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ON THE DARBOUX PROBLEM FOR LINEAR HYPERBOLIC

FUNCTIONAL-DIFFERENTIAL EQUATIONS

JIŘÍ ŠREMR

Abstract. Theorems on the Fredholm alternative and well-posedness of the
Darboux problem

∂2u(t, x)

∂t ∂x
= `(u)(t, x) + q(t, x),

u(t, x0) = ϕ(t) for t ∈ [a, b], u(t0, x) = ψ(x) for x ∈ [c, d]

are established, where ` : C(D;R) → L(D;R) is a linear bounded operator,
q ∈ L(D;R), t0 ∈ [a, b], x0 ∈ [c, d], ϕ : [a, b]→ R, ψ : [c, d]→ R are absolutely

continuous functions, and D = [a, b] × [c, d]. New sufficient conditions are

also given for the existence and uniqueness of a Carathéodory solution to the
problem considered. The general results are applied to a hyperbolic equation

with argument deviations and, moreover, for the equation without argument

deviations an integral representation of solutions to the Darboux problem is
derived in this preprint.

1. Introduction

On the rectangle D = [a, b] × [c, d], we consider the linear partial functional-
differential equation

∂2u(t, x)

∂t ∂x
= `(u)(t, x) + q(t, x), (1.1)

where ` : C(D;R) → L(D;R) is a linear bounded operator and q ∈ L(D;R). As
usual, C(D;R) and L(D;R) denote the Banach spaces of continuous and Lebesgue
integrable functions, respectively, equipped with the standard norms.

A function u : D → R absolutely continuous on D in the sense of Carathéodory
(see Proposition 2.1) is said to be a solution to equation (1.1) if it satisfies equality
(1.1) almost everywhere on the set D.

Various initial and boundary value problems for hyperbolic differential equations
and their systems are studied in literature (see, e.g., [3, 7–12,15,22,24,25] and ref-
erences therein). We shall consider the characteristic initial value problem, usually
called Darboux problem. In this case, the values of a solution u to equation (1.1)
are prescribed on both characteristics t = t0 and x = x0, i.e., the initial conditions
are

u(t, x0) = ϕ(t) for t ∈ [a, b], u(t0, x) = ψ(x) for x ∈ [c, d], (1.2)

where t0 ∈ [a, b], x0 ∈ [c, d], and ϕ : [a, b] → R, ψ : [c, d] → R are absolutely
continuous functions such that ϕ(t0) = ψ(x0).
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A particular case of problem (1.1), (1.2) (if t0 = a and x0 = c) is studied
in the paper [19]. The aim of this preprint is to generalize the paper mentioned
and prove theorems on the Fredholm alternative and well-posedness of problem
(1.1), (1.2) (see Sections 4 and 7). Moreover, some solvability conditions for the
problem considered are given in Section 6, and equations with the so-called Volterra
operators are studied as well. The results obtained are applied to the equation with
deviating arguments

∂2u(t, x)

∂t ∂x
= p(t, x)u

(
τ(t, x), µ(t, x)

)
+ q(t, x), (1.1′)

where p, q ∈ L(D;R) and τ : D → [a, b], µ : D → [c, d] are measurable functions.

2. Notations and Preliminary results

The following notation is used throughout the paper.

(i) N is the set of all natural numbers. R is the set of all real numbers, R+ =
[0,+∞[ . Ent(x) denotes the entire part of the number x ∈ R.

(ii) D = [a, b]× [c, d], where −∞ < a < b < +∞ and −∞ < c < d < +∞.
(iii) The first and the second order partial derivatives of a function v : D → R at

the point (t, x) ∈ D are denoted by v′[1](t, x) (or vt(t, x), ∂v(t,x)
∂t ), v′[2](t, x)

(or vx(t, x), ∂v(t,x)
∂x ), v′′[1,2](t, x) (or vtx(t, x), ∂2v(t,x)

∂t ∂x ), and v′′[2,1](t, x) (or

vxt(t, x), ∂2v(t,x)
∂x ∂t ).

(iv) C(D;R) is the Banach space of continuous functions v : D → R equipped
with the norm ‖v‖C = max

{
|v(t, x)| : (t, x) ∈ D

}
.

(v) AC ([α, β];R), where −∞ < α < β < +∞, is the set of absolutely continu-
ous functions u : [α, β]→ R.

(vi) C∗(D;R) is the set of functions v : D → R admitting the representation

v(t, x) = e+

∫ t

a

k(s)ds+

∫ x

c

l(η)dη +

∫ t

a

∫ x

c

f(s, η)dηds for (t, x) ∈ D,

where e ∈ R, k ∈ L([a, b];R), l ∈ L([c, d];R), and f ∈ L(D;R). Equivalent
definitions of the class C∗(D;R) are presented in Proposition 2.1 below.

(vii) L(D;R) is the Banach space of Lebesgue integrable functions p : D → R
equipped with the norm ‖p‖L =

∫∫
D |p(t, x)|dtdx.

(viii) L(D) is the set of linear bounded operators ` : C(D;R)→ L(D;R).
(ix) measA denotes the Lebesgue measure of the set A ⊂ Rm, m = 1, 2.
(x) If X, Y are Banach spaces and T : X → Y is a linear bounded operator

then ‖T‖ denotes the norm of the operator T , i. e.,

‖T‖ = sup
{
‖T (z)‖Y : z ∈ X, ‖z‖X ≤ 1

}
.

The following proposition dealing with the equivalent characterizations of func-
tions absolutely continuous in the sense of Carathéodory plays very important role
in our investigation.

Proposition 2.1 ([18, Theorem 2.1]). The following three statements are equiva-
lent:

(1) the function v : D → R is absolutely continuous on D in the sense of
Carathéodory1;

1This notion is introduced in [2] (see also [18]).
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(2) v ∈ C∗(D;R);
(3) the function v : D → R satisfies the conditions:

(a) v(·, x) ∈ AC ([a, b];R) for every x ∈ [c, d], v(a, ·) ∈ AC ([c, d];R);

(b) v′[1](t, ·) ∈ AC ([c, d];R) for almost every t ∈ [a, b];

(c) v′′[1,2] ∈ L(D;R).

Remark 2.1. It is clear that the conditions (3a)–(3c) stated in the previous propo-
sition can be replaced by the symmetric ones, i. e.,

(3) the function v : D → R satisfies the conditions:
(A) v(·, c) ∈ AC ([a, b];R), v(t, ·) ∈ AC ([c, d];R) for every t ∈ [a, b];

(B) v′[2](·, x) ∈ AC ([a, b];R) for almost every x ∈ [c, d];

(C) v′′[2,1] ∈ L(D;R).

Remark 2.2 ([18, Remark 2.2]). For an arbitrary function v ∈ C∗(D;R), we have
v′[1], v

′
[2] ∈ L(D;R), the equality

v′′[1,2](t, x) = v′′[2,1](t, x) for a. e. (t, x) ∈ D

holds, and

v′[1](t, x) ≤ α(t), v′[2](t, x) ≤ β(x) for a. e. (t, x) ∈ D,

where α ∈ L([a, b];R) and β ∈ L([c, d];R).

3. Auxiliary Statements

The following proposition plays a crucial role in the proofs of statements given
in Sections 4, 6, and 7.

Proposition 3.1. Let t0 ∈ [a, b], x0 ∈ [c, d], and ` ∈ L(D). Then the operator
T : C(D;R)→ C(D;R) defined by the formula

T (v)(t, x) =

∫ t

t0

∫ x

x0

`(v)(s, η)dηds for (t, x) ∈ D, v ∈ C(D;R) (3.1)

is completely continuous.

The above statement can be easily proved in the case where the operator ` is
strongly bounded, i.e., if there exists a function η ∈ L(D;R+) such that

|`(v)(t, x)| ≤ η(t, x)‖v‖C for a. e. (t, x) ∈ D and all v ∈ C(D;R). (3.2)

However, H. H. Schaefer proved that there exists an operator ` ∈ L(D) which is
not strongly bounded (see [17]). To prove Proposition 3.1 without the additional
requirement (3.2) we need several notions and statements from functional analysis.

Definition 3.1 ([5, Definition II.3.25]). Let X be a Banach space, X∗ be its dual
space.

We say that a sequence {xn}+∞n=1 ⊆ X is weakly convergent if there exists x ∈ X
such that f(x) = limn→+∞ f(xn) for every f ∈ X∗. The element x is said to be
the weak limit of this sequence.

A set M ⊆ X is said to be weakly sequentially compact if every sequence of
elements from M contains a subsequence which is weakly convergent in X.

A sequence {xn}+∞n=1 of elements from X is called a weak Cauchy sequence if
{f(xn)}+∞n=1 is a Cauchy sequence in R for every f ∈ X∗.
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We say that the space X is weakly complete if every weak Cauchy sequence of
elements from X possesses a weak limit in X.

Definition 3.2 ([5, Definition Vi.4.1]). Let X and Y be Banach spaces, T : X → Y
be a linear bounded operator. The operator T is said to be weakly compact if it
maps bounded sets in X into weakly sequentially compact subsets of Y .

Definition 3.3. We say that a set M ⊆ L(D;R) has a property of absolutely
continuous integral if, for every ε > 0, there exists δ > 0 such that the relation∣∣∣∣∫∫

E

p(t, x)dtdx

∣∣∣∣ < ε for every p ∈M

holds whenever a measurable set E ⊆ D is such that measE < δ.

The following three lemmas can be found in [5].

Lemma 3.1 (Theorem IV.8.6). The space L(D;R) is weakly complete.

Lemma 3.2 (Theorem VI.7.6). A linear bounded operator mapping the space
C(D;R) into a weakly complete Banach space is weakly compact.

Lemma 3.3 (Theorem IV.8.11). If a set M ⊆ L(D;R) is weakly sequentially com-
pact then it has the property of absolutely continuous integral.

Proof of Proposition 3.1. Let M ⊆ C(D;R) be a bounded set. We will show that
the set T (M) = {T (v) : v ∈ M} is relatively compact in the space C(D;R).
According to the Arzelà-Ascoli lemma, it is sufficient to show that the set T (M) is
bounded and equicontinuous.

