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Introduction
Numerical simulation of free-surface flows is one of the most complicated tasks of CFD. Up to
now several methods have been developed for this kind of simulations. Short overview of these
methods including the original references could be found e.g. in [4]. There are two main groups
of methods applied to the free-surface resolution.

Interface tracking methods define the free-surface as a sharp interface whose motion is fol-
lowed. The interface forms a part of the computational domain boundary and thus the mesh
must be readjusted as the free-surface evolves. Interface capturing methods work on fixed grid,
which extends beyond the free-surface. The shape of the free-surface is determined by cells
which are partially filled.

In general, interface tracking methods are more accurate than interface capturing methods
and more efficient for very simple physical situations. However, the interface tracking methods
are usually limited only to these very simple situations. With the increasing need to solve very
complex cases, the necessity of use of interface capturing methods has arrised.

Therefore the method we have used in our study is based on one of the possible implemen-
tations of interface capturing methods. The case solved here is the flow in a 2D channel with
ribbed bottom (see Fig. 4), which is partially filled by the water. Because of the action of the
inertia and gravity forces, the water-air interface is deformed in proximity of ribs. The shape of
the free-surface is relatively simple in this case, however its correct resolution at high Reynolds
number in a fully turbulent flow is a very complicated task.

Mathematical Model
The approach used in our model is based on the assumptions for variable-density incompressible
flow. It means the flow is treated as if the domain is filled by only one fluid, which density is
variable. The discontinuity in density profile arises at the free-surface. The key point in the
modeling of this kind of flows is the appropriate formulation of mass conservation law, i.e. in
the choice of adequate form of continuity equation. In this case the full ”compressible” version
should be used.

Mass conservation
∂ρ

∂t
+ div (ρv) = 0 (1)
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Using the chain rule, this could be rewritten as:

∂ρ

∂t
+ v · grad ρ = −ρ divv (2)

Because of the incompressibility assumption, the right-hand side of equation (2) should be
equal zero. From this directly follows the expression on the left-hand side is then also equal
zero. This means that the mass conservation in variable-density incompressible flows requires
two separate conditions to be fullfiled:

a) Density transport equation
∂ρ

∂t
+ v · grad ρ = 0 (3)

b) Divergence-free constrain
divv = 0 (4)

The equation (3) is used to control the time-evolution of liquid relative mass-fraction. So it
could be simply rewritten as

∂r

∂t
+ v · grad r = 0 (5)

Here r = r
L

for liquid and r = r
G

for gas. Because of the linearity of equation (5) we have
some freedom in choice of values r

L
and r

G
. The interface between gas and liquid can thus be

found as an isosurface of r = r
S
, where r

S
= (r

L
+ r

G
)/2. Using the computed value of r the

local volume fraction of liquid could be established as c
L

= (r − rG)/(r
L
− r

G
) which is in

the range from 0 to 1. Using this value the appropriate local material properties (density and
viscosity) could be obtained by simple interpolation between the corresponding values of gas
and liquid. E.g. for local density the following relation holds:

ρ = c
L
ρ

L
+ (1− c

L
)ρ

G
(6)

This method can be seen as an elementary implementation of VOF method introduced in [8].
To enforce the divergence-free constrain and calculate pressure, the equation (4) is modified

by adding the time-derivative of pressure properly scaled by the artificial speed of sound c:

1

c2

∂p

∂t
+ divv = 0 (7)

This model is suitable for computation of steady flow, while the time-marching technique is
used to get stationary solution. In such a case the non-physical additional term in the equation
(7) disappears and the true solution of the steady problem is recovered.

Reynolds averaged Navier-Stokes equations
The conservation of Reynolds-averaged momentum components results in the following set of
equations:

ρ
∂vi

∂t
+ ρvj

∂vi

∂xj

= − ∂p

∂xi

+
∂

∂xj

[(
µ + µ

T

) ∂vi

∂xj

]
+ ρgi i = 1, 2, 3 (8)

Here µ and µ
T

denote the laminar and turbulent viscosities, while gi stands for gravity acceler-
ation. The components of velocity vector vi could be computed directly from these equations.
The pressure p and density ρ are updated from equations (7) and (5).
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Turbulence Model
We have chosen the SST k−ω turbulence model see e.g. [12]. The model modification adopted
here is exactly the one of [7]. This choice was governed by the complex physical phenomenol-
ogy of the case to be solved. Especially the following problems should be handled in this
situation:

• Highly curved flow patterns (see e.g.[7])

• Two-fluid mixture flow (see e.g. [11])

• Flow with complex separation and recirculation regions (see e.g. [12])

• Possible extension for flow over rough wall (see e.g. [6], [5])

