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Abstract

We give an explicit construction of a three-coloring of KN,N in
which no Kr,r is monochromatic for r = N1/2−ε, where ε > 0 is a
constant.

1 Introduction

In finite combinatorics there are many proofs of the existence of certain
combinatorial structures which do not provide us with any explicit example
of such structures. To give an explicit construction is not only a mathemat-
ical challenge, but sometimes it is the only way to determine the extremal
structures for a particular question, because probabilistic existence proofs
do not give us structures with matching bounds.

One of such problems is to give an explicit construction of a two-coloring
of the complete bipartite graphKN,N such that no subgraphKr,r is monochro-
matic for some small r. (Paul Erdős asked this problem for general graphs,
[5]; the bipartite version that we consider here is also well-known and it is
believed to be harder.) It is well-known that there exist such colorings for
r = (2 + o(1)) log2N , but until recently explicit constructions were only
known for r ≈

√
N .1 More precisely, no proofs of such bounds were known.

It has been conjectured long ago that Paley’s graphs have this property for
suitable finite fields, but the best bound one can prove is still only of the
order of

√
N .

In 2003 we proposed to construct two-colorings that beat this barrier by
explicitly constructing a subset of F2m

2 which has small intersections with all
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1Notice that the best lower bound is only r = (1 − o(1)) log2 N , which suggests that

finding the extremal value of r may require an explicit construction.
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subspaces of dimension m, see [8]. (We shall state this condition explicitly
in the next section.) In that paper we gave a polynomial time construction
of a two-coloring of KN,N with no monochromatic Kr,r for r =

√
N/2

√
logN .

Furthermore we suggested that the graphs of curves y = x3 and xy = 1 in
the field F2q , for q prime, should give constructions beating the

√
N barrier

(using the natural isomorphism of the additive groups of F2q and Fq2).
Soon after that, Barak, Kindler, Shaltiel, Sudakov and Wigderson [1]

found a polynomial construction of two-colorings of KN,N which leave no
Kr,r monochromatic for r = N ε, where ε can be chosen arbitrarily small
(in fact, ε ≈ 1/ log logN). Their result was a breakthrough not only in the
field of Ramsey graphs, but they also succeeded in constructing extractors
and other gadgets needed in derandomization with much better parameters
than had been known before.

The construction of Barak et al. is very complicated and uses derandom-
ization. (Namely, one step of the construction needs structures of small size
with special properties; since the size is small enough such a structure can
be found by a thorough search of all structures of this size.) For applications
in complexity theory this poses no problem, since from the computational
point of view their construction is very effective: one can compute the color
of an edge from the codes of vertices in polynomial time. Yet it seems rea-
sonable to continue the search for more explicit constructions, even if they
have worse parameters.

In this paper we give a very explicit construction of a three-coloring of
KN,N in which no Kr,r is monochromatic for r = N1/2−ε, and some constant
ε > 0. Our result is an application of the recently proved bounds on the
number of sums and products in finite fields of Bourgain, Katz and Tao [4].
That result is also used as the main building block of the construction of
Barak et al., but in a different way.

Our aim was also to prove the conjectures about curves y = x3 and
xy = 1 mentioned above. We have succeeded only partially, namely we can
prove the corresponding statement for y = x2 and for fields of characteristics
different from 2. For fields of the characteristic 2 this curve is not good for
our purpose. Since the number of colors is the size of the prime subfield, the
smallest number of colors that we can get is 3. The most recent results of
Bourgain [2, 3] in this area seem also to confirm our conjecture about curves
y = x3 and xy = 1 . In [3] Bourgain defined three explicit two-colorings of
KN,N in which no Kr,r is monochromatic for r = N1/2−ε, for some ε > 0.
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2 The three-coloring of KN,N

Let F be a field. Let S ⊆ Fn. We define a coloring γ of the complete
bipartite graph S′ × S′′, where S′ = {1} × S and S′′ = {2} × S, by the
formula

γ((1, u), (2, v)) = 〈u, v〉,

where 〈u, v〉 =
∑n

i=1 uivi is the inner product in F .
In plain words, we take two copies of the subset S of the vector space

and color every pair of vertices, with u in one copy and v in the other copy,
by the element of the field F equal to the inner product of the two vertices.
Thus if N = |S| and c = |F |, γ is a coloring of KN,N by c colors.

In [8] we proved the following simple proposition only for the two-element
field, but the proof is completely general. Hint: think of A as a set of
equations and B as a set of solutions.

Proposition 2.1 Suppose every vector space V ⊆ Fn of dimension b(n +
1)/2c intersects S in less than r elements. Then no complete bipartite
subgraph Kr,r is monochromatic with respect to γ, ie., for no two subsets
A ⊆ S1, B ⊆ S2, |A| = |B| = r the value of γ(a, b) is the same for all a ∈ A
and b ∈ B.