Boundedness. It is clear that

|T (v)(t, x)| ≤
∣∣∣∣∫ t

t0

∫ x

x0

|`(v)(s, η)|dηds

∣∣∣∣ ≤ ‖`(v)‖L ≤ ‖`‖ ‖v‖C

for (t, x) ∈ D and every v ∈M . Therefore, the set T (M) is bounded in C(D;R).
Equicontinuity. Let ε > 0 be arbitrary. Lemmas 3.1 and 3.2 yield that the

operator ` is weakly compact, that is, the set `(M) = {`(v) : v ∈ M} is weakly
sequentially compact subset of L(D;R). Therefore, Lemma 3.3 guarantees that
there exists δ > 0 such that the relation∣∣∣∣∫∫

E

`(v)(t, x)dtdx

∣∣∣∣ < ε

2
for v ∈M (3.3)

holds for every measurable set E ⊆ D satisfying measE < max{b− a, d− c}δ.
On the other hand, for (t1, x1), (t2, x2) ∈ D and v ∈M , we have

|T (v)(t2, x2)− T (v)(t1, x1)| =

=

∣∣∣∣∫ t2

t0

∫ x2

x0

`(v)(s, η)dηds−
∫ t1

t0

∫ x1

x0

`(v)(s, η)dηds

∣∣∣∣ ≤
≤
∣∣∣∣∫∫

E1

`(v)(s, η)dsdη

∣∣∣∣+

∣∣∣∣∫∫
E2

`(v)(s, η)dsdη

∣∣∣∣ ,
where measurable sets E1, E2 ⊆ D are such that measE1 ≤ (d − c)|t2 − t1| and
measE2 ≤ (b− a)|x2 − x1|. Hence, by virtue of relation (3.3), we get

|T (v)(t2, x2)− T (v)(t1, x1)| < ε

for (t1, x1), (t2, x2) ∈ D, |t2 − t1|+ |x2 − x1| < δ, and v ∈M,
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i.e., the set T (M) is equicontinuous in C(D;R). �

4. Fredholm Alternative

The main result of this section is the following statement on the Fredholmity of
problem (1.1), (1.2).

Theorem 4.1. For the unique solvability of problem (1.1), (1.2) it is sufficient and
necessary that the homogeneous problem

∂2u(t, x)

∂t ∂x
= `(u)(t, x), (1.10)

u(t, x0) = 0 for t ∈ [a, b], u(t0, x) = 0 for x ∈ [c, d] (1.20)

has only the trivial solution.

To prove this theorem we need a result stated in [18].

Lemma 4.1 ([18, Proposition 3.5]). Let f ∈ L(D;R) and

u(t, x) =

∫ t

a

∫ x

c

f(s, η)dηds for (t, x) ∈ D.

Then:

(i) there exists a set E ⊆ [a, b] such that measE = b− a and

u′[1](t, x) =

∫ x

c

f(t, η)dη for t ∈ E and x ∈ [c, d];

(ii) there exists a set F ⊆ D such that measF = (b− a)(d− c) and

u′′[1,2](t, x) = f(t, x) for (t, x) ∈ F.

Proof of Theorem 4.1. Let u be a solution to problem (1.1), (1.2). Using Proposi-
tion 2.1, one can obtain that u is a solution to the equation

v = T (v) + f (4.1)

in the space C(D;R), where the operator T is given by relation (3.1) and

f(t, x) = −ϕ(t0) + ϕ(t) + ψ(x) +

∫ t

t0

∫ x

x0

q(s, η)dηds for (t, x) ∈ D. (4.2)

Conversely, if v ∈ C(D;R) is a solution to equation (4.1) with f given by (4.2)
then it is easy to verify that v ∈ C∗(D;R) (see Proposition 2.1) and, by virtue of
Lemma 4.1(ii), v is a solution to problem (1.1), (1.2). Hence, problem (1.1), (1.2)
and equation (4.1) are equivalent in this sense.

Note also that u is a solution to homogeneous problem (1.10), (1.20) if and only
if u is a solution to the homogeneous equation

v = T (v) (4.3)

in the space C(D;R).
According to Proposition 3.1, the operator T is completely continuous. It follows

from the Riesz-Schauder theory that equation (4.1) is uniquely solvable for every
f ∈ C(D;R) if and only if homogeneous equation (4.3) has only the trivial solution.
Consequaently, the assertion of the theorem holds. �
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Definition 4.1. Let problem (1.10), (1.20) have only the trivial solution. An
operator Ω : L(D;R)→ C(D;R) which assigns to every q ∈ L(D;R) the solution u
to problem (1.1), (1.20) is called the Darboux operator of problem (1.10), (1.20).

Remark 4.1. It is clear that the Darboux operator Ω is linear.

If homogeneous problem (1.10), (1.20) has a nontrivial solution then, by virtue
of Theorem 4.1, there exist functions q, ϕ, and ψ such that the problem (1.1), (1.2)
has either no solution or infinitely many solutions. However, as follows from the
proof of Theorem 4.1, a stronger assertion can be shown in this case.

Proposition 4.1. Let problem (1.10), (1.20) have a nontrivial solution. Then for
arbitrary ϕ ∈ AC ([a, b];R) and ψ ∈ AC ([c, d];R) satisfying ϕ(t0) = ψ(x0), there
exists a function q ∈ L(D;R) such that the problem (1.1), (1.2) has no solution.

Proof. Let u0 be a nontrivial solution to problem (1.10), (1.20) and ϕ ∈ AC ([a, b];R),
ψ ∈ AC ([c, d];R) be arbitrary functions such that ϕ(t0) = ψ(x0).

It follows from the proof of Theorem 4.1 that u0 is also a nontrivial solution
to homogeneous equation (4.3) in the space C(D;R). Therefore, by the Riesz-
Schauder theory, there exists a function f ∈ C(D;R) such that equation (4.1) has
no solution.

Then the problem (1.1), (1.2) has no solution for q ≡ `(z), where

z(t, x) = f(t, x) + ϕ(t0)− ϕ(t)− ψ(x) for (t, x) ∈ D.

Indeed, if the problem indicated had a solution u then the function u+ z would be
a solution to equation (4.1), which would lead to a contradiction. �

5. Volterra operators

The following definitions introduce notions of Volterra operators which are useful
in the question on the solvability of problem (1.1), (1.2) (see, e. g., Theorems 6.2
and 6.3 below).

Definition 5.1. Let t0 ∈ [a, b] and x0 ∈ [c, d]. We say that ` ∈ L(D) is a t0–
Volterra operator (resp., an x0–Volterra operator) if the relation

`(v)(t, x) = 0 for a. e. (t, x) ∈ [a0, b0]× [c, d](
resp., for a. e. (t, x) ∈ [a, b]× [c0, d0]

)
holds for an arbitrary interval [a0, b0] ⊆ [a, b] (resp., [c0, d0] ⊆ [c, d]) and every
function v ∈ C(D;R) such that t0 ∈ [a0, b0] (resp., x0 ∈ [c0, d0]) and

v(t, x) = 0 for (t, x) ∈ [a0, b0]× [c, d]
(
resp., for (t, x) ∈ [a, b]× [c0, d0]

)
.

Definition 5.2. Let t0 ∈ [a, b] and x0 ∈ [c, d]. We say that ` ∈ L(D) is a (t0, x0)–
Volterra operator if the relation

`(v)(t, x) = 0 for a. e. (t, x) ∈ D0

is satisfied for an arbitrary rectangle D0 ⊆ D and every function v ∈ C(D;R) such
that (t0, x0) ∈ D0 and

v(t, x) = 0 for (t, x) ∈ D0.
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Remark 5.1. If the operator ` in equation (1.1) is a t0–Volterra one (resp., x0–
Volterra one, resp. (t0, x0)–Volterra one), then problem (1.1), (1.2) can be restricted
to an arbitrary rectangle [a0, b0]× [c, d] (resp., [a, b]× [c0, d0], resp., D0) contained
in D and such that t0 ∈ [a0, b0] (resp., x0 ∈ [c0, d0], resp., (t0, x0) ∈ D0).

Definitions 5.1 and 5.2 immediately yield

Proposition 5.1. Let t0 ∈ [a, b] and x0 ∈ [c, d]. Then ` ∈ L(D) is a (t0, x0)–
Volterra operator if and only if ` is both t0–Volterra one and x0–Volterra one.

Let an operator ` be defined by the formula

`(v)(t, x) = p(t, x)v
(
τ(t, x), µ(t, x)

)
for a. e. (t, x) ∈ D and all v ∈ C(D;R), (5.1)

where p ∈ L(D;R) and τ : D → [a, b], µ : D → [c, d] are measurable functions.
Then clearly ` ∈ L(D). Moreover, the following statements hold.

Proposition 5.2. Let t0 ∈ [a, b]. Then the operator ` defined by formula (5.1) is
a t0–Volterra one if and only if the condition

|p(t, x)|(τ(t, x)− t)(τ(t, x)− t0) ≤ 0 for a. e. (t, x) ∈ D (5.2)

is fulfilled.

To prove this proposition we need the following lemma.

Lemma 5.1. Let ` ∈ L(D) be a positive2 t0–Volterra operator. Then for any
non-decreasing function γ ∈ C([a, b];R), the relation

γ
(
α(t)

)
`(1)(t, x) ≤ `(γ)(t, x) ≤ γ

(
β(t)

)
`(1)(t, x)3 (5.3)

holds for a. e. (t, x) ∈ D, where

α(t) = min{t, t0}, β(t) = max{t, t0} for t ∈ [a, b].

Proof. Let γ ∈ C([a, b];R) be a non-decreasing function. We first show that the
relation

γ
(
α(t)

)
`(1)(s, x) ≤ `(γ)(s, x)

≤ γ
(
β(t)

)
`(1)(s, x) for a. e. (s, x) ∈ [α(t), β(t)]× [c, d]

(5.4)

holds for every t ∈ [a, b]. Indeed, let t ∈ [a, b], t 6= t0, be arbitrary. Put

γ0(s, x) =


γ
(
α(t)

)
for (s, x) ∈ D, s ≤ α(t),

γ(s) for (s, x) ∈ D, α(t) < s < β(t),

γ
(
β(t)

)
for (s, x) ∈ D, β(t) ≤ s.

Then obviously γ0 ∈ C(D;R) and

γ
(
α(t)

)
≤ γ0(s, x) ≤ γ

(
β(t)

)
for (s, x) ∈ D.

Since the operator ` is positive, we obtain

γ
(
α(t)

)
`(1)(s, x) ≤ `(γ0)(s, x) ≤ γ

(
β(t)

)
`(1)(s, x) for a. e. (s, x) ∈ D.

On the other hand, the operator ` is supposed to be a t0–Volterra one which guar-
antees the equality

`(γ0)(s, x) = `(γ)(s, x) for a. e. (s, x) ∈ [α(t), β(t)]× [c, d]

2It maps the set C(D;R+) into the set L(D;R+).
3Here, `(γ) means `(γ) in which γ(t, x) = γ(t) for (t, x) ∈ D.
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and thus desired relation (5.4) holds for every t ∈ [a, b].
Now we put

u(t, x) =

∫ t

a

∫ x

c

`(γ)(s, η)dηds, v(t, x) =

∫ t

a

∫ x

c

`(1)(s, η)dηds for (t, x) ∈ D.

