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Abstract

In this work, we study the linearized Navier-Stokes equations in an exterior domain of R3 at the
steady state, that is, the Oseen equations. We are interested in the existence and the uniqueness of
weak, strong and very weak solutions in Lp-theory which makes our work more difficult. Our analysis
is based on the principle that linear exterior problems can be solved by combining their properties
in the whole space R3 and the properties in bounded domains. Our approach rests on the use of
weighted Sobolev spaces.
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1 Introduction

Let Ω′ be a bounded connected open set in R3 with boundary ∂Ω′ = Γ of class C1,1 representing an
obstacle and let Ω be the exterior region occupied by the fluid, i.e. Ω = R3�Ω′. We consider here the
Oseen equations in Ω obtained formally by linearising the Navier-Stokes equations: For a given vector
field f , a function h and a boundary value g , we are looking for a velocity field u of the fluid and a
pressure π which fulfil:

−∆u + div(v ⊗ u) +∇π = f and divu = h in Ω, u = g on Γ, (1.1)

where, v is a given velocity field belonging to L3(Ω) satisfying the divergence free condition. In fact, the
Oseen approximation is typical for a flow occurring in an exterior region because it describes the physical
properties of a system constituted by an object moving with a small, constant velocity in a viscous liquid,
at least at large distances from the object where the viscous effects become less important. But, in
bounded region, the Oseen approximation loses its physical meaning, while, from the mathematical point
of view, it presents no difficulties and can be handled as a corollary to the theory developed for the Stokes
system. It should be observed, however, that the Oseen problem has different structures, one of them is
given by the following equations:

−∆u + k
∂u

∂x1
+∇π = f and divu = h in Ω, u = g on Γ, (1.2)

with k > 0. Problem (1.2) has been studied by many authors, from different points of view and it would
be too long to list them all here so we give some examples. One of the first complete work on (1.2) is
due to Faxén [21] who generalized the method introduced by Odqvist [33] for the Stokes problem. More
recently, Finn [22] used Galerkin’s method to establish existence of solutions of (1.2) including weighted
estimates. For the Ω = R3, Babenko [11] used the Lizorkin’s Multiplier Theorem in the investigation
of (1.2). The results proved by Finn and Babenko were generalized and improved by Galdi in [23] and
very expanded in Chapter VII of his book [24]. Galdi approach is based in the functional framework,
homogeneous Sobolev spaces,which is one of possible tools, how to describe the behaviour of solution
in the large distance. In [13], Farwig used anisotropic weighted L2 spaces for the investigation of the
exterior problem. Spaces with the weight function ηα0 are also used in [14] and [15], but the weighted
estimates are only obtained for the derivatives of second order of functions. We also mention [30] or
[34] where the convolution with the fundamental solution of the Oseen problem is studied in Lp space

∗The work of Š.N. was supported by Grant of CR n. 201/10/1920 and by RVO 67985840. Final version was suported
by GACR n. P201/11/1304.
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with the anisotropic weight function ηαβ . Also see work of Kračmar, Penel for generalized Oseen problem
[31]. Recently, problem (1.2), has been studied by Amrouche and Razafison [9] and more recently by
Amrouche and Nguyen [8]. Note that, in [9] and in [8], problem (1.2) was setted in weighted Sobolev
spaces in order to provide an explicit description of the behavior of the functions and all its derivatives
at infinity.

When Ω is a bounded domain, the existence, uniqueness and regularity properties of the solutions for
the Oseen problem (1.1) and (1.2) are well known in the classical Sobolev spaces Wm,p(Ω), see [10] for
example for the problem (1.1). It is well known that it is not possible to extend this result to the case of
unbounded domains, for example the whole space R3 or the exterior domain, here the classical Sobolev
spaces Wm,p(Ω) are not adequate. Therefore, a specific functional framework is necessary which also
has to take into account the behaviour of the functions at infinity. Our approach is similar to that [9]
and [8], which is the use of the weighted Sobolev spaces Wm,p

α (Ω) introduced by Hanouzet [29], Cantor
[12], Kudrjavcev [32] (see Section 2 for the notations and details). Moreover we are interested also in the
very weak solutions. The concept of very weak solutions for Stokes equations was introduced by Giga
in 1981, see [26], by Amrouche and Girault in 1994 in a domain class C1,1, see [4]. More recently this
concept was extended by Amrouche, Rodŕıguez - Bellido, see [10].

Finally, very weak solution in different spirit was intensively studied by Galdi, Simader, Farwig,
Kozono and Sohr, see [16, 17, 18, 19, 20, 25] to a setting in classical Lq-spaces. For non-steady case we
can refer to the work of Amann see [2, 3] in the setting of Besov spaces.

2 Basic Concepts on Weighted Sobolev Spaces

Let x = (x1, x2, x3) be a typical point in R3 and let r = |x| = (x2
1 + x2

2 + x2
3)1/2 denotes its distance to

the origin. In order to control the behaviour at infinity of our functions and distributions we use for basic
weights the quantity ρ(x) = (1 + r2)1/2 which is equivalent to r at infinity, and to one on any bounded
subset of R3 and the quantity ln(2 + r2). We define D(Ω) as the linear space of infinite differentiable
functions with compact support on Ω. Now, let D′(Ω) denotes the dual space of D(Ω), often called the
space of distributions on Ω. We denote by < ., . > the duality pairing between D′(Ω) and D(Ω). For
each p ∈ R and 1 < p <∞, the conjugate exponent p′ is given by the relation 1

p + 1
p′ = 1. Then, for any

nonnegative integers m and real numbers p > 1 and α, setting

k = k(m, p, α) =

{
−1, if 3

p + α /∈ {1, ...,m} ,
m− 3

p − α, if 3
p + α ∈ {1, ...,m} ,

we define the following space:

Wm,p
α (Ω) = {u ∈ D′(Ω);

∀λ ∈ N3 : 0 ≤ |λ| ≤ k, ρα−m+|λ|(ln(2 + r2))−1Dλu ∈ Lp(Ω);

∀λ ∈ N3 : k + 1 ≤ |λ| ≤ m, ρα−m+|λ|Dλu ∈ Lp(Ω)}.

It is a reflexive Banach space equipped with its natural norm:

||u||Wm,p
α (Ω) =

 ∑
0≤|λ|≤k

||ρα−m+|λ|(ln(2 + r2))−1Dλu||pLp(Ω)

+
∑

k+1≤|λ|≤m

||ρα−m+|λ|Dλu||pLp(Ω)

1/p

.

For m = 0, we set

W 0,p
α (Ω) = {u ∈ D′(Ω); ρα u ∈ Lp(Ω)}.

