0 \in \mathbb{N}$ such that $|f(x_{m_k} - x)| < \varepsilon$ for each $k > k_0$. Then since \mathcal{I} is admissible, we get

$$\{k \in \mathbb{N} \colon |f(x_{m_k} - x)| \ge \varepsilon\} \subset L \cup \{m_1 < m_2 < \ldots < m_{k_0}\} \in \mathcal{I}.$$

Definition 17 (see [8]). An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to satisfy the condition (AP) if for every countable family of mutually disjoint sets $\{A_1, A_2, \ldots\}$ belonging to \mathcal{I} there exists a countable family of sets $\{B_1, B_2, \ldots\}$ such that $A_j \bigtriangleup B_j$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$.

Theorem 18. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. If the ideal \mathcal{I} has property (AP), then for an arbitrary sequence $(x_k) \in X$, \mathcal{WI} -lim $(x_k) = x$ implies \mathcal{WI}^* -lim $(x_k) = x$.

Proof. Suppose that \mathcal{I} satisfies condition (AP). Let \mathcal{WI} -lim $(x_k) = x$. Then $\{k \in \mathbb{N} : |f(x_{k_m} - x)| \ge \varepsilon\} \in \mathcal{I}$ for $\varepsilon > 0$. Put $A_1 = \{k \in \mathbb{N} : |f(x_{k_m} - x)| \ge 1\}$ and $A_k = \{k \in \mathbb{N} : 1/k \le |f(x_{k_m} - x)| \le 1/(k+1)\}$ for $k \ge 2, k \in \mathbb{N}$. Obviously $A_i \cap A_j = \varphi$ for $i \ne j$. By condition (AP) there exists a sequence of sets $(B_k)_{k \in \mathbb{N}}$ such that $A_j \bigtriangleup B_j$ are finite sets for $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$. It is sufficient to prove that for $M = \mathbb{N} \setminus B$ we have

(3)
$$\lim_{\substack{k \to \infty \\ k \in M}} f(x_k - x) = 0.$$

Let $\xi > 0$. Choose $k \in \mathbb{N}$ such that $1/(k+1) < \xi$. Then $\{k \in \mathbb{N} : |f(x_k - x)| \ge \xi\} \subset \bigcup_{j=1}^{n+1} A_j$. Since $A_j \triangle B_j, j = 1, 2, ..., n+1$ are finite sets there exists $k_0 \in \mathbb{N}$ such that

(4)
$$\bigcup_{j=1}^{n+1} B_j \cap \{k \in \mathbb{N} \colon k > k_0\} = \bigcup_{j=1}^{n+1} A_j \cap \{k \in \mathbb{N} \colon k > k_0\}.$$

If $k > k_0$ and $k \notin B$, then $k \notin \bigcup_{j=1}^{n+1} B_j$ and by (4), $k \notin \bigcup_{j=1}^{n+1} A_j$. But then $|f(x_k - x)| < 1/(k+1) < \xi$; so (3) holds.

7. Weak \mathcal{I} -limit points and weak \mathcal{I} -cluster points

Definition 19. Let *B* be a Banach space, (x_k) a *B*-valued sequence, let *f* be in the continuous dual B^* of *B* and $x \in B$. (a) An element $x \in X$ is said to be a weak *I*-limit point of (x_k) provided that there exists a set $M = \{m_1 < m_2 < \ldots < m_k < \ldots\} \subseteq \mathbb{N}$ such that $M \notin I$ and $\lim_{k \to \infty, k \in M} f(x_k - x) = 0$.

(b) An element $x \in X$ is said to be a weak \mathcal{I} -cluster point of (x_k) if and only if for each $\varepsilon > 0$ we have $\{k \in \mathbb{N} : |f(x_k - x)| < \varepsilon\} \notin \mathcal{I}$.

Let $\mathcal{WI}(\Lambda_r)$ and $\mathcal{WI}(\Gamma_r)$ denote the sets of all \mathcal{WI} -limit and \mathcal{WI} -cluster points of x, respectively.

Theorem 20. Let \mathcal{I} be an admissible ideal. Then for each sequence $(x_k) \in B$ we have $\mathcal{WI}(\Lambda_x) \subset \mathcal{WI}(\Gamma_x)$.

 $m_k < \ldots \notin \mathcal{I}$ such that

(5)
$$\lim_{k \to \infty} f(x_{m_k} - x) = 0.$$

Take $\vartheta > 0$. According to (5) there exists $k_0 \in \mathbb{N}$ such that for $k > k_0$ we have $|f(x_{m_k}-x)| < \vartheta$. Hence $\{k \in \mathbb{N} \colon |f(x_k-x)| < \vartheta\} \supset M \setminus \{m_1, m_2, \dots, m_{k_0}\}$ and $\{k \in \mathbb{N} \colon |f(x_k - x)| < \vartheta\} \notin \mathcal{I}$, which means that $x \in \mathcal{WI}(\Gamma_x)$.

A c k n o w l e d g e m e n t. The author is grateful to the referee for his kind remarks which improved the presentation of the paper.

References

- [1] J. Connor, M. Ganichev, V. Kadets: A characterization of Banach spaces with separable duals via weak statistical convergence. J. Math. Anal. Appl. 244 (2000), 251–261. \mathbf{zbl} \mathbf{zbl}
- [2] J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301–313.
- \mathbf{zbl} [3] J. A. Fridy: Statistical limit points. Proc. Am. Math. Soc. 118 (1993), 1187–1192.
- [4] J.A. Fridy, C. Orhan: Lacunary statistical convergence. Pac. J. Math. 160 (1993). 43 - 51. \mathbf{zbl}
- [5] J.A. Fridy, C. Orhan: Lacunary statistical summability. J. Math. Anal. Appl. 173 (1993), 497-504. $^{\mathrm{zbl}}$
- [6] A. R. Freedman, J. J. Sember, M. Raphael: Some Cesaro type summability spaces. Proc. London Math. Soc., III. Ser. 37 (1978), 508-520. $^{\mathrm{zbl}}$
- [7] A. R. Freedman, J. J. Sember: Densities and summability. Pac. J. Math. 95 (1981), 293 - 305. \mathbf{zbl}
- [8] P. Kostyrko, T. Šalát, W. Wilczyński: I-convergence. Real Anal. Exch. 26 (2000/2001), 669 - 686. $^{\mathrm{zbl}}$
- [9] G. G. Lorentz: A contribution to the theory of divergent sequences. Acta Math. 80 (1948), 167-190. \mathbf{zbl}
- [10] I. J. Maddox: A new type of convergence. Math. Proc. Camb. Philos. Soc. 83 (1978), 61 - 64. $^{\mathrm{zbl}}$
- [11] I. J. Schoenberg: The integrability of certain functions and related summability methods. Am. Math. Mon. 66 (1959), 361–375. $^{\mathrm{zbl}}$

Author's address: Fatih Nuray, Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar, Turkey, e-mail: fnuray@aku.edu.tr.