It follows from Lemma 4.1 that there exists a set E ⊆ [a, b] such that measE = b−a
and

u′[1](t, x) =

∫ x

c

`(γ)(t, η)dη for t ∈ E, x ∈ [c, d],

v′[1](t, x) =

∫ x

c

`(1)(t, η)dη for t ∈ E, x ∈ [c, d]

(5.5)

and, moreover, there is a set F ⊆ E× ]c, d] with measF = (b− a)(d− c) such that

u′′[1,2](t, x) = `(γ)(t, x), v′′[1,2](t, x) = `(1)(t, x) for (t, x) ∈ F. (5.6)

Let (t, x) ∈ F , t > t0, be arbitrary. Then α(t) = t0, β(t) = t, and relation (5.4)
yields that

γ(t0)

hk

∫ t

t−h

∫ x

x−k
`(1)(s, η)dηds ≤ 1

hk

∫ t

t−h

∫ x

x−k
`(γ)(s, η)dηds

≤ γ(t)

hk

∫ t

t−h

∫ x

x−k
`(1)(s, η)dηds

for all h ∈ ]0, t− t0] and k ∈ ]0, x− c], whence we get

γ(t0)

k

[
v(t, x)− v(t− h, x)

h
− v(t, x− k)− v(t− h, x− k)

h

]
≤ 1

k

[
u(t, x)− u(t− h, x)

h
− u(t, x− k)− u(t− h, x− k)

h

]
≤ γ(t)

k

[
v(t, x)− v(t− h, x)

h
− v(t, x− k)− v(t− h, x− k)

h

]
for all h ∈ ]0, t − t0] and k ∈ ]0, x − c]. For any k ∈ ]0, x − c] fixed we pass to the
limit h→ 0+ in the latter relation and, in view of equalities (5.5), we get

γ(t0)

k

[
v′[1](t, x)− v′[1](t, x− k)

]
≤ 1

k

[
u′[1](t, x)− u′[1](t, x− k)

]
≤ γ(t)

k

[
v′[1](t, x)− v′[1](t, x− k)

]
for every k ∈ ]0, x− c]. Now letting k → 0+ in the previous inequalities and using
equalities (5.6), we obtain

γ(t0)`(1)(t, x) = γ(t0)v′′[1,2](t, x) ≤ u′′[1,2](t, x) = `(γ)(t, x)

≤ γ(t)v′′[1,2](t, x) = γ(t)`(1)(t, x),

i. e., desired relation (5.3) holds for every (t, x) ∈ F such that t > t0.
Let now (t, x) ∈ F , t < t0, be arbitrary. Then α(t) = t, β(t) = t0, and relation

(5.4) implies that

γ(t)

hk

∫ t+h

t

∫ x

x−k
`(1)(s, η)dηds ≤ 1

hk

∫ t+h

t

∫ x

x−k
`(γ)(s, η)dηds
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≤ γ(t)

hk

∫ t+h

t

∫ x

x−k
`(1)(s, η)dηds

for all h ∈ ]0, t0 − t] and k ∈ ]0, x− c], whence we get

γ(t)

k

[
v(t+ h, x)− v(t, x)

h
− v(t+ h, x− k)− v(t, x− k)

h

]
≤ 1

k

[
u(t+ h, x)− u(t, x)

h
− u(t+ h, x− k)− u(t, x− k)

h

]
≤ γ(t0)

k

[
v(t+ h, x)− v(t, x)

h
− v(t+ h, x− k)− v(t, x− k)

h

]
for all h ∈ ]0, t0 − t] and k ∈ ]0, x − c]. For any k ∈ ]0, x − c] fixed we pass to the
limit h→ 0+ in the latter relation and, in view of equalities (5.5), we get

γ(t)

k

[
v′[1](t, x)− v′[1](t, x− k)

]
≤ 1

k

[
u′[1](t, x)− u′[1](t, x− k)

]
≤ γ(t0)

k

[
v′[1](t, x)− v′[1](t, x− k)

]
for every k ∈ ]0, x− c]. Now letting k → 0+ in the previous inequalities and using
equalities (5.6), we obtain

γ(t)`(1)(t, x) = γ(t)v′′[1,2](t, x) ≤ u′′[1,2](t, x) = `(γ)(t, x)

≤ γ(t0)v′′[1,2](t, x) = γ(t0)`(1)(t, x),

i. e., desired relation (5.3) holds for every (t, x) ∈ F such that t < t0.
Consequently, relation (5.3) is fulfilled for every (t, x) ∈ F with t 6= t0 and thus

we have proved that this relation holds for a. e. (t, x) ∈ D. �

Proof of Proposition 5.2. We first note that inequality (5.2) is equivalent to the
condition

|p(t, x)|min{t, t0} ≤ |p(t, x)|τ(t, x)

≤ |p(t, x)|max{t, t0} for a. e. (t, x) ∈ D.
(5.7)

Assume that the operator ` is a t0–Volterra one and put

`(v)(t, x) = |p(t, x)|v
(
τ(t, x), µ(t, x)

)
for a. e. (t, x) ∈ D and all v ∈ C(D;R).

Then ` ∈ L(D) and it is a positive4 t0–Volterra operator. Indeed, linearity and
positivity of ` are obvious. Moreover, let [a0, b0] ⊆ [a, b] and v ∈ C(D;R) be
arbitrary such that t0 ∈ [a0, b0] and

v(t, x) = 0 for (t, x) ∈ [a0, b0]× [c, d].

Then we have

p(t, x)v
(
τ(t, x), µ(t, x)

)
= 0 for a. e. (t, x) ∈ [a0, b0]× [c, d]

because the operator ` is a t0–Volterra one and thus the relation

|p(t, x)|v
(
τ(t, x), µ(t, x)

)
= 0 for a. e. (t, x) ∈ [a0, b0]× [c, d]

holds as well. However it means that ` is also a t0–Volterra operator.

4It maps the set C(D;R+) into the set L(D;R+).
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Now we put

γ(t) = t for t ∈ [a, b].

The function γ ∈ C([a, b];R) is increasing and therefore, it follows from Lemma 5.1
that

|p(t, x)|min{t, t0} = |p(t, x)|α(t) = α(t)`(1)(t, x)

≤ `(γ)(t, x) = |p(t, x)|τ(t, x)

≤ β(t)`(1)(t, x) = |p(t, x)|max{t, t0} for a. e. (t, x) ∈ D,

i. e., relation (5.7) is satisfied.
Conversely, if relation (5.7) holds then, by using Definition 5.1, we easily show

that the operator ` is a t0–Volterra one. �

Proposition 5.3. Let x0 ∈ [c, d]. Then the operator ` defined by formula (5.1) is
an x0–Volterra one if and only if the condition

|p(t, x)|(µ(t, x)− x)(µ(t, x)− x0) ≤ 0 for a. e. (t, x) ∈ D (5.8)

holds.

Proof. It can be proved similarly as Proposition 5.2 by exchanging the role of the
variables t and x. �

Proposition 5.4. Let t0 ∈ [a, b] and x0 ∈ [c, d]. Then the operator ` defined by
formula (5.1) is a (t0, x0)–Volterra one if and only if conditions (5.2) and (5.8) are
both satisfied.

Proof. The assertion follows immediately from Propositions 5.1–5.3. �

6. Existence and Uniqueness Theorems

In this section, we give some efficient condition guaranteeing the unique solv-
ability of problems (1.1), (1.2) as well as (1.1′), (1.2). We prove, in particular, that
problem (1.1), (1.2) with Volterra type operator ` has a unique solution without
any additional assumptions. We first formulate all the results, their proofs being
postponed till Section 6.1 below.

Introduce the following notation.

Notation 6.1. Let ` ∈ L(D). Define the operators ϑk : C(D;R) → C(D;R),
k = 0, 1, 2, . . . , by setting

ϑ0(v) = v, ϑk(v) = T
(
ϑk−1(v)

)
for v ∈ C(D;R), k ∈ N, (6.1)

where the operator T is given by formula (3.1).

Theorem 6.1. Let there exist m ∈ N and α ∈ [0, 1[ such that the inequality

‖ϑm(u)‖C ≤ α‖u‖C (6.2)

is satisfied for every solution u to homogeneous problem (1.10), (1.20). Then prob-
lem (1.1), (1.2) is uniquely solvable.

Remark 6.1. The assumption α ∈ [0, 1[ in the previous theorem cannot be replaced
by the assumption α ∈ [0, 1] (see Example 9.1).
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Corollary 6.1. Let there exist a number j ∈ N such that the inequalities∫ t0

a

∫ x0

c

pj(s, η)dηds < 1,

∫ t0

a

∫ d

x0

pj(s, η)dηds < 1,

∫ b

t0

∫ x0

c

pj(s, η)dηds < 1,

∫ b

t0

∫ d

x0

pj(s, η)dηds < 1

(6.3)

are satisfied, where p1 ≡ |p| and

pk+1(t, x) =

= |p(t, x)| sgn
(
(τ(t, x)− t0)(µ(t, x)− x0)

) ∫ τ(t,x)

t0

∫ µ(t,x)

x0

pk(s, η)dηds

for a. e. (t, x) ∈ D, k ∈ N. (6.4)

Then problem (1.1′), (1.2) is uniquely solvable.

Remark 6.2. Example 9.1 shows that neither of strict inequalities (6.3) in Corol-
lary 6.1 can be replaced by the nonstrict one.

Theorem 6.2. Let ` be a t0–Volterra operator. Then problem (1.1), (1.2) has
a unique solution.

Theorem 6.3. Let ` be an x0–Volterra operator. Then problem (1.1), (1.2) has
a unique solution.

Corollary 6.2. Let ` be a (t0, x0)–Volterra operator. Then problem (1.1), (1.2)
has a unique solution.

Corollary 6.3. Let at least one of conditions (5.2) and (5.8) be satisfied. Then
problem (1.1′), (1.2) has a unique solution.

6.1. Proofs. Now we prove statements formulated above.

Proof of Theorem 6.1. According to Theorem 4.1, it is sufficient to show that ho-
mogeneous problem (1.10), (1.20) has only the trivial solution.

Let u be a solution to problem (1.10), (1.20). Then, in view of Proposition 2.1(3),
the function u satisfies

u(t, x) =

∫ t

t0

∫ x

x0

`(u)(s, η)dηds = T (u)(t, x) = ϑ1(u)(t, x) for (t, x) ∈ D.