The Shear Stress Transport (SST) k − ω model blends the k − ε and k − ω models to get more
accurate predictions in complex flows. Hereafter the k denotes the turbulent kinetic energy, ε
is the dissipation rate of k and ω denotes the specific dissipation rate of k. These quantities are
linked to turbulent viscosity by the Kolmogorov-Prandtl relation µ

T
= ρk/ω which is further

generalized in (19). Both k− ε and k−ω ”elementary” models could be written in the common
form:1

ρ
∂k

∂t
+ ρvj

∂k

∂xj

= P − β∗ρkω +
∂

∂xj

[(
µ +

µ
T

σk

) ∂k

∂xj

]
(9)

ρ
∂ω

∂t
+ ρvj

∂ω

∂xj

=
γρ

µ
T

P − F4βρω2 +
∂

∂xj

[(
µ +

µ
T

σω

) ∂ω

∂xj

]
+ 2ρ

1− F1

σω2ω

∂k

∂xj

∂ω

∂xj

(10)

Model constants are slightly different for each of these models. The blending between k − ω
and k − ε model is provided by switching between their parameters . σk

σω

β

 = F1

 σk1

σω1

β1

 + (1− F1)

 σk2

σω2

β2

 (11)

Here the blending function F1 reads:

F1 = tanh(Γ4) with Γ = min

[
max

( √
k

β∗ωd
;
500ν

ωd2

)
;

4ρσω2k

CDkωd2

]
(12)

The CDkω stands for positive part of cross-diffusion term

CDkω = max

[
2ρ

σω2ω

∂k

∂xj

∂ω

∂xj

; CDkω min

]
(13)

1Because of the lack of the space the notation used here for turbulence model follows exactly the nomenclature
used in [7] and reader is referred to that paper for the complete explanation of all symbols.
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The cross-diffusion bound should be prescribed (i.e. CDkω min = 10−10).
Model constants for k − ω model are:

σk1 = 2.0 σω1 = 2.0 β1 = 0.075 (14)

Model constants for k − ε model:

σk2 = 1.0 σω2 = 1.168 β2 = 0.0828 (15)

Further parameters: κ = 0.41 and β∗ = 0.09. Parameter γ is computed from:

γ =
β

β∗
− σωκ2

√
β∗

(16)

Turbulent kinetic energy production is given by

P =
(
2µ

T
Sij −

2

3
δijρk

) ∂vi

∂xj

(17)

The symmetric part of the velocity gradient is defined as follows:

Sij =
1

2

( ∂vi

∂xj

+
∂vj

∂xi

)
with norm |Sij| =

√
2SijSij (18)

The turbulent viscosity is evaluated from

µ
T

=
a1ρk

max(a1ω; |Sij|F2F3)
where a1 = 0.31 (19)

The function F2 is evaluated from:

F2 = tanh(Γ2
2) with Γ2 = max

( 2
√

k

β∗ωd
;
500ν

ωd2

)
(20)

The function F3 is given by:

F3 = 1− tanh

[(150ν

ωd2

)4
]

(21)

The streamline curvature effect is taken into account by the function F4, given by the following
formula:

F4 =
1

1 + CrcRi
where Crc ≈ 3.6 (22)

The Richardson number Ri is defined by:

Ri =
|Ωij|
|Sij|

( |Ωij|
|Sij|

− 1
)

(23)

Here the anti-symmetric part of the velocity gradient is defined as follows:

Ωij =
1

2

( ∂vi

∂xj

− ∂vj

∂xi

)
with norm |Ωij| =

√
2ΩijΩij (24)
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Boundary conditions
The boundary conditions for the presented model were chosen according to the original paper
[7]. The model allows to set boundary conditions on impermeable wall depending on the surface
roughness.

Rough wall

ω =
u2

τ

ν
S

R
where the friction velocity uτ =

√
τw/ρ (25)

The nondimensional function S
R

is given by

S
R

=

{ (
50

max(k+
s ;k+

smin)

)2

for k+
s < 25

100
k+

s
for k+

s ≥ 25
(26)

In the above equations the nondimensional sand-grain height is:

k+
s =

uτks

ν
(27)

Its minimal value could be evaluated from

k+
smin = 2.4 (y+

1 )0.85 where y+
1 =

uτ∆d1

ν
(28)

In our case the wall was assumed to be ideally smooth, so the value k+
s = k+

smin was used on the
wall.

Free stream

The following free stream values for k, ω, and ν
T

could be used

ω∞ = C · V∞/L (29)
ν

T∞ = 10−3ν (30)
k∞ = ν

T∞ ω∞ (31)

Here C ≈ 1÷ 10 and L is the characteristic scale of the flow.