We note that the logarithmic weight only appears if
3

p
+ α ∈ {1, ...,m} and all the local properties of

Wm,p
α (Ω) coincide with those of the corresponding classical Sobolev spaces Wm,p(Ω). We set W̊m,p

α (Ω) as

the closure of D(Ω) for the norm ‖ . ‖Wm,p
α (Ω). Then, the dual space of W̊m,p

α (Ω), denoting by W−m,p
′

−α (Ω),
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is a space of distributions. When Ω = R3, we have Wm,p
α (R3) = W̊m,p

α (R3). If Ω is a Lipschitz exterior
domain, then we have

W̊ 1,p
α (Ω) =

{
v ∈W 1,p

α (Ω), v = 0 on ∂Ω
}
,

and

W̊ 2,p
α (Ω) =

{
v ∈W 2,p

α (Ω), v =
∂v

∂n
= 0 on ∂Ω

}
,

where
∂v

∂n
is the normal derivate of v. The spaces W 1,p

α (Ω) or W 2,p
α (Ω) contain some polynomial functions.

In the cases m = 1 or m = 2:

Pj ⊂Wm,p
α (Ω) with

{
j = [m− (3/p+ α)] if 3/p+ α /∈ Z−,
j = m− (3/p+ α)− 1 if 3/p+ α ∈ Z−,

(2.1)

where [s] denotes the integer part of the real number s and Pj is the space of polynomials of degree less
then j. We recall the following Sobolev embeddings for any real values α and 1 < p < 3,

W 1,p
α (Ω) ↪→W 0,p∗

α (Ω) where p∗ =
3p

3− p
. (2.2)

and, by duality, we have

W 0,q
−α(Ω) ↪→W−1,p′

−α (Ω) where q =
3p′

3 + p′
.

On the other hand, if 3
p + α /∈ {1, ...,m}, we have the following continuous embedding:

Wm,p
α (Ω) ↪→Wm−1,p

α−1 (Ω) ↪→ ... ↪→W 0,p
α−m(Ω). (2.3)

Moreover, the Hardy inequality holds, for 1 < p <∞,

∀ u ∈ W̊m,p
α (Ω), ||u||Wm,p

α (Ω) ≤ C||∇u||Wm−1,p
α (Ω),

where C = C(p, α,Ω) > 0 and when Ω = R3, we have

∀u ∈W 1,p
α (R3),

{
||u||W 1,p

α (R3) ≤ ||∇u||W 0,p
α (R3), if 3/p+ α > 1,

||u||W 1,p
α (R3)/P0

≤ ||∇u||W 0,p
α (R3), otherwise,

where P0 stands for the space of constant functions in W 1,p
α (R3) when 3/p + α ≤ 1 and C satisfies

C = C(p, α) > 0.
We consider the following spaces:

Dσ(Ω) = {v ∈ D(Ω); div v = 0} and V p(Ω) = {v ∈ W̊
1,p

0 (Ω); divv = 0}.

In addition, we introduce the space

Lpσ(Ω) = {v ∈ Lp(Ω); div v = 0}.

Note that these definition will be also used with Ω replaced by R3 and for k ∈ N∗:

Ak =
{
x ∈ R3; k < |x| < 2k

}
.

Finally, we use bold type characters to denote vector distributions or spaces of vector distributions
with 3 components and C > 0 usually denotes a generic constant the value of which may change from
line to line.

3 Generalized solutions for the Oseen problem

We will prove in this section the existence and the uniqueness of weak solutions for the Oseen problem
in an exterior domain Ω. We start by proving the existence and the uniqueness of solution in the Hilbert
case i.e in W 1,2

0 (Ω)× L2(Ω).
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3.1 Generalized solutions in W 1,2
0 (Ω)

Theorem 3.1. Let

f ∈W−1,2
0 (Ω), h ∈ L2(Ω), v ∈ L3

σ(Ω) and g ∈W1/2,2(Γ).

Then, Problem (1.1) has a unique solution (u, π) ∈ W1,2
0 (Ω) × L2(Ω). Moreover, there exist some

constants C1 > 0 and C2 > 0 such that:

‖ u ‖W1,2
0 (Ω)≤ C1

(
‖ f ‖W−1,2

0 (Ω) + (1+ ‖ v ‖L3(Ω))(‖ h ‖L2(Ω) + ‖ g ‖W1/2,2(Γ))
)
, (3.1)

‖ π ‖L2(Ω)≤ C2

(
‖ f ‖W−1,2

0 (Ω) + (1+ ‖ v ‖L3(Ω))(‖ h ‖L2(Ω) + ‖ g ‖W1/2,2(Γ))
)
, (3.2)

where C1 = C(Ω) and C2 = C1

(
1+ ‖ v ‖L3(Ω)

)
.

Proof. In order to prove the existence of solution, first we lift the boundary and the divergence data using
Lemma 3.3 of [28]. Then, there exists u0 ∈W 1,2

0 (Ω) such that divu0 = h in Ω, u0 = g on Γ and:

‖ u0 ‖W 1,2
0 (Ω)≤ C(‖ h ‖L2(Ω) + ‖ g ‖W 1/2,2(Γ)). (3.3)

Therefore, it remains to find (z , π) = (u − u0, π) ∈ W̊
1,2

0 (Ω)× L2(Ω) such that:

−∆z − v · ∇z +∇π = f̃ and div z = 0 in Ω, z = 0 on Γ,

being f̃ = f + ∆u0 + v ·∇u0. Observe that v ·∇u0 = div(v ⊗u0) and u0 ∈W 1,2
0 (Ω) ↪→ L6(Ω) then we

have f̃ ∈W −1,2
0 (Ω). Using the density of Dσ(Ω) in V 2(Ω) (see Theorem 2.6 of [27]), we deduce that

the previous problem is equivalent to: Find z ∈ V 2(Ω) such that:∫
Ω

∇ z · ∇ϕ dx− b(v , z ,ϕ) =
〈
f̃ ,ϕ

〉
W −1,2

0 (Ω)×W̊ 1,2
0 (Ω)

∀ ϕ ∈ V 2(Ω), (3.4)

where b = 〈div(v ⊗ z ),ϕ〉
W −1,2

0 (Ω)×W̊ 1,2
0 (Ω)

is a trilinear antisymmetric form with respect to the last two

variables, well-defined for v ∈ L3(Ω), z , ϕ ∈ W̊
1,2

0 (Ω). By Lax-Milgram theorem we can deduce the

existence of unique solution z ∈ W̊
1,2

0 (Ω) and using that W 1,2
0 (Ω) ↪→ L6(Ω), we have

‖ z ‖W 1,2
0 (Ω) ≤ C(‖ f ‖W −1,2

0 (Ω) + ‖ ∆u0 ‖W −1,2
0 (Ω) + ‖ div (v ⊗ u0) ‖W −1,2

0 (Ω))

≤ C(‖ f ‖W −1,2
0 (Ω) + ‖ u0 ‖W 1,2

0 (Ω) + ‖ v ⊗ u0 ‖L2(Ω))

≤ C(‖ f ‖W −1,2
0 (Ω) +

(
1+ ‖ v ‖L3(Ω)

)
‖ u0 ‖W 1,2

0 (Ω)

)
≤ C(‖ f ‖W −1,2

0 (Ω) +
(
1+ ‖ v ‖L3(Ω)

) (
‖ h ‖L2(Ω) + ‖ g ‖W 1/2,2(Γ)

)
,

which added to estimate (3.3) makes (3.1). Now, −∆z − v · ∇ z − f̃ ∈W −1,2
0 (Ω) and:

∀ϕ ∈ V 2(Ω),
〈
−∆ z − v · ∇ z − f̃ ,ϕ

〉
W −1,2

0 (Ω)×W̊ 1,2
0 (Ω)

= 0.