We shall consider the following construction of S. Let p > 2 be a prime
and n = 2q. Put

Sp,q = {(x, x2); x ∈ Fpq}.

In order to define a coloring on the product of two copies of Sp,q, think of
Fpq as a q-dimensional vector space over Fp. Thus Sp,q ⊆ Fnp and we can
define γp,q using the scalar product in Fp. Hence γp,q is a coloring of KN,N ,
N = pq, by p colors.

Our main result is the following theorem.

Theorem 2.2 For every prime p > 2 there exists ε > 0 such that for every
sufficiently large prime q, the coloring γp,q of KN,N has no monochromatic
subgraph Kr,r for r > N1/2−ε.

We shall first explain the main ideas of the proof. By Proposition 2.1
it suffices to estimate from above the size of the intersections Sp,q ∩ V for
subspaces of Fnp of dimension q = n/2. Notice that if we view Fnp as F2

pq then
it is an affine plain and Sp,q is a parabola in it. A line intersects a parabola
in at most two points. A line in F2

pq is a q-dimensional subspace if we view

3



it in Fnp . There are many more subspaces of this dimension, but our hope is
the their intersections with Sp,q are also small.

Now instead of estimating the intersections, we shall consider subsets
S of Sp,q of certain size and show that they span dimension bigger than q.
This we also do not do directly. We first estimate the size of S + S + S and
take the logarithm. (We could take more than three terms, but the gain
would not be significant.) For estimating the size of S + S + S we use some
standard techniques and their recent extensions to finite fields.

Now we proceed with a formal proof. Let the field Fp be fixed for the
proof of this theorem. The following is a finite field version of Theorem 1 of
Elekes, Nathanson and Ruzsa [6] originally proved for the real numbers and
S ⊆ {(x, f(x)); x ∈ R} for every strictly convex function f in place of x2.

Lemma 2.3 For every α > 0 there exist ε0, ε1 > 0 such that for every
sufficiently large prime q, every subset S ⊆ Sp,q and every set T ⊆ F2q

p , if
pαq ≤ |T | ≤ p(2−α)q then

|S + T | ≥ ε0|S| · |T |1/2+ε1 .

We shall first prove the theorem using this lemma. Let V be a vector
subspace of F2q

p of dimension q + 1. Put S = Sp,q ∩ V and T = S + S.
Then |T | ≥

(|S|+1
2

)
, since the pair (x + y, x2 + y2) uniquely determines the

set {x, y}. We can apply the previous lemma to T , since T ⊆ V , hence
|T | ≤ pq+1. According to the lemma we thus have

|S + S + S| ≥ ε0|S| ·
(
|S|+ 1

2

)1/2+ε1

≥ ε0|S|2+ε1/2.

Hence the dimension of the vector space spanned by S is at least logp(ε0|S|2+ε1/2).
This must be at most the dimension of V , hence

logp(ε0|S|2+ε1/2) ≤ q + 1,

from which we get

|S| ≤
(
2ε−1

0 pq+1
) 1

2+ε1 ≤ p( 1
2
−ε)q

for some ε > 0.

To prove Lemma 2.3 we shall use the following an estimate on the number
of incidences of points and lines in a finite plane proved by Bourgain, Katz
and Tao in [4] as Theorem 6.2.
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Theorem 2.4 Let 0 < α < 2. Then there exist constants 0 < β < 1, ε2 > 0
and C such that for every finite field F , set of points P and set of lines L in
the projective plane over F , if |P |, |L| ≤ N = |F |α and F does not contain
a subfield of size bigger than |F |β, then

IP,L ≤ CN3/2−ε2 ,

where IP,L = |{(p, l) ∈ P × L; p ∈ l}| denotes the number of incidences.

In [4] the theorem is proven only for prime fields and a stronger statement
which implies the theorem above is stated without a proof. However it is
easy to verify the stronger statement by inspecting the proof in [4]. In fact,
there is only one step in their proof that needs the assumption that the field
is prime, which is Lemma 4.1. One can immediately see that the proof of
this lemma works perfectly if we only assume that the field does not contain
a large subfield.

We shall need an estimate for the case when the number of lines and the
number of points is different.

Corollary 2.5 For every 0 < α′ < α < 2, there exist constants 0 < β < 1,
ε3 > 0 and C ′ such that for every F, P, L, if |F |α′ ≤ |L| ≤ |P | ≤ |F |α and
F does not contain a subfield of size bigger than |F |β, then

IP,L ≤ C ′|P | · |L|
1
2
−ε3 .

Proof. Let P ′ ⊆ P be a random subset of P of size |L|. Then the expected
value of the number of incidences IP ′,L is IP,L|L|/|P |. Thus there exists P ′

such that IP ′,L ≥ IP,L|P ′|/|P | = IP,L|L|/|P |. Applying the theorem to P ′

and L, we get
IP,L|L|/|P | ≤ IP ′,L ≤ C ′|L|3/2−ε3 ,

for some ε3 > 0 and C ′, whence we get the statement of the corollary.