Numerical Solution
Numerical solution of the above presented mathematical model is based on finite-volume cell-
centered semi-discretization on structured mesh. The time-integration of the resulting system
of ordinary differential equations is carried out using explicit Runge-Kutta multistage scheme.
Because of the use of the central-differencing in spatial discretization, suitable stabilization
technique is used to avoid non-physical oscillations in the solution.
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Space Discretization

The computational mesh is structured, consisting of hexahedral primary control volumes. To
evaluate the viscous fluxes also dual finite volumes are needed. These have octahedral shape
and are centered around the corresponding primary cell faces. See the following figure 1 for the
schematic view of such configuration.

Figure 1: Finite-volume grid in 3D

The system of RANS equations (including the modified continuity equation) could be rewrit-
ten in the vector form. Here we use W to denote the vector of unknowns (including pressure).
Vectors F, G and H denote the inviscid fluxes in x,y,z directions, while R, S and T stand for their
viscous counterparts. Using this notation, the spatial finite-volume semi-discretization could be
written in the following form:

∂Wijk

∂t
= − 1

|D|

∮
∂D

[
(F− R), (G− S), (H− T)

]
· ν̂ dS +

1

|D|

∫
D

f
W

(32)

Here D denotes the computational cell, ν̂ is the outer unit normal vector of the cell boundary,
dS is the surface element of this boundary. The vector f

W
contains the external body forces (e.g.

gravity in our case). The equation (32) can be rewritten in operator form:

∂Wijk

∂t
= −LWi,j,k (33)

Here L stands for the finite-volume discretization operator. This operator is still exact at this
stage and it should be properly discretized to allow for numerical solution. This is done by the
replacement of fluxes in it’s formulation by their numerical (approximate) versions.

The inviscid flux integral can be approximated in a central manner, e.g. the value of the flux
F on the cell face with index ` = 1 is computed as average of cell-centered values from both
sides of this face:
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Figure 2: Inviscid flux discretization Figure 3: Viscous flux discretization

Fn
1 =

1

2
[F(Wn

i,j,k) + F(Wn
i+1,j,k)] (34)

The contribution of inviscid fluxes is finally summed up over the cell faces ` = 1, . . . , 6. In this
way we can write down the inviscid flux approximation:∮

∂D

Fνx dy dz ≈
6∑

`=1

F`ν
x
` S` (35)

The discretization of viscous fluxes is a little bit more complicated because the vectors R, S, T
were defined using the derivatives of velocity components. So we need to approximate some-
how these derivatives at cell faces. This can be done using the dual finite-volume grid that is
centered around the corresponding faces (see Figure 1 and 3).

The evaluation of velocity gradient components is then replaced by the surface integral over
the dual volume boundary. Finally this surface integral is approximated by a discrete sum
over the dual cell faces (with indices m = 1, . . . , 8). For example trying to evaluate the first
component of the viscous flux R1 (i.e. approximate ux) at the cell face l = 1 we must proceed
in the following way:

ux ≈
∮

∂D̃

u νx dy dz ≈
8∑

m=1

umνx
mSm (36)

The outer normal of the dual cell faces should be properly approximated νx ≈ νx
m. The values

of velocity components in the middle nodes of these faces are taken as an average of the values
in the corresponding vertices.

Time Integration
The problem is now in the semi-discrete form:

dWijk

dt
= −L̃Wi,j,k (37)
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This system of ordinary differential equations can be solved e.g. by the Runge-Kutta multistage
method:

W
(0)
i,j,k = Wn

i,j,k

W
(r+1)
i,j,k = W

(0)
i,j,k − α

(r)
∆tL̃W

(r)
i,j,k r = 1, . . . ,m (38)

Wn+1
i,j,k = W

(m)
i,j,k

The three-stage explicit RK scheme has coefficients:
α

(1)
= 1/2, α

(2)
= 1/2, α

(3)
= 1. This scheme is second order only, however it provides

extended stability region leading to CFL=2 which improves the overall efficiency of the whole
scheme.

The efficiency and robustness of the method could further be increased by modification of
the above algorithm. The modification used for simulations presented in this paper follows the
Runge-Kutta time integration procedures outlined in [10] and further refined in [9]. The idea
behind this modified approach lies in splitting of the space discretization operator into invis-
cid and viscous part. The inviscid operator is evaluated at each Runge-Kutta stage, while the
viscous operator is evaluated just in few stages. This corresponds to the use of different Runge-
Kutta coefficients for time integration of inviscid and viscous fluxes. The modified algorithm
could thus be written in the following form:

W
(0)
i,j,k = Wn

i,j,k

W
(r+1)
i,j,k = W

(0)
i,j,k − α

(r)
∆t

(
Q(r) +D(r)

)
(39)

Wn+1
i,j,k = W

(m)
i,j,k

Here the space discretization operator at stage (r) is split as follows:

LW
(r)
i,j,k = Q(r) +D(r) (40)