As a consequence to Corollary 3.2 in [28], there exists a unique π ∈ L2(Ω) such that:

−∆z − v · ∇z +∇π = f̃ in Ω

with ‖ π ‖L2(Ω)≤ C ‖ ∇π ‖W −1,2
0 (Ω). Finally, estimate (3.2) follows from the previous equation and

estimate for z .

3.2 Generalized solutions in W 1,p
0 (Ω)

We are interested in this subsection in the following class of regularity for data:

f ∈W −1,p
0 (Ω), h ∈ Lp(Ω), v ∈ H 3(Ω) and g ∈W 1/p′,p(Γ),

where
H 3(Ω) = {v ∈ L3

σ(Ω); 〈v · n , 1〉W −1/3,3(Γ)×W 1/3,3/2(Γ) = 0}.
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Throughout the rest of this work, if we do not say otherwise, we assume that v ∈ H 3(Ω). Firstly, we
recall the definition of the kernel Spα(Ω) of the Stokes operator for any real value α and 1 < p <∞:

Spα(Ω) =
{

(u , π) ∈W 1,p
α (Ω)×W 0,p

α (Ω); −∆u +∇π = 0 and divu = 0 in Ω, u = 0 on Γ
}
.

Spα(Ω) is characterized, see [1] for more details. With the same method as in [1], we want to characterize
the kernel N p

0 (Ω) of the Oseen operator with Dirichlet boundary conditions:

N p
0 (Ω) =

{
(u , π) ∈W 1,p

0 (Ω)× Lp(Ω); −∆u + div(v ⊗ u) +∇π = 0 and divu = 0 in Ω, u = 0 on Γ
}
.

We will start by p > 2 and the characterization of the kernel N p
0 (Ω) when p 6 2 will be done in the end

of this section. We introduce the space of polynomials for each integer k:

Nk = {(λ, µ) ∈ Pk × Pk−1, divλ = 0, −∆λ+ div(v ⊗ λ) +∇µ = 0} .

In particular, recall that Nk = {(0, 0)} whenever k < 0 and that N0 = R3 × {0}.

Our analysis is based on the principle that linear exterior problems can be solved by combining their
properties in the whole space R3 and the properties in bounded domains. Let us begin by recalling some
results in R3:

Theorem 3.2. (Amrouche, Meslameni and Nečasová [7]). Let f ∈W−1,p
0 (R3) satisfying the compatibility

condition:
〈fi, 1〉W−1,p

0 (R3)×W 1,p′
0 (R3)

= 0 for any i = 1, 2, 3 if p ≤ 3/2 (3.5)

and let h ∈ Lp(R3) and v ∈ L3
σ(R3). Then the Oseen problem (1.1) has a unique solution (u, π) ∈

W 1,p
0 (R3)× Lp(R3) if p < 3 and if p ≥ 3, u is unique up to an additive constant vector. In addition, we

have
||u||W1,p

0 (R3)/P[1−3/p]
+ ||π||Lp(R3) 6 C(1 + ||v||L3(R3))

2
(
||f||W−1,p

0 (R3) + ||h||Lp(R3)

)
. (3.6)

The second result:

Lemma 3.3. (Amrouche, Meslameni and Nečasová [7]). Supposing that 1 < r ≤ 2 < p. Let f ∈
W−1,p

0 (R3)∩W−1,r
0 (R3) satisfying the compatibility condition (3.5) if r ≤ 3/2 and h ∈ Lp(R3)∩Lr(R3)

and v ∈ L3
σ(R3). Then the Oseen problem (1.1) has a unique solution (u, π) ∈ (W1,p

0 (R3)∩W1,r
0 (R3))×

(Lp(R3) ∩ Lr(R3)) such that

||u||W1,p
0 (R3) + ||u||W1,r

0 (R3) + ||π||Lp(R3) + ||π||Lr(R3) 6 C(1 + ||v||L3(R3))
2 ×(

||f||W−1,p
0 (R3) + ||f||W−1,r

0 (R3) + ||h||Lp(R3) + ||h||Lr(R3)

)
. (3.7)

Finally, we recall:

Theorem 3.4. (Amrouche, Meslameni and Nečasová [7]). Suppose that 1 < p < 3 and p 6= 3/2. Let
h ∈W 1,p

1 (R3) and f ∈W 0,p
1 (R3) such that∫

R3

f(x) dx = 0 if p < 3/2, (3.8)

and let v ∈ L3
σ(R3). Then the Oseen problem (1.1) has a unique solution (u, π) ∈W 2,p

1 (R3)×W 1,p
1 (R3)

satisfying the following estimate:

||u||W 2,p
1 (R3) + ||π||W 1,p

1 (R3) 6 C(1 + ||v||L3(R3))
6(||f||W 0,p

1 (R3) + ‖h‖W 1,p
1 (R3)). (3.9)

Now we can prove the following result:

Theorem 3.5. Suppose that p > 2.

i) If p < 3, then N p
0 (Ω) = {(0, 0)}.

5



ii) If p ≥ 3, then

N p
0 (Ω) =

{
(z(λ)− λ, η(λ)− µ), (λ, µ) ∈ N[1−3/p]

}
, (3.10)

where (z(λ), η(λ)) denotes the unique solution in
⋂

3/2<r≤p
W1,r

0 (Ω)×Lr(Ω) of the following equations

−∆ z + v · ∇ z +∇ η = 0 and div z = 0 in Ω, z = λ on Γ. (3.11)

Proof. The proof follows the idea of [5]. Let (u , π) be an element of N p
0 (Ω) and let u and π be extended

by zero in Ω′. The extended functions, denoted by ũ and π̃ respectively belongs to W 1,p
0 (R3) and Lp(R3).

Now, we extend v in R3 in the following way: We solve the following Neumann problem in Ω′:

∆ θ = 0 in Ω′ and
∂θ

∂n
= v · n on Γ.

Owing to the boundary condition, this problem has a solution θ ∈W 1,3(Ω′). Let us take

w = ∇ θ in Ω′ and w = v in Ω.

Then w belongs to L3(R3). Let ϕ ∈ D(R3) then we have

< divw , ϕ >D′(R3)×D(R3) = −
∫
R3

w · ∇ϕdx

= −
∫

Ω

v · ∇ϕdx−
∫

Ω′
∇ θ · ∇ϕdx

= < v · n , ϕ >Γ − <
∂θ

∂n
, ϕ >Γ= 0,

where < ., . >Γ=< ., . >W −1/3,3(Γ)×W 1/3,3/2(Γ). Then divw = 0 in R3 and thus w belongs to L3
σ(R3). Set

−∆ ũ + w · ∇ ũ +∇ π̃ := F and div ũ := e in R3. (3.12)

Then (F, e) belongs to W −1,p
0 (R3) × Lp(R3) and obviously they have a compact support. Since p > 2,

we deduce that (F, e) belongs to W −1,2
0 (R3) × L2(R3). It follows from Lemma 3.3 that there exists a

solution (z , η) in W 1,r
0 (R3)× Lr(R3) for any r ∈ ]3/2, p] such that

−∆(ũ − z ) + w · ∇(ũ − z )) +∇(π̃ − η) = 0 and div(ũ − z ) = 0 in R3.