Using the last relation, we get

u(t, x) = T
(
ϑ1(u)

)
(t, x) = ϑ2(u)(t, x) for (t, x) ∈ D

and thus u = ϑk(u) for every k ∈ N. Therefore, (6.2) implies

‖u‖C = ‖ϑm(u)‖C ≤ α‖u‖C ,

which guarantees that u ≡ 0 because α ∈ [0, 1[ . �

Proof of Corollary 6.1. It is clear that equation (1.1′) is a particular case of equa-
tion (1.1) in which the operator ` is defined by formula (5.1). It is not difficult to
verify that∣∣ϑk(v)(t, x)

∣∣ ≤
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≤ sgn
(
(t− t0)(x− x0)

) ∫ t

t0

∫ x

x0

∣∣p(s, η)ϑk−1(v)
(
τ(s, η), µ(s, η)

)∣∣dηds

≤ ‖v‖C sgn
(
(t− t0)(x− x0)

) ∫ t

t0

∫ x

x0

pk(s, η)dηds

for (t, x) ∈ D, k ∈ N, v ∈ C(D;R).

Therefore, the assumptions of Theorem 6.1 are satisfied with m = j and

α = max

{
sgn

(
(t− t0)(x− x0)

) ∫ t

t0

∫ x

x0

pj(s, η)dηds : (t, x) ∈ D
}
.

�

To prove Theorem 6.2 we need the following lemma.

Lemma 6.1. Let t0 ∈ [a, b] and ` ∈ L(D) be a t0–Volterra operator. Then for any
x0 ∈ [c, d], the relation

lim
k→+∞

‖ϑk‖ = 0 (6.5)

holds, where the operators ϑk are defined by formula (6.1).

Proof. Let x0 ∈ [c, d] and ε ∈ ]0, 1[ be arbitrary. According to Proposition 3.1,
the operator ϑ1 is completely continuous. Therefore, by virtue of the Arzelà-Ascoli
lemma, there exists δ > 0 such that∣∣∣∣∫ y2

t0

∫ z2

x0

`(w)(s, η)dηds−
∫ y1

t0

∫ z1

x0

`(w)(s, η)dηds

∣∣∣∣ ≤ ε ‖w‖C
for (y1, z1), (y2, z2) ∈ D, |y2 − y1|+ |z2 − z1| < δ, w ∈ C(D;R),

and consequently we have∣∣∣∣∫ y2

y1

∫ x

x0

`(w)(s, η)dηds

∣∣∣∣ ≤ ε ‖w‖C
for (y1, x), (y2, x) ∈ D, |y2 − y1| < δ, w ∈ C(D;R). (6.6)

Let

n = max

{
Ent

(
t0 − a
δ

)
,Ent

(
b− t0
δ

)}
+ 1.

Choose yn+1 ∈ [a, t0] and yn+2 ∈ [t0, b] such that yn+2 − yn+1 < δ, and put

yk =

{
yn+1 − (n+ 1− k) yn+1−a

n for k = 1, 2, . . . , n,

yk = yn+2 + (k − n− 2) b−yn+2

n for k = n+ 3, n+ 4, . . . , 2n+ 2,

and

Dk = [yn+2−k, yn+1+k]× [c, d] for k = 1, 2, . . . , n+ 1.

It is clear that

|t2 − t1| < δ for t1, t2 ∈ [yj , yj+1], j = 1, 2, . . . , 2n+ 1. (6.7)

Having w ∈ C(D;R), we denote

‖w‖i = ‖w‖C(Di;R) for i = 1, 2, . . . , n+ 1.
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Let v ∈ C(D;R) be arbitrary. We shall show that the relation

‖ϑk(v)‖i ≤ αi(k)εk‖v‖C for k ∈ N (6.8)

holds for every i = 1, 2, . . . , n+ 1, where

αi(k) = αik
i−1 for k ∈ N, i = 1, 2, . . . , n+ 1 (6.9)

and
α1 = 1, αi+1 = i+ 1 + iαi for i = 1, 2, . . . , n. (6.10)

By virtue of (6.6) and (6.7), it is easy to verify that, for any w ∈ C(D;R) and
i = 1, 2, . . . , n+ 1, we have∣∣∣∣∫ t

t0

∫ x

x0

`(w)(s, η)dηds

∣∣∣∣ ≤ i ε ‖w‖C for (t, x) ∈ Di . (6.11)

Observe that the previous relation immediately implies

‖ϑ1(v)‖i ≤ i ε ‖v‖C for i = 1, 2, . . . , n+ 1. (6.12)

Furthermore, on account of (6.6), (6.7), and the fact that ` is a t0–Volterra operator,
we obtain∣∣ϑk+1(v)(t, x)

∣∣ =

∣∣∣∣∫ t

t0

∫ x

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣ ≤ ε ‖ϑk(v)‖1 for (t, x) ∈ D1, k ∈ N.

Hence, by virtue of (6.12), we get

‖ϑk(v)‖1 ≤ εk ‖v‖C for k ∈ N
and thus relation (6.8) holds for i = 1.

Now suppose that relation (6.8) holds for some i ∈ {1, 2, . . . , n}. We shall show
that the relation indicated is also true for i+ 1. With respect to (6.7), we obtain

‖ϑk+1(v)‖i+1 = max

{∣∣∣∣∫ t

t0

∫ x

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣ : (t, x) ∈ Di+1

}
=

∣∣∣∣∣
∫ t∗k

t0

∫ x∗
k

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t̂k

t0

∫ x∗
k

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t∗k

t̂k

∫ x∗
k

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣ for k ∈ N,

where (t∗k, x
∗
k) ∈ Di+1, (t̂k, x

∗
k) ∈ Di, and |t∗k − t̂k| < δ for k ∈ N. Therefore, on

account of (6.6), (6.11), and the fact that ` is a t0–Volterra operator, we get

‖ϑk+1(v)‖i+1 ≤ ε ‖ϑk(v)‖i+1 + i ε ‖ϑk(v)‖i ≤ ε ‖ϑk(v)‖i+1 + i αi(k) εk+1 ‖v‖C
for k ∈ N. Consequently,

‖ϑk+1(v)‖i+1 ≤ ε
(
ε ‖ϑk−1(v)‖i+1 + i αi(k − 1) εk ‖v‖C

)
+ i αi(k) εk+1 ‖v‖C for k ∈ N.

Continuing this procedure, on account of (6.12), we obtain

‖ϑk+1(v)‖i+1 ≤
(
i+ 1 + i

(
αi(1) + · · ·+ αi(k)

))
εk+1 ‖v‖C for k ∈ N. (6.13)
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By using (6.9) and (6.10), it is easy to verify that

i+ 1 + i
(
αi(1) + · · ·+ αi(k)

)
= i+ 1 + i αi

(
1i−1 + · · ·+ ki−1

)
≤ i+ 1 + i αi k k

i−1 = i+ 1 + i αi k
i

≤ (i+ 1 + i αi) k
i = αi+1 k

i ≤ αi+1 (k + 1).

Therefore, (6.12) and (6.13) imply that

‖ϑk(v)‖i+1 ≤ αi+1(k) εk ‖v‖C for k ∈ N.

Hence, by induction, we have proved that relation (6.8) holds for every i = 1, 2, . . . , n+
1.

Now it is already clear that, for any k ∈ N, the estimate

‖ϑk(v)‖C = ‖ϑk(v)‖n+1 ≤ αn+1 k
n εk ‖v‖C for v ∈ C(D;R)

is fulfilled and thus

‖ϑk‖ ≤ αn+1 k
n εk for k ∈ N.

Since we suppose ε ∈ ]0, 1[ , the last relation yields the validity of desired relation
(6.5). �

Proof of Theorem 6.2. According to Lemma 6.1, there exists a number m0 ∈ N
such that ‖ϑm0

‖ < 1. Moreover, it is clear that

‖ϑm0
(v)‖C ≤ ‖ϑm0

‖ ‖v‖C for v ∈ C(D;R)

because the operator ϑm0 is bounded. Therefore, the assumptions of Theorem 6.1
are satisfied with m = m0 and α = ‖ϑm0

‖. �

Proof of Theorem 6.3. It can be proved analogously to Theorem 6.2 by exchanging
the role of the variables t and x. �

Proof of Corollary 6.2. The assertion follows immediately from Theorem 6.2 and
Proposition 5.1. �

Proof of Corollary 6.3. It is clear that equation (1.1′) is a particular case of equa-
tion (1.1) in which the operator ` is defined by formula (5.1). According to Propo-
sitions 5.2 and 5.3, the assumptions (5.2) and (5.8) guarantee that the operator `
is a t0–Volterra one and an x0–Volterra one, respectively. Therefore, the assertion
of the corollary follows immediately from Theorems 6.2 and 6.3. �

7. Well-posedness

In this section, the well-posedness of problems (1.1), (1.2) and (1.1′), (1.2) is
studied. We first formulate all the results, their proofs being given in Section 7.1
below.

For any k ∈ N, along with problem (1.1), (1.2) we consider the perturbed problem

∂2u(t, x)

∂t ∂x
= `k(u)(t, x) + qk(t, x), (1.1k)

u(t, xk) = ϕk(t) for t ∈ [a, b], u(tk, x) = ψk(x) for x ∈ [c, d], (1.2k)

where `k ∈ L(D), qk ∈ L(D;R), tk ∈ [a, b], xk ∈ [c, d], and ϕk ∈ AC ([a, b];R),
ψk ∈ AC ([c, d];R) are such that ϕk(tk) = ψk(xk).

Introduce the following notation.
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Notation 7.1. Let Λ ∈ L(D), t∗ ∈ [a, b], and x∗ ∈ [c, d]. Denote by M(Λ, t∗, x∗)
the set of all functions y ∈ C∗(D;R) admitting the representation

y(t, x) =

∫ t

t∗

∫ x

x∗
Λ(z)(s, η)dηds for (t, x) ∈ D,

where z ∈ C(D;R) and ‖z‖C = 1.