The inviscid flux Q is evaluated in usual way at each stage

Q(r) = QW
(r)
i,j,k with Q(0) = QWn

i,j,k (41)

The viscous flux D uses a blended value of from the previous stage and the actual stage accord-
ing to the following rule:

D(r) = β
(r)
DW

(r)
i,j,k + (1− β

(r)
)D(r−1) with D(0) = DWn

i,j,k (42)

The coefficients α
(r)

and β
(r)

are chosen to guarantee large enough stability region for the
Runge-Kutta method. The following set of coefficients was used for this study:

α
(1)

= 1/3 β
(1)

= 1

α
(1)

= 4/15 β
(1)

= 1/2

α
(1)

= 5/9 β
(1)

= 0

α
(4)

= 1 β
(4)

= 0

It is easy to see that for this four-stage method only two evaluations of dissipative terms are
needed which saves significant amount of calculations while retaining the advantage of large
stability region of the method. Further admissible sets of coefficients together with comment
on the increase of the efficiency and robustness could be found in the original papers [10] and
[9] and the references therein.
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Numerical Stabilization

It is a well known property of central schemes, that in the presence of strong gradients they pro-
duce non-physical oscillations in the solution. There are many ways to avoid this phenomena.
The method used here is based on pressure stabilization. This approach is long time used in
finite-element community and has been used in finite-volume framework in Vierendeels, Riem-
slagh, & Dick [14]. The main principle of this method is to add a pressure dissipation term
(Laplacian) into the modified continuity equation. This helps to prevent oscillations in pres-
sure, which stabilizes the whole numerical method.

The pressure stabilization is introduced by the additional source term on the right-hand side
of modified continuity equation. This term has the following form:

Qi,j,k =
1

|Di,j,k|

2N∑
`=1

p` − pi,j,k

b`

S` (43)

Here ` denotes the control volume cell face index, p` is the pressure in the corresponding neigh-
boring cell and S` is the cell face area. The value b` has the dimension of velocity and represents
the maximal convective velocity in the domain and local diffusive velocity.

b` = max(
√

v2
1 + v2

2 + v2
3) +

2ν

L`

(44)

Symbol L` corresponds to a distance between the actual and neighboring cell centers.
On an uniform cartesian mesh with cells of size δx this term gives:

Q =
δx

2b
∆p (45)

This type of numerical stabilization has some advantages over the classical artificial diffusion
applied to the velocity components. First, its ”artificial” effects are clearly separated from the
physical viscosity included in RANS equations. Even more important property of this stabiliza-
tion term is that it contains only second derivatives of pressure and thus it will vanish if pressure
will be a linear function of space coordinates. This is the case of e.g. Poiseuille flow with linear
pressure decay along the flow axis.

Numerical simulations

Numerical tests were performed for segment of a 2D channel with two ribs of square crossec-
tion. Channel is partially filled by water, while the remaining volume is occupied by air. The
geometrical configuration can be seen in the Figure 4. The fully developed velocity profile with
maximum speed 0.25, 0.5, 1.0 and 2.0 m/s was assumed for both fluids on the inlet. The length
scale h was set to 1cm.

In order to avoid complicated multiblock mesh structure, a cartesian grid was used and
velocity was set to zero “inside” of the obstacle. This approach simplifies significantly the
computation in the case of multiple obstacles. The mesh structure detail can be seen in the
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Figure 5.
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Figure 4: Computational geometry
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Figure 5: Cartesian grid structure

Conclusions, remarks
The numerical results presented here were chosen to show the resolution of the flow in the
proximity of the ribs and the ability of the model to capture the free surface for selected range
of inlet velocities.

The numerical results shown in figure 6 show the position of the water surface for the case of
the four selected inlet velocities. It is possible to see that the water-air interface shape changes
dramatically within the selected range of velocities. On the other hand the shape and size of
recirculation zones in the proximity of the square ribs is almost identical for all of the four cases.

More apparent is the difference in the distribution of turbulent kinetic energy shown in the
figure 7, where the contours of TKE are drown for the four studied cases using the same color
scale.

From the presented tests of the whole numerical model directly follows that the method
used here is applicable for this class of problems. More numerical tests in turbulent flow regime
should be performed. Multiple roughness element configurations will be extensively studied in
detail. A comparison of presented numerical results of free surface flow with experimental data
published e.g. in Chára [3] is under preparation.
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Numerical results

Figure 6: Water level and streamlines for inlet velocities 0.25, 0.5, 1.0 and 2.0 m/s.



Colloquium FLUID DYNAMICS 2007
Institute of Thermomechanics AS CR, Prague. October 24 - 26, 2007 p.

Figure 7: Turbulent kinetic energy and streamlines for inlet velocities 0.25, 0.5, 1.0 and 2.0 m/s.