If p < 3, we deduce from the argument of uniqueness in Theorem 3.2 that (ũ − z , π̃ − η) = (0, 0) and
thus ũ and π̃ belongs respectively to W 1,r

0 (R3) and Lr(R3) for any 3/2 < r ≤ p, which implies that
(u , π) belongs to N 2

0 (Ω) and so (u , π) = {(0, 0)}. If p ≥ 3, using again Theorem 3.2, we necessarily have
(ũ − z , π̃− η) = (λ, µ) ∈ N[1−3/p] and since u = 0 on Γ, the restriction of (z , η) to Ω is nothing else but
(z (λ), η(λ)) which verifies (3.11). Observe that in this case, λ is a vector constant of R3 and µ = 0.

Remark 3.6.

1. We shall see at the end of this section that in fact N p
0 (Ω) = {(0, 0)} for 1 < p < 3.

2. Of course, we have seen at the beginning of this section that N 2
0 (Ω) = {(0, 0)}.

The next lemma solves Problem (1.1) with homogeneous boundary conditions and a right-hand side
f and h with bounded support.

Lemma 3.7. Assume that p > 2 and g = 0 on Γ. Let f ∈W−1,p
0 (Ω) and h ∈ Lp(Ω) such that f and h

have a compact support. Then, the Oseen Problem (1.1) has a unique solution u ∈W 1,2
0 (Ω) ∩W 1,p

0 (Ω)
and π ∈ L2(Ω) ∩ Lp(Ω).

Proof. By virtue of Lemma 2.1 of [5], the right-hand side f belongs also to W −1,2
0 (Ω). Since p > 2

and support of h is compact, we have h ∈ L2(Ω). Due to Theorem 3.1, Problem (1.1) has exactly one
solution (u , π) ∈ W 1,2

0 (Ω) × L2(Ω). The remainder of the proof is devoted to establish that (u , π) ∈
W 1,p

0 (Ω) × Lp(Ω). Take R0 sufficiently large so that both the supports of (f , h) are contained in BR0

and Ω′ ⊂ BR0
. Let λ and µ be two scalar, nonnegative functions in C∞(R3) that satisfy

∀ x ∈ BR0
, λ(x) = 1, suppλ ⊂ BR0+1, ∀ x ∈ R3, λ(x) + µ(x) = 1.
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Let ΩR0+1 denotes the intersection Ω ∩BR0+1 and let CR0
denote the exterior (i.e. the complement) of

BR0
. Then, we can write

u = λu + µu , π = λπ + µπ.

As µ is very smooth and vanishes on BR0
, then µ f = 0 and µh = 0. Let us extend (u , π) by zero in Ω′.

Then, the extended distributions denoted by (ũ , π̃) belongs to W 1,2
0 (R3)× L2(R3) and let w ∈ L3

σ(R3)
such as in Theorem 3.5. After an easy calculation, we obtain that the pair (µũ , µπ̃) satisfies the following
equations in R3:

−∆(µ ũ) + w · ∇(µ ũ) +∇ (µ π̃) := f 1 and div(µ ũ) := e1 in R3,

with
f 1 = (∆λ)ũ − (∇λ)π̃ + 2∇λ · ∇ ũ − (w · ∇λ)ũ and e1 = −∇λ · ũ .

Moreover, owing to the supports of µ and λ, (f 1, e1) belongs to L2(R3)×H1(R3). In addition, if O is
a Lipschitzian bounded domain, we have L2(O) ↪→W −1,q(O) and H1(O) ↪→ Lq(O) for any 2 6 q 6 6.
Hence, we shall assume for the time being that 2 < p 6 6 and afterward, we shall use a bootstrap
argument. Then (f 1, e1) belongs to W −1,p

0 (R3)∩W −1,2
0 (R3)×Lp(R3)∩L2(R3). It follows from Lemma

3.3 that there exists (z , θ) ∈W 1,p
0 (R3) ∩W 1,2

0 (R3)× Lp(R3) ∩ L2(R3) such that

−∆ z + w · ∇ z +∇ θ = f 1 and div z = e1 in R3.

And thus,

−∆(µ ũ − z ) + w · ∇(µ ũ − z ) +∇(µπ̃ − θ) = 0 and div(µ ũ − z ) = 0 in R3,

with µπ̃ − θ ∈ L2(R3) and µ ũ − z ∈W 1,2
0 (R3). Then

〈−∆(µ ũ − z ) + w · ∇(µ ũ − z ) +∇(µπ̃ − θ), µ ũ − z 〉W−1,2
0 (R3)×W 1,2

0 (R3) = 0,

and so
‖∇ (µ ũ − z )‖L2(R3) = 0.

Thus µ ũ − z = 0 and so µ π̃ − θ = 0. Consequently, (µ ũ , µ π̃) belongs to W 1,p
0 (R3)× Lp(R3).

In particular, we have µ ũ = u and µ π̃ = π outside BR0+1, so the restriction of u to ∂BR0+1 belongs

to W 1/p′,p(∂ BR0+1). Therefore, (u , π) satisfies:

−∆u + v · ∇u +∇π = f and divu = h in ΩR0+1, u |∂BR0+1
= ũ and u |Γ = 0.

Observe that for any ϕ ∈W 1,2(ΩR0+1) we have∫
ΩR0+1

u · ∇ϕdx = −
∫

ΩR0+1

ϕdivu dx+

∫
∂ ΩR0+1

ϕu · n dx.

In particular, for ϕ = 1, we have ∫
ΩR0+1

h(x) dx =

∫
∂ ΩR0+1

u · n dx

and thus, according to Theorem 15 see [10], this problem has a unique (u , π) ∈W 1,p(ΩR0+1)×Lp(ΩR0+1).
This implies that (u , π) ∈W 1,p

0 (Ω)×Lp(Ω) if 2 < p ≤ 6. Now, suppose that p > 6. The above argument
shows that (u , π) belongs to W 1,6

0 (Ω)×L6(Ω) and we can repeat the same argument with p = 6 instead
of p = 2 using the fact that if O is a Lipschitzian bounded domain, we have L6(O) ↪→ W −1,t(O) for
any real number t > 1. This establishes the existence of solution (u , π) in W 1,p

0 (Ω)× Lp(Ω) of Problem
(1.1) when p > 2. Uniqueness follows from the fact that W 1,2

0 (Ω) does not contain the vector constant
functions.

The next lemma solves Problem (1.1) with non homogeneous boundary conditions and a right-hand
side f and h with bounded support.