Theorem 7.1. Let problem (1.1), (1.2) have a unique solution u and

lim
k→+∞

λk = 0, (7.1)

where

λk = sup
(t,x)∈D

y∈M(`k,tk,xk)

{∣∣∣∣∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

∣∣∣∣} (7.2)

for k ∈ N. Let, moreover,

lim
k→+∞

%k

[∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

]
= 0

uniformly on D for every y ∈ C∗(D;R), (7.3)

lim
k→+∞

%k

[∫ t

tk

∫ x

xk

qk(s, η)dηds−
∫ t

t0

∫ x

x0

q(s, η)dηds

]
= 0

uniformly on D, (7.4)

lim
k→+∞

%k‖ϕk − ϕ‖C = 0, lim
k→+∞

%k‖ψk − ψ‖C = 0, (7.5)

and

lim
k→+∞

%k
∣∣ϕk(tk)− ϕ(t0)

∣∣ = 0, (7.6)

where

%k = 1 + ‖`k‖ for k ∈ N. (7.7)

Then there exists k0 ∈ N such that for every k > k0 problem (1.1k), (1.2k) has
a unique solution uk and

lim
k→+∞

‖uk − u‖C = 0. (7.8)

Remark 7.1. It is clear that condition (7.6) is equivalent to the condition

lim
k→+∞

%k
∣∣ψk(xk)− ψ(x0)

∣∣ = 0.

Note also that the sequences {tk} and {xk} in Theorem 7.1 do not necessarily
converge to t0 and x0, respectively. Indeed, let `k = ` = 05, qk ≡ q ≡ 0, a = c = 0,
b = d = 1, t0 = x0 = 1, tk = xk = 1/k, ϕk ≡ ϕ ≡ ψk ≡ ψ ≡ α, where
α ∈ AC ([0, 1];R) is such that α(0) = α(1). Then the assumptions of Theorem 7.1
are satisfied whereas tk → 0 and xk → 0 when k tends to +∞.

If we suppose that the operators `k are “uniformly bounded” in the sense of
relation (7.9) then we obtain the following statement.

5The symbol 0 stands here for the zero operator.
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Corollary 7.1. Let problem (1.1), (1.2) have a unique solution u, let there exist
a function ω ∈ L(D;R+) such that

|`k(y)(t, x)| ≤ ω(t, x)‖y‖C
for a. e. (t, x) ∈ D and all y ∈ C(D;R), k ∈ N, (7.9)

and

lim
k→+∞

∫ t

tk

∫ x

xk

`k(y)(s, η)dηds =

∫ t

t0

∫ x

x0

`(y)(s, η)dηds

uniformly on D for every y ∈ C∗(D;R). (7.10)

Moreover, let

lim
k→+∞

∫ t

tk

∫ x

xk

qk(s, η)dηds =

∫ t

t0

∫ x

x0

q(s, η)dηds uniformly on D, (7.11)

lim
k→+∞

‖ϕk − ϕ‖C = 0, lim
k→+∞

‖ψk − ψ‖C = 0, (7.12)

and

lim
k→+∞

ϕ(tk) = ϕ(t0). (7.13)

Then the conclusion of Theorem 7.1 holds.

Remark 7.2. Condition (7.13) is satisfied if and only if

lim
k→+∞

ψ(xk) = ψ(x0).

Remark 7.3. Assumption (7.9) in the previous corollary is essential and cannot be
omitted (see Example 9.2).

Corollary 7.2. Let problem (1.1), (1.2) have a unique solution u and let there exist
a function ω ∈ L(D;R+) such that relation (7.9) holds. Moreover, let condition
(7.12) be satisfied,

lim
k→+∞

∫ t

a

∫ x

c

[
`k(y)(s, η)− `(y)(s, η)

]
dηds = 0

uniformly on D for every y ∈ C∗(D;R), (7.14)

lim
k→+∞

∫ t

a

∫ x

c

[
qk(y)(s, η)− q(s, η)

]
dηds = 0 uniformly on D, (7.15)

and

lim
k→+∞

tk = t0, lim
k→+∞

xk = x0. (7.16)

Then the conclusion of Theorem 7.1 holds.

Corollary 7.2 immediately yields

Corollary 7.3. Let homogeneous problem (1.10), (1.20) have only the trivial solu-
tion. Then the Darboux operator6 of problem (1.10), (1.20) is continuous.

6The notion of the Darboux operator is introduced in Definition 4.1.
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Now we give a statement on the well-posedness of problem (1.1′), (1.2). For any
k ∈ N, along with equation (1.1′) we consider the perturbed equation

∂2u(t, x)

∂t ∂x
= pk(t, x)u

(
τk(t, x), µk(t, x)

)
+ qk(t, x), (1.1′k)

where pk, qk ∈ L(D;R) and τk : D → [a, b], µk : D → [c, d] are measurable functions.

Corollary 7.4. Let problem (1.1′), (1.2) have a unique solution u, let there exist
a function ω ∈ L(D;R+) such that

|pk(t, x)| ≤ ω(t, x) for a. e. (t, x) ∈ D, k ∈ N, (7.17)

and

lim
k→+∞

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
dsdη = 0 uniformly on D. (7.18)

Moreover, let conditions (7.12), (7.15), and (7.16) be satisfied, and

lim
k→+∞

ess sup
{∣∣τk(t, x)− τ(t, x)

∣∣ : (t, x) ∈ D
}

= 0, (7.19)

lim
k→+∞

ess sup
{∣∣µk(t, x)− µ(t, x)

∣∣ : (t, x) ∈ D
}

= 0. (7.20)

Then there exists k0 ∈ N such that for every k > k0 problem (1.1′k), (1.2k) has
a unique solution uk and relation (7.8) holds.

Remark 7.4. The assumption (7.17) in the previous statement is essential and
cannot be omitted (see Example 9.2).

Finally, we consider the hyperbolic equation without argument deviations

utx = p(t, x)u+ q(t, x) (7.21)

in which p, q ∈ L(D;R). For any k ∈ N, along with equation (7.21) we consider the
perturbed equation

utx = pk(t, x)u+ qk(t, x), (7.21k)

where pk, qk ∈ L(D;R).
The following statement can be derived from Theorem 7.1.

Corollary 7.5. Let conditions (7.4)–(7.6) be satisfied,

lim
k→+∞

%k

[∫ t

tk

∫ x

xk

pk(s, η)dηds−
∫ t

t0

∫ x

x0

p(s, η)dηds

]
= 0

uniformly on D, (7.22)

and

lim
k→+∞

%k

∫ tk

t0

∫ d

c

|p(s, η)|dηds = 0, lim
k→+∞

%k

∫ xk

x0

∫ b

a

|p(s, η)|dsdη = 0, (7.23)

where

%k = 1 + ‖pk‖L. (7.24)

Then relation (7.8) holds, where u and uk are solutions to problems (7.21), (1.2)
and (7.21k), (1.2k), respectively.

From Corollary 7.5 we get
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Corollary 7.6. Let conditions (7.12), (7.15), (7.16), and (7.18) be satisfied, and

sup
{
‖pk‖L : k ∈ N

}
< +∞.

Then the conclusion of Corollary 7.5 holds.

Corollary 7.6 immediately yields

Corollary 7.7. Let conditions (7.12) and (7.16) be satisfied,

lim
k→+∞

‖pk − p‖L = 0, (7.25)

and

lim
k→+∞

‖qk − q‖L = 0. (7.26)

Then the conclusion of Corollary 7.5 holds.

7.1. Proofs. In order to prove Theorem 7.1, we need the following lemma.

Lemma 7.1. Let problem (1.10), (1.20) have only the trivial solution and let con-
dition (7.1) hold, where the numbers λk are defined by formula (7.2). Then, for
any z ∈ C∗(D;R), there exist r0 > 0 and k0 ∈ N such that

‖y − z‖C ≤ r0(1 + ‖`k‖)
[
‖∆k(y)−∆0(z)‖C + ‖Γk(y, z)‖C

]
for k > k0, y ∈ C∗(D;R), (7.27)

where

∆k(v)(t, x) = −v(tk, xk) + v(t, xk) + v(tk, x)

for (t, x) ∈ D, v ∈ C∗(D;R), k ∈ N ∪ {0}, (7.28)

and

Γk(v, w)(t, x) =

∫ t

tk

∫ x

xk

[
v′′[1,2](s, η)− `k(v − w)(s, η)

]
dηds

−
∫ t

t0

∫ x

x0

w′′[1,2](s, η)dηds

for (t, x) ∈ D, v, w ∈ C∗(D;R), k ∈ N. (7.29)

Proof. Let the operators T, Tk : C(D;R) → C(D;R) be defined by formula (3.1)
and the relation

Tk(v)(t, x) =

∫ t

tk

∫ x

xk

`k(v)(s, η)dηds for (t, x) ∈ D, v ∈ C(D;R), k ∈ N.

Obviously, we have

‖Tk(y)‖C ≤ ‖`k(y)‖L ≤ ‖`k‖ ‖y‖C for y ∈ C(D;R), k ∈ N.

Therefore, the operators Tk (k ∈ N) are linear bounded ones, and the relation

‖Tk‖ ≤ ‖`k‖ for k ∈ N (7.30)

holds. Moreover, condition (7.1) with λk given by (7.2) can be rewritten in the
form

sup
{
‖Tk(y)− T (y)‖C : y ∈M(`k, tk, xk)

}
→ 0 as k → +∞. (7.31)
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Assume that, on the contrary, the assertion of the lemma is not true. Then
there exist z ∈ C∗(D;R), an increasing sequence {km}+∞m=1 of natural numbers, and
a sequence {ym}+∞m=1 of functions from C∗(D;R) such that the relation

‖ym − z‖C > m(1 + ‖`km‖)
[
‖∆km(ym)−∆0(z)‖C + ‖Γkm(ym, z)‖C

]
(7.32)

holds for every m ∈ N. For any m ∈ N and all (t, x) ∈ D, we put

zm(t, x) =
ym(t, x)− z(t, x)

‖ym − z‖C
, (7.33)

vm(t, x) =
1

‖ym − z‖C

[
∆km(ym)(t, x)−∆0(z)(t, x) + Γkm(ym, z)(t, x)

]
, (7.34)

z0,m(t, x) = zm(t, x)− vm(t, x), (7.35)

wm(t, x) = Tkm(z0,m)(t, x)− T (z0,m)(t, x) + Tkm(vm)(t, x). (7.36)

Obviously,

‖zm‖C = 1 for m ∈ N. (7.37)

Using (7.28)–(7.29) in relation (7.34), by virtue of conditions (a)–(c) of Proposi-
tion 2.1, we get

z0,m(t, x) = Tkm(zm)(t, x) for (t, x) ∈ D, m ∈ N, (7.38)

and thus

z0,m(t, x) = T (z0,m)(t, x) + wm(t, x) for (t, x) ∈ D, m ∈ N. (7.39)

Moreover, it follows from (7.32) and (7.34) that

‖vm‖C ≤
‖∆km(ym)−∆0(z)‖C + ‖Γkm(ym, z)‖C

‖ym − z‖C
<

1

m(1 + ‖`km‖)
(7.40)

for m ∈ N. Now the relations (7.30) and (7.40) yield

‖Tkm(vm)‖C ≤ ‖Tkm‖ ‖vm‖C ≤
‖`km‖

m(1 + ‖`km‖)
<

1

m
for m ∈ N. (7.41)

Observe that expression (7.38) and condition (7.37) guarantee the validity of the
inclusion z0,m ∈M(`km , tkm , xkm) for m ∈ N and thus, in view of (7.31), we obtain

lim
m→+∞

‖Tkm(z0,m)− T (z0,m)‖C = 0. (7.42)

According to (7.41) and (7.42), it follows from relation (7.36) that

lim
m→+∞

‖wm‖C = 0 (7.43)

and, by virtue of (7.37) and (7.40), equality (7.35) implies that ‖z0,m‖C < 2 for
m ∈ N. Since the sequence {‖z0,m‖C}+∞m=1 is bounded and the operator T is com-
pletely continuous (see Proposition 3.1), there exists a subsequence of {T (z0,m)}+∞m=1

which is convergent. We can assume without loss of generality that the sequence
{T (z0,m)}+∞m=1 is convergent, i. e., that there exists z0 ∈ C(D;R) such that

lim
m→+∞

‖T (z0,m)− z0‖C = 0.