Now we shall prove Lemma 2.3. Let S ⊆ Sp,q and T ⊆ F2q
p be given. Put

Q = {Sp,q + t; t ∈ T}. We think of Sp,q as a parabola in the affine plane and
Q as the set of all shifts of this parabola by vectors t ∈ T . Put P = S + T .
So P is a set of points on parabolas Q. We want to use the estimate on the
number of incidences in Corollary 2.5. The corollary speaks only about sets
of lines, but we can show that a suitable one-to-one transformation maps
our parabolas on lines. This mapping is defined by (u, v) 7→ (u, v−u2), and
it maps the parabola Sp,q + (a, b) onto the line

{(x+ a, 2ax− a2 + b); x ∈ Fpq}.
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The number of incidences is |S| · |T |, since we have |T | parabolas in Q,
and on each parabola Q + t we have |S| points, namely the points S + t.
Thus by Corollary 2.5, we have

|S| · |T | = IP,Q ≤ C ′|P | · |Q|
1
2
−ε3 = C ′|S + T | · |T |

1
2
−ε3 ,

whence Lemma 2.3 follows.

Proposition 2.6 For p > 2 prime and q arbitrary positive integer, KN,N

colored by γp,q contains a monochromatic subgraph Kr,r for r = ε4N
1/4, for

some ε4 > 0.

Proof. Represent the elements of Fpq as polynomials modulo an irreducible
polynomial of degree q over Fp. Let A be the set of all polynomials of de-
gree less than q/4 and let B be the set of all polynomials that have nonzero
coefficients only at terms of degree n for q/4 ≤ n < q/2. Then the polyno-
mials that represent the squares of elements of A are polynomials of degree
less than q/2 and the polynomials that represent the squares of elements of
B are polynomials that have nonzero coefficients at terms of degree n for
q/2 ≤ n < q. Hence the scalar product of every pair a ∈ A and b ∈ B is
zero.

We do not know other monochromatic subgraphs Kr,r.

3 Concluding remarks

We observe that our construction possess a symmetry property which implies
a slightly stronger result than stated above. We construct a three-coloring
of KN such that for some ε > 0 independent of N the coloring has the
following property. There are no two subsets of vertices X and Y of size at
least N1/2−ε (disjoint or not disjoint) such that all edges between X and Y
have the same color.

The most interesting open problem related to our result is whether we
can get a two-coloring in such a way. If p = 2, then we cannot use Sp,q,
because x2 is an additive function in fields of characteristic 2, thus Sp,q is a
linear subspace of Fn2 and γ2,q is 0 for all edges. In [8] we proposed to use

{(x, x−1); x ∈ F2q}, and {(x, x3); x ∈ F2q}.

We conjecture that the same statement as our Theorem 2.2 holds for p =
2 and the sets above. One could prove it in the same way if we had a
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generalization of the bound on the number of incidences of points and lines
(Theorem 2.4) to hyperbolas and cubics. The corresponding result has been
proven in the Euclidean plane for a much broader class of curves. Let us note
that the graphs defined using the curve y = x3 contain a monochromaticKr,r

for r = ε5N
1/6, for some ε5 > 0 (the proof is the same as in Proposition 2.6).

For y = x−1 we do not have any such result and we conjecture that they do
not contain KNε,Nε for any ε > 0.

The bound on the number of incidences in a finite plane is an application
of the lower bound on the number of sums and products

|A+A| · |A ·A| ≥ δ|A|2+ε

for some constants δ, ε > 0, provided that A is not too small or too big in the
finite field. (The first restriction has been removed in a paper of Konyagin
[7] at least for prime fields.) The transformation of the parametrized set of
parabolas to lines used above can also be applied to prove a similar estimate

|A+A| · |A2 +A2| ≥ δ|A|2+ε.

in finite fields. For hyperbolas, ie.,

|A+A| · |A−1 +A−1| ≥ δ|A|2+ε,

this was recently proved by Bourgain [2]. For cubics such a bound is not
known, but it is very likely to be true. In [3] Bourgain proved another bound
related to these problems

{xy(x+ y); x, y ∈ A}| ≥ δ|A|1+ε.

For comparison with our construction we state the definition of one of
the two-colorings of Bourgain [3] mentioned in the introduction. For a prime
p, f : Fp × Fp → {±1} is defined by

f(x, y) = sgn sin
2π
p

(xy + x2y2),

with the convention that sgn 0 = 1. Bourgain proved a stronger property of
f , namely that f defines a two source randomness extractor, which means
that for every subgraph Kr,r, r = N1/2−ε the discrepancy between the num-
ber of edges colored 1 and edges colored −1 is p−γr2 for some γ > 0.
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