Lemma 3.8. Under the assumptions of Lemma 3.7, for each g ∈W1/p′,p(Γ), Problem (1.1) has a unique
solution (u, π) ∈W1,p

0 (Ω) ∩W1,2
0 (Ω)× Lp(Ω) ∩ L2(Ω).
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Proof. Let g ∈W 1/p′,p(Γ) and take R sufficiently large so that Ω′ ⊂ BR. Set ΩR = Ω ∩BR, then there
exists z ∈ W 1,p(ΩR) solution of the problem −∆z = 0 in ΩR, z = g on Γ and z = 0 on ∂BR. We
extend z by zero out of BR. The extended function denoted by z̃ has a compact support in Ω′ and
belongs to W 1,p

0 (Ω) and once we set u ′ = u − z̃ . Then Problem (1.1) is equivalent to the following
problem: Find (u ′, π) such that{

−∆u ′ + v · ∇u ′ +∇π = f + v · ∇z̃ + ∆z̃ ,
div u ′ = h+ div z̃ in Ω,u ′|∂Ω = 0,

(3.13)

where data belonging to the space W −1,p
0 (Ω) × Lp(Ω) with the compact support in Ω̄. Then we will

apply Lemma 3.7 .

Corollary 3.9. Assume that p > 2 and let g ∈W1/p′,p(∂Ω). Then there exists

(u, π) ∈
(
W1,p

0 (Ω) ∩W1,2
0 (Ω)

)
×
(
Lp(Ω) ∩ L2(Ω)

)
such that

−∆u + v · ∇u +∇π = 0, divu = 0 in Ω and u|Γ = g.

Proof. Let R0 > 0 such that Ω′ ⊂ BR0
. Take ψ ∈ D(R3) with support in ΩR0

and such that∫
ΩR0

ψ(x)dx+

∫
∂Ω

g · nds = 0.

According to Theorem 12 [10], there exists (z , η) ∈W 1,p(ΩR0
)× Lp(ΩR0

) such that

−∆z + v · ∇z +∇η = 0, div z = ψ in ΩR0
, z |∂BR0

= 0, z |Γ = g .

If we denote the extension by (0, 0) of (z , η) outside BR0 by (z̃ , η̃) then (z̃ , η̃) ∈W 1,p
0 (Ω)× Lp(Ω) and

−∆z̃ + v · ∇z̃ +∇η̃ := ξ in Ω,
div z̃ = ψ in Ω,

z̃ = g on Γ.

Observe that ξ belongs to W −1,p
0 (Ω) with compact support in Ω′. From Theorem 3.7 we have a solution

(w , τ) ∈
(
W 1,p

0 (Ω) ∩W 1,2
0 (Ω)

)
×
(
Lp(Ω) ∩ L2(Ω)

)
to the problem

−∆w + v · ∇w +∇τ = −ξ, div w = −ψ in Ω and w |Γ = 0.

Then the pair (u , π) = (z̃ + w , η̃ + τ) has the required properties.

As consequence, we prove the following result:

Theorem 3.10. Assume that p > 2. Let f ∈W−1,p
0 (Ω), h ∈ Lp(Ω) and g ∈W 1/p′,p(Γ). Then Problem

(1.1) has a solution (u, π) ∈W1,p
0 (Ω)× Lp(Ω) unique up to an element of N p

0 (Ω).

Proof. i) First case: g = 0.
We would like to extend data (f , h) ∈ W −1,p

0 (Ω) × Lp(Ω) to the whole space. According to Corollary
1.3 of [1] there exists a second-tensor F ∈ Lp(Ω) such that div F = f . Then we extend F (resp. h) by
zero into the whole space and we denote this extension by F̃ (resp. h̃). Set f̃ = div F̃ . It is clear that
(f̃ , h̃) ∈W −1,p

0 (R3)× Lp(R3). Now, we consider the following equation:

−∆z̃ + w · ∇z̃ +∇η̃ = f̃ and div z̃ = h̃ in R3,

with w ∈ L3
σ(R3) introduced in the proof of Theorem 3.5. Applying the theory of Oseen problem in R3,

we deduce that this problem has a unique solution (z̃ , η̃) ∈W 1,p
0 (R3)× Lp(R3) if p < 3 and if p ≥ 3, z̃

is unique solution up to a constant vector. In addition, we have:

‖z̃‖W 1,p(R3)/P[1−3/p]
+ ‖η̃‖Lp(R3) ≤ C

(
‖f̃ ‖W −1,p

0 (R3 + ‖h̃‖Lp(R3)

)
. (3.14)

Denoting the restriction to Ω by (z , η) and by γz ∈ W 1/p′,p(Γ) the trace of z on Γ. According to
Corollary 3.9, we have the existence of (ξ, ν) ∈

(
W 1,p

0 (Ω) ∩W 1,2
0 (Ω)× Lp(Ω) ∩ L2(Ω)

)
such that

−∆ξ + v · ∇ξ +∇ν = 0, div ξ = 0 in Ω, ξ|Γ = −γz .
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Hence, the pair (u , π) = (z + ξ, η + ν) belongs to W 1,p
0 (Ω)× Lp(Ω) and satisfies Problem (1.1) with

g = 0.

ii) Second case: Nonhomogeneous boundary data. Each g ∈ W 1/p′,p(Γ) has a lifting χ ∈ W 1,p
0 (Ω)

such that
‖χ‖W 1,p

0 (Ω) ≤ C‖g‖W 1/p′,p(∂Ω).

Setting u ′ = u − χ, then Problem (1.1) is equivalent to the following problem: Find (u ′, π) such that

−∆u ′ + v · ∇u ′ +∇π = f + ∆χ− v · ∇χ in Ω,
divu ′ = h− divχ in Ω,

u ′ = 0 on Γ.

Set f χ = f + ∆χ − v · ∇χ and hχ = h − divχ. As p > 2, v · ∇χ ∈ Lr(Ω), with 1
r = 1

3 + 1
p and

Lr(Ω) ↪→W −1,p
0 (Ω). Hence, f χ belongs to W −1,p

0 (Ω). From previous step we know that this problem

has a solution in W̊
1,p

0 (Ω)× Lp(Ω). Uniqueness follows from the definition of the kernel N p
0 (Ω).

In particular, it follows from Theorem 3.10 that, for any p ≥ 2, the Oseen operator

O : W̊
1,p

0 (Ω)× Lp(Ω)/N p
0 (Ω) −→W −1,p

0 (Ω)× Lp(Ω)

defined by : O(u , π) =
(
−∆u + v · ∇u +∇π,divu

)
is obviously continuous and since both spaces are

Banach spaces, it is an isomorphism. Thus there exists a constant C(v) depending on v ∈ L3
σ(Ω), Ω and

p such that

inf
(λ,µ)∈Np0 (Ω)

||u + λ||W 1,p
0 (Ω) + ||π + µ||Lp(Ω) ≤ C(v)

(
||f ||W −1,p

0 (Ω) + ||h||Lp(Ω)

)
. (3.15)

The following existence result can be stated via a dual argument.