Then it is clear that

lim
m→+∞

‖z0,m − z0‖C = 0, (7.44)
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because the functions z0,m admit representation (7.39) and relation (7.43) is satis-
fied. However, estimate (7.40) holds for vm and thus, equality (7.35) yields that

lim
m→+∞

‖zm − z0‖C = 0

which, together with (7.37), guarantees ‖z0‖C = 1. Since the operator T is con-
tinuous and conditions (7.43) and (7.44) are fulfilled, relation (7.39) yields that
z0 = T (z0). Consequently, z0 ∈ C∗(D;R) (see Proposition 2.1) and, by virtue of
Lemma 4.1(ii), z0 is a nontrivial solution to homogeneous problem (1.10), (1.20),
which is a contradiction. �

Proof of Theorem 7.1. Since problem (1.1), (1.2) has a unique solution, homoge-
neous problem (1.10), (1.20) has only the trivial solution. Therefore, the assump-
tions of Lemma 7.1 are satisfied and thus there exist r0 > 0 and k0 ∈ N such
that

‖y‖C ≤ r0(1 + ‖`k‖)
[
‖∆k(y)‖C + ‖Γk(y, 0)‖C

]
for k > k0, y ∈ C∗(D;R) (7.45)

and

‖y − u‖C ≤ r0(1 + ‖`k‖)
[
‖∆k(y)−∆0(u)‖C + ‖Γk(y, u)‖C

]
for k > k0, y ∈ C∗(D;R), (7.46)

where the operators ∆k and Γk are given by formulas (7.28) and (7.29), respectively.
If for some k ∈ N, u0 is a solution to the problem

∂2u(t, x)

∂t ∂x
= `k(u)(t, x),

u(t, xk) = 0 for t ∈ [a, b], u(tk, x) = 0 for x ∈ [c, d],

(7.47)

then ∆k(u0) ≡ 0 and Γk(u0, 0) ≡ 0. Therefore, relation (7.45) guarantees that for
every k > k0, homogeneous problem (7.47) has only the trivial solution. Hence, for
every k > k0, problem (1.1k), (1.2k) has a unique solution uk (see Theorem 4.1).
Clearly we have

∆k(uk)(t, x) = −ϕk(tk) + ϕk(t) + ψk(x) for (t, x) ∈ D, k > k0,

∆0(u)(t, x) = −ϕ(t0) + ϕ(t) + ψ(x) for (t, x) ∈ D,

and

Γk(u, uk)(t, x) =

∫ t

tk

∫ x

xk

`k(u)(s, η)dηds−
∫ t

t0

∫ x

x0

`(u)(s, η)dηds

+

∫ t

tk

∫ x

xk

qk(s, η)dηds−
∫ t

t0

∫ x

x0

q(s, η)dηds

for all (t, x) ∈ D and every k > k0. Therefore, by using relations (7.3)–(7.6), we get

lim
k→+∞

(1 + ‖`k‖)
[
‖∆k(uk)−∆0(u)‖C + ‖Γk(uk, u)‖C

]
= 0. (7.48)

On the other hand, it follows from inequality (7.46) that

‖uk−u‖C ≤ r0(1 +‖`k‖)
[
‖∆k(uk)−∆0(u)‖C +‖Γk(uk, u)‖C

]
for k > k0 (7.49)

and thus, in view of limit (7.48), desired relation (7.8) holds. �
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Proof of Corollary 7.1. We shall show that the assumptions of Theorem 7.1 are
satisfied. Indeed, relation (7.9) yields that ‖`k‖ ≤ ‖ω‖L for k ∈ N. Therefore,
by virtue of relations (7.10)–(7.13), assumptions (7.3)–(7.6) of Theorem 7.1 are
fulfilled. It remains to show that condition (7.1) holds, where the numbers λk are
given by formula (7.2).

Assume that, on the contrary, condition (7.1) does not hold. Then there ex-
ist ε0 > 0, an increasing sequence {km}+∞m=1 of natural numbers, and a sequence
{ym}+∞m=1 such that

ym ∈M
(
`km , tkm , xkm

)
for m ∈ N (7.50)

and

max
(t,x)∈D

{∣∣∣∣∣
∫ t

tkm

∫ x

xkm

`km(ym)(s, η)dηds−
∫ t

t0

∫ x

t0

`(ym)(s, η)dηds

∣∣∣∣∣
}
≥ ε0

for m ∈ N.

(7.51)

In view of inclusion (7.50) and Notation 7.1, we get

ym(t, x) =

∫ t

tkm

∫ x

xkm

`km(zm)(s, η)dηds for (t, x) ∈ D, m ∈ N,

where zm ∈ C(D;R) and ‖zm‖C = 1 form ∈ N. Since we suppose that the operators
`k are uniformly bounded in the sense of condition (7.9), we obtain ‖ym‖C ≤ ‖ω‖L
for m ∈ N and thus the sequence {ym}+∞m=1 is bounded in the space C(D;R). We
will show that the sequence indicated is also equicontinuous. Let ε > 0 be arbitrary.
Since the function ω is integrable on D, there exists δ > 0 such that the relation∫∫

E

ω(t, x)dtdx <
ε

2
(7.52)

holds for every measurable set E ⊆ D satisfying measE < max{b−a, d−c}δ. Using
condition (7.9), we get∣∣∣∣∣
∫ t2

tkm

∫ x2

xkm

`km(zm)(s, η)dηds−
∫ t1

tkm

∫ x1

xkm

`km(zm)(s, η)dηds

∣∣∣∣∣
≤

2∑
k=1

∫∫
Ek

ω(s, η)dsdη for (t1, x1), (t2, x2) ∈ D, m ∈ N,

where the measurable sets E1, E2 ⊆ D are such that measE1 = (d− c)|t2 − t1| and
measE2 = (b− a)|x2 − x1|. Therefore, by virtue of (7.52), we have

|ym(t2, x2)− ym(t1, x1)| < ε

for (t1, x1), (t2, x2) ∈ D, |t2 − t1|+ |x2 − x1| < δ, m ∈ N.

Consequently, the sequence {ym}+∞m=1 is equicontinuous in the space C(D;R). There-
fore, according to the Arzelà-Ascoli lemma, we can assume without loss of generality
that the sequence indicated is convergent. Hence, there exists p0 ∈ N such that

‖ym − yp0‖C <
ε0

2(‖ω‖L + ‖`‖+ 1)
for m ≥ p0. (7.53)
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Since yp0 ∈ C∗(D;R) and relation (7.10) holds, there exists p1 ∈ N such that

max
(t,x)∈D

{∣∣∣∣∫ t

tk

∫ x

xk

`k(yp0)(s, η)dηds−
∫ t

t0

∫ x

x0

`(yp0)(s, η)dηds

∣∣∣∣} <
ε0

2

for k ≥ p1.

(7.54)

Now we choose a number M ∈ N satisfying M ≥ p0 and kM ≥ p1. It is clear that∣∣∣∣∣
∫ t

tkM

∫ x

xkM

`kM (yM )(s, η)dηds−
∫ t

t0

∫ x

x0

`(yM )(s, η)dηds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

tkM

∫ x

xkM

`kM (yp0)(s, η)dηds−
∫ t

t0

∫ x

x0

`(yp0)(s, η)dηds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

tkM

∫ x

xkM

`kM (yM − yp0)(s, η)dηds

∣∣∣∣∣
+

∣∣∣∣∫ t

t0

∫ x

x0

`(yp0 − yM )(s, η)dηds

∣∣∣∣ for (t, x) ∈ D.

Therefore, by virtue of conditions (7.9), (7.53), and (7.54), the last relation yields
that

max
(t,x)∈D

{∣∣∣∣∣
∫ t

tkM

∫ x

xkM

`kM (yM )(s, η)dηds−
∫ t

t0

∫ x

x0

`(yM )(s, η)dηds

∣∣∣∣∣
}

≤ ε0

2
+ ‖ω‖L‖yM − yp0‖C + ‖`‖‖yp0 − yM‖C < ε0, (7.55)

which contradicts condition (7.51).
The contradiction obtained proves the validity of condition (7.1) and thus all the

assumptions of Theorem 7.1 are satisfied. �

To prove Corollary 7.2 we need the following lemma.

Lemma 7.2. Let condition (7.16) hold and let {σk}+∞k=1 be a sequence of functions
from L(D;R) such that

lim
k→+∞

∫ t

a

∫ x

c

[
σk(s, η)− σ(s, η)

]
dηds = 0 uniformly on D, (7.56)

where σ ∈ L(D;R). Then

lim
k→+∞

∫ t

tk

∫ x

xk

σk(s, η)dηds =

∫ t

t0

∫ x

x0

σ(s, η)dηds uniformly on D. (7.57)

Proof. It is easy to verify that∫ t

tk

∫ x

xk

σk(s, η)dηds−
∫ t

t0

∫ x

x0

σ(s, η)dηds

=

∫ tk

a

∫ xk

c

[
σk(s, η)− σ(s, η)

]
dηds+

∫ t

a

∫ x

c

[
σk(s, η)− σ(s, η)

]
dηds

+

(∫ tk

a

∫ xk

c

σ(s, η)dηds−
∫ t0

a

∫ x0

c

σ(s, η)dηds

)



DARBOUX PROBLEM FOR HYPERBOLIC EQUATIONS 23

+

∫ t0

tk

∫ x

c

σ(s, η)dηds−
∫ tk

a

∫ x

c

[
σk(s, η)− σ(s, η)

]
dηds

+

∫ t

a

∫ x0

xk

σ(s, η)dηds−
∫ t

a

∫ xk

c

[
σk(s, η)− σ(s, η)

]
dηds

for (t, x) ∈ D. Therefore, by using assumptions (7.16) and (7.56), we get the validity
of condition (7.57). �

Proof of Corollary 7.2. We shall show that the assumptions of Corollary 7.1 are
satisfied. Indeed, according to Lemma 7.2, assumptions (7.14)–(7.16) guarantee
the validity of conditions (7.10) and (7.11). On the other hand, condition (7.13) is
obviously satisfied, because the function ϕ is continuous and tk → t0 when k tends
to +∞. �

In order to prove Corollary 7.4 we need the following Krasnoselskii-Krein type
lemma.