Theorem 3.11. Suppose that 1 < p < 2 and g = 0. Let (f, h) ∈W−1,p
0 (Ω) × Lp(Ω) such that for any

(λ, µ) ∈ N p′

0 (Ω), we have

〈f,λ〉
W−1,p

0 (Ω)×W̊1,p′
0 (Ω)

− 〈h, µ〉Lp(Ω)×Lp′ (Ω) = 0. (3.16)

Then the Oseen problem (1.1) has a unique solution (u, π) ∈W1,p
0 (Ω)× Lp(Ω).

Proof. On one hand, Green formula yields, for all w ∈ W̊
1,p′

0 (Ω) and (u , π) ∈ W̊
1,p

0 (Ω)× Lp(Ω)

〈−∆u + div(v ⊗ u) +∇π,w〉
W −1,p

0 (Ω)×W̊ 1,p′
0 (Ω)

=

〈u ,−∆w − div(v ⊗w)〉
W̊

1,p
0 (Ω)×W −1,p′

0 (Ω)
− 〈π,divw〉Lp(Ω)×Lp′ (Ω) .

Taking into account that p′ > 2, we have div(v ⊗w) = v · ∇w ∈ Lr(Ω) with 1
r = 1

3 + 1
p′ and Lr(Ω) ↪→

W −1,p′

0 (Ω). On the other hand, for all η ∈ Lp′(Ω),

〈u ,∇ η〉
W̊

1,p
0 (Ω)×W −1,p′

0 (Ω)
= −〈divu , η〉Lp(Ω)×Lp′ (Ω) .

Then problem (1.1) with g = 0 has the following equivalent variational formulation: find (u , π) ∈
W̊

1,p

0 (Ω)× Lp(Ω) such that for all (w , η) ∈ W̊
1,p′

0 (Ω)× Lp′(Ω),

〈u ,−∆w − div(v ⊗w) +∇ η〉
W̊

1,p
0 (Ω)×W −1,p′

0 (Ω)
− 〈π,divw〉Lp(Ω)×Lp′ (Ω) =

= 〈f ,w〉
W −1,p

0 (Ω)×W̊ 1,p′
0 (Ω)

− 〈h, η〉Lp(Ω)×Lp′ (Ω) . (3.17)

According to Theorem 3.10, for each (f ′, h′) ∈ W −1,p′

0 (Ω) × Lp
′
(Ω) there exists a unique solution

(w , η) ∈ (W̊
1,p′

0 (Ω)× Lp′(Ω))/N p′

0 (Ω) such that

−∆w − div(v ⊗w) +∇ η = f ′, divw = h′ in Ω and w = 0 on Γ,

with the following estimate

inf
(λ,µ)∈Np

′
0 (Ω)

||w + λ||
W 1,p′

0 (Ω)
+ ||η + µ||Lp′ (Ω) ≤ C(v)

(
||f ′||

W −1,p′
0 (R3)

+ ||h′||Lp′ (Ω)

)
. (3.18)
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Let T be a linear form defined from W−1,p′

0 (Ω)× Lp′(Ω) onto R by:

T : (f ′, h′) 7→ 〈f ,w〉
W −1,p

0 (Ω)×W̊ 1,p′
0 (Ω)

− 〈h, η〉Lp(Ω)×Lp′ (Ω) .

Observe that for any pair (f ′, h′) ∈W −1,p′

0 (Ω)× Lp′(Ω) and for any (λ, µ) ∈ N p′

0 (Ω) we have

|T (f ′, h′)| = | 〈f ,w + λ〉
W −1,p

0 (Ω)×W̊ 1,p′
0 (Ω)

− 〈h, η + µ〉Lp(Ω)×Lp′ (Ω) |

≤ ||f ||W −1,p
0 (Ω)||w + λ||

W 1,p′
0 (Ω)

+ ||h||Lp(Ω)||η + µ||Lp′ (Ω).

Using (3.18), we prove that

|T (f ′, h′)| ≤ C(v)
(
||f ||W −1,p

0 (Ω) + ||h||Lp(Ω)

)(
||f ′||

W −1,p′
0 (Ω)

+ ||h′||Lp′ (Ω)

)
.

Thus the linear form T is continuous on the following space W−1,p′

0 (Ω) × Lp′(Ω) and we deduce that

there exists a unique (u , π) ∈ W̊
1,p

0 (Ω)× Lp(Ω) such that

T (f ′, h′) =
〈
u , f ′

〉
W̊

1,p
0 (Ω)×W −1,p′

0 (Ω)
− 〈π, h′〉Lp(Ω)×Lp′ (Ω) ,

with
||u ||W 1,p

0 (Ω) + ||π||Lp(Ω) ≤ C(v)
(
||f ||W −1,p

0 (Ω) + ||h||Lp(Ω)

)
. (3.19)

By definition of T , it follows

〈f ,w〉
W −1,p

0 (Ω)×W̊ 1,p′
0 (Ω)

− 〈h, η〉Lp(Ω)×Lp′ (Ω) =
〈
u , f ′

〉
W̊

1,p
0 (Ω)×W −1,p′

0 (Ω)
− 〈π, h′〉Lp(Ω)×Lp′ (Ω) ,

which is the variational formulation (3.17).

Now, let us prove the appropriate estimate for the Oseen problem (1.1) and we start by the case
1 < p < 2:

Theorem 3.12. Suppose that 1 < p < 2 and let (u, π) ∈ W̊
1,p

0 (Ω)× Lp(Ω) be the unique solution of the
Oseen problem (1.1) given by Theorem 3.11 with the following data:

f ∈W−1,p
0 (Ω), h ∈ Lp(Ω), and g = 0

and for any (ξ, η) ∈ N p′

0 (Ω), we have

〈f, ξ〉
W−1,p

0 (Ω)×W̊1,p′
0 (Ω)

− 〈h, η〉Lp(Ω)×Lp′ (Ω) = 0.

Then (u, π) satisfies the following estimate :

||u||W1,p
0 (Ω) + ||π||Lp(Ω) 6 C

(
1 + ||v||L3(Ω)

)2(|| f ||W−1,p
0 (Ω) + (1 + ||v||L3(Ω))||h||Lp(Ω)

)
. (3.20)

Proof. Since f ∈ W −1,p
0 (Ω), then it follows from Corollary 1.3 of [1] that f = div F with F ∈ Lp(Ω)

and ||F ||Lp(Ω) ≤ C|| f ||W−1,p
0 (Ω) . Let extend F and h by zero in Ω′. The extended functions, denoted

by F̃ and h̃ belong to Lp(R3) and set f̃ = div F̃ belongs to W −1,p
0 (R3). Let φ be a truncation function:

φ ∈ D(R3) such that 0 6 φ(t) 6 1 for any t ∈ R3 and

φ(t) =

{
1 if | t |6 1,

0 if | t |> 2.

Let λ be a cut off function, defined on R3 by λ(x) = φ(
x

R
) for any R sufficiently large so that Ω′ ⊂ BR.

Set µ = 1−λ. Let ΩR denote the intersection Ω∩BR. Now, let (u , π) ∈ W̊
1,p

0 (Ω)×Lp(Ω) be the unique
solution of the Oseen problem (1.1) given by Theorem 3.11 and let us extend (u , π) by zero in Ω′. Then,
the extended distributions denoted by (ũ , π̃) belongs to W 1,p

0 (R3)×Lp(R3) and let w ∈ L3
σ(R3) such as

in Theorem 3.5. Then

||u ||W 1,p
0 (Ω) + ||π||Lp(Ω) ≤ ||µ ũ ||W 1,p

0 (R3) + ||λu ||W 1,p(ΩR) + ||µ π̃||Lp(R3) + ||λπ||Lp(ΩR). (3.21)
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After an easy calculation, we obtain that the pair (µũ , µπ̃) satisfies the following equations in R3:

−∆(µ ũ) + div(w ⊗ (µ ũ)) +∇ (µ π̃) := f 1 and div(µ ũ) := e1 in R3,

with
f 1 = µf̃ + (∆λ)ũ − (∇λ)π̃ + 2∇λ · ∇ ũ − (w · ∇λ)ũ and e1 = µ h̃−∇λ · ũ .

From Theorem 3.2, we have

||µ ũ ||W 1,p
0 (R3) + ||µ π̃||Lp(R3) ≤ C(1 + ||w ||L3(R3))

(
||f 1||W −1,p

0 (R3) + (1 + ||w ||L3(R3))||e1||Lp(R3)

)
≤ C(1 + ||v ||L3(Ω))

(
||f 1||W −1,p

0 (R3) + (1 + ||v ||L3(Ω))||e1||Lp(R3)

)
.(3.22)

Now, let ϕ ∈W 1,p′

0 (R3), then we have

| 〈(∆λ)ũ ,ϕ〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

| ≤ C

∫
AR

| 1

R2
ϕ(∆φ)ũ | dx

≤ CR||
ũ

ρ
||Lp(AR)||ϕ||W 1,p′

0 (R3)
,

where CR := C
(1 + 4R2)1/2

R
, C > 0.

| 〈(∇λ)π̃,ϕ〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

| ≤ CR||π̃||Lp(AR)||ϕ||W 1,p′
0 (R3)

.

| 〈2∇λ · ∇ ũ ,ϕ〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

| ≤ CR||∇ ũ ||Lp(AR)||ϕ||W 1,p′
0 (R3)

.

| 〈(w · ∇λ)ũ ,ϕ〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

| ≤ CR||w ⊗ ũ ||Lp(AR)||ϕ||W 1,p′
0 (R3)

.

|
〈
µf̃ ,ϕ

〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

| = |
∫

Ω

F∇(µϕ) dx| ≤ C||f ||W−1,p
0 (Ω)||ϕ||W 1,p′

0 (R3)
.

Now, let ϕ ∈ Lp′(R3), then we have

|
∫
R3

(µ h̃−∇λ · ũ)ϕdx| ≤ C

[
||h||Lp(Ω)||µϕ||Lp′ (Ω) + CR||

ũ

ρ
||Lp(AR)||ϕ||Lp′ (R3)

]
≤ C

[
||h||Lp(Ω) + CR||

ũ

ρ
||Lp(AR)

]
||ϕ||Lp′ (R3).

Then, we deduce from the previous inequalities that

||f 1||W −1,p
0 (R3) + (1 + ||v ||L3(Ω))||e1||Lp(R3) ≤

≤ C
[
||f ||W−1,p

0 (Ω) + CR||∇ ũ ||Lp(AR) + CR||
ũ

ρ
||Lp(AR)

+ CR
{
||π̃||Lp(AR) + ||w ⊗ ũ ||Lp(AR)

}
+
(
1 + ||v ||L3(Ω)

){
CR||

ũ

ρ
||Lp(AR) + ||h||Lp(Ω)

}]
. (3.23)

Similarly, the pair (λu , λ π) satisfies the following equations in ΩR:

−∆(λu) + div(v ⊗ (λu)) +∇(λπ) := f 2 and div(λu) := e2 in ΩR, (λu)|∂B2R = 0 and (λu)|Γ = 0,

with
f 2 = λ f + (∆µ)u − (∇µ)π + 2∇µ · ∇u − (v · ∇µ)u and e2 = λh−∇µ · u .

Using Theorem 15 of [10], we prove that

||λu ||W 1,p(ΩR) + ||λπ||Lp(ΩR) ≤ C(1 + ||v ||L3(Ω))
2
(
||f 2||W −1,p(ΩR) + (1 + ||v ||L3(Ω))||e2||Lp(ΩR)

)
.(3.24)
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As in the beginning of the proof, we show that

||f 2||W −1,p(ΩR) ≤ C
[
(1 +

1

R
)||f ||W−1,p

0 (Ω) + CR||
u

ρ
||Lp(AR)

+
1

R

{
||π||Lp(AR) + ||∇u |Lp(AR) + ||v ⊗ u ||Lp(AR)

}]
(3.25)

and that

||e2||Lp(ΩR) ≤ C
[
CR||

u

ρ
||Lp(AR) + ||h||Lp(Ω)

]
. (3.26)

Using (3.21)-(3.26) and tending R to∞, we prove thanks to dominated convergence theorem the estimate
(3.20).

Remark 3.13. Under the assumptions of Theorem 3.12 and supposing that 6/5 ≤ p < 2, the solution
(u , π) satisfies the estimate :

||u ||W 1,p
0 (Ω) + ||π||Lp(Ω) 6 C

(
1 + ||v ||L3(Ω)

)(
|| f ||W −1,p

0 (Ω) + (1 + ||v ||L3(Ω))||h||Lp(Ω)

)
.

Indeed, we shall use in the proof of Theorem 3.12 the following estimate

||λu ||W 1,p(ΩR) + ||λπ||Lp(ΩR) ≤ C(1 + ||v ||L3(Ω))
(
||f 2||W −1,p(ΩR) + (1 + ||v ||L3(Ω))||e2||Lp(ΩR)

)
,

instead of (3.24), see Proposition 3 of [10].

Now, we study the nonhomogeneous boundary data i.e g 6= 0 on Γ.

Corollary 3.14. Suppose that 1 < p < 2. Let f ∈W−1,p
0 (Ω), h ∈ Lp(Ω) and g ∈W 1/p′,p(∂Ω) such that

for any (λ, µ) ∈ N p′

0 (Ω), we have

〈f,λ〉
W−1,p

0 (Ω)×W̊1,p′
0 (Ω)

− 〈h, µ〉Lp(Ω)×Lp′ (Ω) + 〈g, (µI −∇λ) · n〉Γ = 0. (3.27)

Then the Oseen problem (1.1) has a unique solution (u, π) ∈W 1,p
0 (Ω)× Lp(Ω) such that

||u||W1,p
0 (Ω)+||π||Lp(Ω) 6 C

(
1+|| v ||L3(Ω)

)2 (|| f ||W−1,p
0 (Ω) +

(
1 + || v ||L3(Ω)

)(
||h||Lp(Ω) + || g ||W 1/p′,p(∂Ω)

))
(3.28)

Proof. Let g ∈W 1/p′,p(∂Ω), then there exists χ ∈W 1,p
0 (Ω) such that χ = g on Γ and

‖χ‖W 1,p
0 (Ω) ≤ C‖g‖W 1/p′,p(∂Ω). (3.29)

Setting u ′ = u − χ, then Problem (1.1) is equivalent to the following problem: Find (u ′, q) such that

−∆u ′ + div(v ⊗ u ′) +∇π = f + ∆χ− div(v ⊗ χ) in Ω,
divu ′ = h− divχ in Ω,
u ′|∂Ω = 0.