Lemma 7.3. Let p, pk ∈ L(D;R) and let α, αk : D → R be measurable and es-
sentially bounded functions (k ∈ N). Assume that relations (7.17) and (7.18) are
satisfied, and

lim
k→+∞

ess sup
{
|αk(t, x)− α(t, x)| : (t, x) ∈ D

}
= 0. (7.58)

Then

lim
k→+∞

∫ t

a

∫ x

c

[
pk(s, η)αk(s, η)− p(s, η)α(s, η)

]
dηds = 0

uniformly on D. (7.59)

Proof. Without loss of generality we can assume that

|p(t, x)| ≤ ω(t, x) for a. e. (t, x) ∈ D. (7.60)

Let ε > 0 be arbitrary. According to assumption (7.58), there exists k0 ∈ N such
that ∫∫

D
ω(t, x)|αk(t, x)− α(t, x)|dtdx < ε

4
for k ≥ k0. (7.61)

Since the function α is measurable and essentially bounded, there exists a function
w ∈ C(D;R), which has continuous derivatives up to the second order and such
that ∫∫

D
ω(t, x)|α(t, x)− w(t, x)|dtdx < ε

4
. (7.62)

For any k ∈ N, we put

fk(t, x) =

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
dηds for (t, x) ∈ D.

Clearly, assumption (7.18) can be rewritten in the form

lim
k→+∞

‖fk‖C = 0. (7.63)

It can be verified by direct calculation that∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds
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= fk(t, x)w(t, x)−
∫ t

a

fk(s, x)w′[1](s, x)ds−
∫ x

c

fk(t, η)w′[2](t, η)dη

+

∫ t

a

∫ x

c

fk(s, η)w′′[1,2](s, η)dηds for (t, x) ∈ D, k ∈ N.

Consequently, by using relation (7.63), we get

lim
k→+∞

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds = 0 uniformly on D.

Hence, there exists a number k1 ≥ k0 such that∣∣∣∣∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds

∣∣∣∣ < ε

4
for (t, x) ∈ D, k ≥ k1. (7.64)

On the other hand, it is clear that∫ t

a

∫ x

c

[
pk(s, η)αk(s, η)− p(s, η)α(s, η)

]
dηds

=

∫ t

a

∫ x

c

pk(s, η)
[
αk(s, η)− α(s, η)

]
dηds

+

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds

+

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

][
α(s, η)− w(s, η)

]
dηds.

for all (t, x) ∈ D and every k ∈ N. Therefore, in view of relations (7.17), (7.60)–
(7.62), and (7.64), we get∣∣∣∣∣

∫ t

a

∫ x

c

[
pk(s, η)αk(s, η)− p(s, η)α(s, η)

]
dηds

∣∣∣∣∣
≤
∫∫
D
ω(s, η)|αk(s, η)− α(s, η)|dsdη

+

∣∣∣∣∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds

∣∣∣∣
+ 2

∫∫
D
ω(s, η)|α(s, η)− w(s, η)|dsdη

<
ε

4
+
ε

4
+ 2

ε

4
= ε for (t, x) ∈ D, k ≥ k1

and thus desired relation (7.59) holds. �

Proof of Corollary 7.4. Let the operator ` be defined by formula (5.1). Put

`k(v)(t, x) = pk(t, x)v
(
τk(t, x), µk(t, x)

)
for a. e. (t, x) ∈ D and all v ∈ C(D;R), k ∈ N. (7.65)

We will show that condition (7.14) is satisfied. Indeed, let y ∈ C∗(D;R) be arbi-
trary. It is clear that conditions (7.19) and (7.20) guarantee the validity of relation
(7.58), where

αk(t, x) = y
(
τk(t, x), µk(t, x)

)
, α(t, x) = y

(
τ(t, x), µ(t, x)

)
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for a. e. (t, x) ∈ D and all k ∈ N. Therefore, it follows from Lemma 7.3 that relation
(7.59) holds and thus condition (7.14) is fulfilled. On the other hand, by virtue of
relation (7.17), condition (7.9) is satisfied.

Consequently, the assertion of the corollary follows from Corollary 7.2. �

Proof of Corollary 7.5. We first mention that, according to Corollary 6.3, problems
(7.21), (1.2) and (7.21k), (1.2k) have unique solutions u and uk, respectively.

Let the operators ` and `k be defined by the formulas

`(v)(t, x) = p(t, x)v(t, x) for a. e. (t, x) ∈ D and all v ∈ C(D;R), (7.66)

and

`k(v)(t, x) = pk(t, x)v(t, x) for a. e. (t, x) ∈ D all v ∈ C(D;R), k ∈ N, (7.67)

respectively. Clearly

‖`k‖ = ‖pk‖L for k ∈ N. (7.68)

Therefore, assumptions (7.4)–(7.6) of Theorem 7.1 are satisfied. In order to apply
Theorem 7.1, it remains to show that conditions (7.1) and (7.3) are fulfilled.

It is easy to see that∣∣∣∣∣
∫ t

tk

∫ x

xk

[
pk(s, η)− p(s, η)

]
dηds

∣∣∣∣∣
≤
∣∣∣∣∫ t

tk

∫ x

xk

pk(s, η)dηds−
∫ t

t0

∫ x

x0

p(s, η)dηds

∣∣∣∣
+

∣∣∣∣∣
∫ tk

t0

∫ d

c

|p(s, η)|dηds

∣∣∣∣∣+

∣∣∣∣∣
∫ xk

x0

∫ b

a

|p(s, η)|dsdη

∣∣∣∣∣
for all (t, x) ∈ D and every k ∈ N. Therefore, conditions (7.22) and (7.23) guarantee
that

lim
k→+∞

%k‖fk‖C = 0, (7.69)

where

fk(t, x) =

∫ t

tk

∫ x

xk

[
pk(s, η)− p(s, η)

]
dηds for (t, x) ∈ D, k ∈ N. (7.70)

Observe that for an arbitrary y ∈ C(D;R) we have∣∣∣∣∣
∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

∣∣∣∣∣
≤
∣∣∣∣∫ t

tk

∫ x

xk

[
pk(s, η)− p(s, η)

]
y(s, η)dηds

∣∣∣∣
+

∣∣∣∣∣
∫ tk

t0

∫ d

c

|p(s, η)y(s, η)|dηds

∣∣∣∣∣+
+

∣∣∣∣∣
∫ xk

x0

∫ b

a

|p(s, η)y(s, η)|dsdη

∣∣∣∣∣ for (t, x) ∈ D, k ∈ N. (7.71)
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Moreover, for an arbitrary y ∈ C∗(D;R), we can verify by direct calculation that∫ t

tk

∫ x

xk

[
pk(s, η)− p(s, η)

]
y(s, η)dηds

= fk(t, x)y(t, x)−
∫ t

tk

fk(s, x)y′[1](s, x)ds−
∫ x

xk

fk(t, η)y′[2](t, η)dη

+

∫ t

tk

∫ x

xk

fk(s, η)y′′[1,2](s, η)dηds for (t, x) ∈ D, k ∈ N. (7.72)

Let k ∈ N and y ∈ M(`k, tk, xk) be arbitrary. Then, by virtue of Notation 7.1
and Lemma 4.1, we get

|y(t, x)| =
∣∣∣∣∫ t

tk

∫ x

xk

pk(s, η)z(s, η)dηds

∣∣∣∣ ≤ %k for (t, x) ∈ D, (7.73)

|y′[1](t, x)| =
∣∣∣∣∫ x

xk

pk(t, η)z(t, η)dη

∣∣∣∣ ≤ ∫ d

c

|pk(t, η)|dη

for a. e. t ∈ [a, b] and all x ∈ [c, d], (7.74)

|y′[2](t, x)| =
∣∣∣∣∫ t

tk

pk(s, x)z(s, x)ds

∣∣∣∣ ≤ ∫ b

a

|pk(s, x)|ds

for all t ∈ [a, b] and a. e. x ∈ [c, d], (7.75)

and

|y′′[1,2](t, x)| = |pk(t, x)z(t, x)| ≤ |pk(t, x)| for a. e. (t, x) ∈ D. (7.76)

By virtue of relations (7.73)–(7.76), it follows from inequalities (7.71) and (7.72)
that ∣∣∣∣∣

∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

∣∣∣∣∣
≤ 4%k‖fk‖C + %k

∣∣∣∣∣
∫ tk

t0

∫ d

c

|p(s, η)|dηds

∣∣∣∣∣+
+ %k

∣∣∣∣∣
∫ xk

x0

∫ b

a

|p(s, η)|dsdη

∣∣∣∣∣ for (t, x) ∈ D.

Therefore, according to assumptions (7.23) and (7.69), condition (7.1) holds, where
the numbers λk are given by formula (7.2).

Now let y ∈ C∗(D;R) be arbitrary. Put

%0 = ‖y‖C + max

{∫ b

a

|y′[1](s, x)|ds : x ∈ [c, d]

}

+ max

{∫ d

c

|y′[2](t, η)|dη : t ∈ [a, b]

}
+ ‖y′′[1,2]‖L. (7.77)
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Then inequalities (7.71) and (7.72) imply that∣∣∣∣∣
∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

∣∣∣∣∣
≤ %0

(
‖fk‖C +

∣∣∣∣∣
∫ tk

t0

∫ d

c

|p(s, η)|dηds

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

x0

∫ b

a

|p(s, η)|dsdη

∣∣∣∣∣
)

for (t, x) ∈ D, k ∈ N.

According to relations (7.23) and (7.69), the last inequality yields the validity of
condition (7.3).

Consequently, the assertion of the corollary follows from Theorem 7.1. �

Proof of Corollary 7.6. It follows from condition (7.25) that

sup
{
‖pk‖L : k ∈ N

}
< +∞.

Therefore, in view of relations (7.12) and (7.16), assumptions (7.5), (7.6), and
(7.23) of Corollary 7.5 are satisfied. Moreover, by virtue of relations (7.25), (7.26),
and (7.16), Lemma 7.2 guarantees the validity of assumptions (7.4) and (7.22) of
Corollary 7.5.

Consequently, all the assumptions of Corollary 7.5 are satisfied. �

8. On integral representation of solutions

The following proposition follows immediately from the linearity of problem
(1.1), (1.2) and Definition 4.1.

Proposition 8.1. Let problem (1.10), (1.20) have only the trivial solution. Then
the unique solution u to problem (1.1), (1.2) admits the representation

u = u0 + Ω(q), (8.1)

where u0 is a solution to problem (1.10), (1.2) and Ω is the Darboux operator of
problem (1.10), (1.20).

For the equation without argument deviations

utx = p(t, x)u+ q(t, x) (8.2)

in which p, q ∈ L(D;R), representation (8.1) of solutions to the Darboux problem
can be expressed in terms of the Riemann functions introduced in the following
definition.

Definition 8.1. Let t0 ∈ [a, b] and x0 ∈ [c, d]. The (unique) solution to the problem

utx = p(t, x)u, (8.20)

u(t, x0) = 1 for t ∈ [a, b], u(t0, x) = 1 for x ∈ [c, d] (8.3)

is denoted by Zt0,x0
and called the Riemann function of equation (8.20).

Remark 8.1. In view of Corollary 6.3, the Riemann function Zt0,x0
is well defined.
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Example 8.1. Let t0 ∈ ]a, b], x0 ∈ ]c, d], and k ≥ 0. We shall show that the
Riemann function Zt0,x0 of the equation

utx = −ku (8.4)

satisfies the relation

Zt0,x0
(t, x) = J0

(
2
√
k(t0 − t)(x0 − x)

)
for (t, x) ∈ [a, t0]× [c, x0], (8.5)

where J0 denotes the Bessel function of the first kind and order 0. Indeed, let us
consider the transformation

u(t, x) = v(z), where z =
√

(t0 − t)(x0 − x) . (8.6)

Then problem (8.4), (8.3) on the rectangle [a, t0] × [c, x0] can be reduced to the
problem

z2v′′(z) + zv′(z) + 4kz2v(z) = 0, v(0) = 1 (8.7)

on the interval [0,
√

(t0 − a)(x0 − c)] in the following way. If v is a solution to

problem (8.7) on the interval [0,
√

(t0 − a)(x0 − c)] then the function u defined by
relation (8.6) is a solution to problem (8.4), (8.3) on the rectangle [a, t0]× [c, x0].

From the theory of Bessel functions it follows that problem (8.7) has a solution

v(z) = J0

(
2
√
kz
)

for z ∈ [0,
√

(t0 − a)(x0 − c)]

and thus the Riemann function Zt0,x0
satisfies condition (8.5).

Theorem 8.1. For an arbitrary solution u to problem (1.1), (1.2), the integral
representation

u(t, x) = Zt,x(t0, x0)ϕ(t0)

+

∫ t

t0

Zt,x(s, x0)ϕ′(s)ds+

∫ x

x0

Zt,x(t0, η)ψ′(η)dη

+

∫ t

t0

∫ x

x0

Zt,x(s, η)q(s, η)dηds

(8.8)

holds for (t, x) ∈ D.

Remark 8.2. Integral representations of the type (8.8) in the case of continuous
coefficients p and q are discussed in the monograph [21].

Proof. Let u, z ∈ C∗(D;R) be arbitrary. Then, according to Proposition 2.1, clearly
zu′′[1,2], uz

′′
[1,2] ∈ L(D;R). Therefore, by using the properties of absolutely continu-

ous functions presented in Proposition 2.1 and Remarks 2.1 and 2.2, we get∫ t

t0

∫ x

x0

z(s, η)u′′[1,2](s, η)dηds

=

∫ t

t0

[
z(s, x)u′[1](s, x)− z(s, x0)u′[1](s, x0)−

∫ x

x0

z′[2](s, η)u′[1](s, η)dη

]
ds

= z(t, x)u(t, x)− z(t0, x)u(t0, x)−
∫ t

t0

z′[1](s, x)u(s, x)ds

−
∫ t

t0

z(s, x0)u′[1](s, x0)ds−
∫ t

t0

∫ x

x0

z′[2](s, η)u′[1](s, η)dηds

(8.9)
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and∫ t

t0

∫ x

x0

z′′[1,2](s, η)u(s, η)dηds =

∫ x

x0

∫ t

t0

z′′[2,1](s, η)u(s, η)dsdη

=

∫ x

x0

[
z′[2](t, η)u(t, η)− z′[2](t0, η)u(t0, η)−

∫ t

t0

z′[2](s, η)u′[1](s, η)ds

]
dη

=

∫ x

x0

z′[2](t, η)u(t, η)dη − z(t0, x)u(t0, x) + z(t0, x0)u(t0, x0)

+

∫ x

x0

z(t0, η)u′[2](t0, η)dη −
∫ x

x0

∫ t

t0

z′[2](s, η)u′[1](s, η)dsdη

(8.10)
for (t, x) ∈ D. It follows from Remark 2.2 that z′[2]u

′
[1] ∈ L(D;R) and thus∫ t

t0

∫ x

x0

z′[2](s, η)u′[1](s, η)dηds =

∫ x

x0

∫ t

t0

z′[2](s, η)u′[1](s, η)dsdη for (t, x) ∈ D.

Therefore, comparing equalities (8.9) and (8.10), we obtain for every (t, x) ∈ D the
equality

z(t, x)u(t, x) = z(t0, x0)u(t0, x0)

+

∫ t

t0

z(s, x0)u′[1](s, x0)ds+

∫ t

t0

z′[1](s, x)u(s, x)ds

+

∫ x

x0

z(t0, η)u′[2](t0, η)dη +

∫ x

x0

z′[2](t, η)u(t, η)dη

+

∫ t

t0

∫ x

x0

[
z(s, η)u′′[1,2](s, η)− z′′[1,2](s, η)u(s, η)

]
dηds.

(8.11)

Now let u be a solution to problem (1.1), (1.2). Moreover, let (t∗, x∗) ∈ D be
arbitrary. Then it follows from equality (8.11) with z = Zt∗,x∗ that

u(t∗, x∗) = Zt∗,x∗(t0, x0)u(t0, x0)

+

∫ t∗

t0

Zt∗,x∗(s, x0)u′[1](s, x0)ds+

∫ x∗

x0

Zt∗,x∗(t0, η)u′[2](t0, η)dη

+

∫ t∗

t0

∫ x∗

x0

Zt∗,x∗(s, η)q(s, η)dηds.

Consequently, in view of initial conditions (1.2), desired equality (8.8) holds. �

9. Counter-examples

Example 9.1. Let p ∈ L(D;R+) be such that∫ b

t0

∫ d

x0

p(s, η)dηds = 1

and let the operator ` be defined by the relation

`(v)(t, x) = p(t, x)v(b, d) for a. e. (t, x) ∈ D and all v ∈ C(D;R).
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Then condition (6.2) with α = 1 is satisfied for every m ∈ N and v ∈ C(D;R).
Moreover, ∫ b

t0

∫ d

x0

pj(s, η)dηds = 1 for every j ∈ N,

where the function pj is given by formula (6.4).
On the other hand, problem (1.10), (1.20) has a nontrivial solution

u(t, x) =

∫ t

a

∫ x

c

p(s, η)dηds for (t, x) ∈ D.

This example shows that the assumption α ∈ [0, 1[ in Theorem 6.1 cannot be
replaced by the assumption α ∈ [0, 1], and the strict inequality∫ b

t0

∫ d

x0

pj(s, η)dηds < 1

in Corollary 6.1 cannot be replaced by the nonstrict one. The optimality of the
other strict inequalities in (6.3) can be justified analogously.

Example 9.2. Let

gk(t) = k cos(k2t), hk(t) = k sin(k2t) for t ≥ 0, k ∈ N, (9.1)

and

yk(t) = −k
∫ t

0

exp

(
sin(k2t)

k
− sin(k2s)

k

)
sin(k2s)ds for t ≥ 0, k ∈ N. (9.2)

It is not difficult to verify that for every k ∈ N we have

y′k(t) = gk(t)yk(t) + hk(t) for t ≥ 0 (9.3)

and

|yk(t)| ≤ 1 + e+ te2 for t ≥ 0, (9.4)

because

yk(t) =
1

k
cos(k2t)− 1

k
exp

(
sin(k2t)

k

)
+

1

2

∫ t

0

exp

(
sin(k2t)

k
− sin(k2s)

k

)
ds

+
1

2

∫ t

0

exp

(
sin(k2t)

k
− sin(k2s)

k

)
cos(2k2s)ds for t ≥ 0.

Moreover,

lim
k→+∞

yk(t) =
t

2
for t ≥ 0. (9.5)

Now, let p ≡ 0 and q ≡ 0 on D, t0 = a, x0 = c, ϕ ≡ 0 on [a, b], ψ ≡ 0 on [c, d], and

τ(t, x) = t, µ(t, x) = x for (t, x) ∈ D.
For any k ∈ N, we put tk = a, xk = c, ϕk ≡ 0 on [a, b], ψk ≡ 0 on [c, d],

pk(t, x) = gk(t− a)gk(x− c) for (t, x) ∈ D,

qk(t, x) = hk(t− a)y′k(x− c) + y′k(t− a)hk(x− c)

− hk(t− a)hk(x− c) for (t, x) ∈ D,
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and

τk(t, x) = t, µk(t, x) = x for (t, x) ∈ D.
According to (9.1), (9.3), and (9.4), it is clear that the assumptions of Corol-

lary 7.4 are satisfied except condition (7.17). Let the operators ` and `k be defined
by formulas (5.1) and (7.65), respectively. Then, it is not difficult to verify that the
assumptions of Corollary 7.1 are fulfilled except condition (7.9).

On the other hand,

u(t, x) = 0 for (t, x) ∈ D
and

uk(t, x) = yk(t− a)yk(x− c) for (t, x) ∈ D, k ∈ N
are solutions to problems (1.1′), (1.2) and (1.1′k), (1.2k), respectively, as well as
problems (1.1), (1.2) and (1.1k), (1.2k), respectively. However, in view of condition
(9.5), we get

lim
k→+∞

(
uk(t, x)− u(t, x)

)
= lim
k→+∞

yk(t− a)yk(x− c) =

=
(t− a)(x− c)

4
for (t, x) ∈ D

and thus relation (7.8) does not hold.
This example shows that assumption (7.17) in Corollary 7.4 and assumption

(7.9) in Corollary 7.1 are essential and cannot be omitted.
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