Set f χ = f + ∆χ− div(v ⊗ χ) and hχ = h− divχ. As 1 < p < 2 then χ ∈ Lp∗(Ω) and v ⊗ χ ∈ Lp(Ω).

Thus div(v ⊗ χ) ∈W −1,p
0 (Ω). Hence, f χ belongs to W −1,p

0 (Ω). It is clear that (f χ, hχ) satisfies the
compatibility condition (3.16). Then from Theorem 3.11 we know that this problem has a solution in

W̊
1,p

0 (Ω)× Lp(Ω). In addition, using Theorem 3.12 we deduce that

||u ′||W 1,p
0 (Ω) + ||π||Lp(Ω) 6 C

(
1 + ||v ||L3(Ω)

)2(||f χ||W −1,p
0 (Ω) +

(
1 + ||v ||L3(Ω)

)
||hχ||Lp(Ω)

)
.

It follows from (3.29) that

||f χ||W −1,p
0 (Ω) +

(
1 + ||v ||L3(Ω)

)
||hχ||Lp(Ω) ≤

C
(
||f ||W −1,p

0 (Ω) +
(
1 + ||v ||L3(Ω)

)
(||h||Lp(Ω) + ‖g‖W 1/p′,p(∂Ω))

)
. (3.30)

Then (3.28) is a trivial consequence of the previous inequality.
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Remark 3.15. We suppose now that p > 2. As in Theorem 3.11, using a dual argument with the
estimate (3.20) of Theorem 3.12, we prove that if g = 0,

inf
(ξ,η)∈Np0 (Ω)

||u + ξ||W 1,p
0 (Ω) + ||π + η||Lp(Ω) 6 C

(
1 + || v ||L3(Ω)

)3(|| f ||W −1,p
0 (Ω) + ||h ||Lp(Ω)

)
.

As in Corollary 3.14, when g ∈W 1/p′,p(∂Ω), we prove that

inf
(ξ,η)∈Np0 (Ω)

||u + ξ||W 1,p
0 (Ω) + ||π + η||Lp(Ω) 6 C

(
1 + ||v ||L3(Ω)

)3 ×(
|| f ||W −1,p

0 (Ω) + ||h||Lp(Ω) + (1 + || v ||L3(Ω)

)
|| g ||W 1/p′,p(∂Ω)

)
.

The next theorem summarizes the result of existence and uniqueness of generalized solutions of Prob-
lem (1.1) when 1 < p <∞:

Theorem 3.16. Let Ω be an exterior domain with C1,1 boundary. If p ≥ 2, for any f ∈ W−1,p
0 (Ω),

h ∈ Lp(Ω) and g ∈W 1/p′,p(Γ), Problem (1.1) has a unique solution (u, π) ∈W 1,p
0 (Ω)× Lp(Ω)/N p

0 (Ω)
and there exists a constant C, independent of u, π, f, h, g and v, such that

inf
(ξ,η)∈Np0 (Ω)

||u + ξ||W1,p
0 (Ω) + ||π + η||Lp(Ω) ≤ C

(
1 + || v ||L3(Ω)

)3
×
(
|| f ||W−1,p

0 (Ω) + ||h ||Lp(Ω) +
(
1 + || v ||L3(Ω)

)
|| g ||W 1/p′,p(∂Ω)

)
. (3.31)

If 1 < p < 2, for any f ∈ W−1,p
0 (Ω), h ∈ Lp(Ω) and g ∈ W1/p′,p(∂Ω) which satisfy the necessary

compatibility condition (3.27), Problem (1.1) has a unique solution (u, π) ∈W1,p
0 (Ω)× Lp(Ω) and there

exists a constant C, independent of u, π, f, h, g and v, such that

||u||W1,p
0 (Ω) + ||π||Lp(Ω) ≤ C

(
1+ || v ||L3(Ω)

)2(|| f ||W−1,p
0 (Ω) +

(
1+ || v ||L3(Ω)

)
(||h ||Lp(Ω) + || g ||W 1/p′,p(∂Ω))

)
.

(3.32)

4 Strong solutions for the Oseen problem

4.1 Strong solutions in W 2,p
0 (Ω)

We begin by proving the existence and uniqueness of strong solution in W 2,p
0 (Ω) for 1 < p < 3 in the

following sense.

Theorem 4.1. For 1 < p < 3, let f ∈ Lp(Ω), h ∈ W 1,p
0 (Ω) and g ∈ W2−1/p,p(Γ). Then the Oseen

problem (1.1) has a unique solution (u, π) ∈W 2,p
0 (Ω)×W 1,p

0 (Ω)/N p∗
0 (Ω) such that

inf
(ξ,η)∈Np∗0 (Ω)

‖u + ξ‖W2,p
0 (Ω) + ‖π + η‖W 1,p

0 (Ω) ≤

C
(
1 + || v ||L3(Ω)

)4 (‖f‖Lp(Ω) + ‖h‖W 1,p
0 (Ω) +

(
1 + || v ||L3(Ω)

)
‖g‖W2−1/p,p(Γ)

)
. (4.1)

Proof. For all 1 < p < 3, Sobolev embedding holds i.e Lp(Ω) ↪→ W−1,p∗
0 (Ω). Observe that h ∈

W 1,p
0 (Ω) ↪→ Lp∗(Ω), g ∈ W 2−1/p,p(Γ) ↪→ W 1−1/p∗,p∗(Γ) and f ∈ W−1,p∗

0 (Ω). Since p∗ > 3/2 i.e

(p∗)′ < 3, we deduce that N (p∗)′
0 (Ω) = {0, 0}. Using Theorem 3.16 (there is no compatibility condition),

we prove that there exists a solution

(u , π) ∈W 1,p∗
0 (Ω)× Lp∗(Ω)

for the Oseen problem (1.1) with the following estimate

||u ||W 1,p∗
0 (Ω) + ||π||Lp∗(Ω) ≤ C

(
1 + || v ||L3(Ω)

)3 ×((
|| f ||W −1,p∗

0 (Ω) + ||h ||Lp∗(Ω)

)
+
(
1 + || v ||L3(Ω)

)
|| g ||W 1−1/p∗,p∗(∂Ω))

)
. (4.2)

Since (v · ∇)u ∈ Lp(Ω), we can apply the Stokes regularity theory see [1] to deduce the existence of
(z , η) ∈W 2,p

0 (Ω)×W 1,p
0 (Ω) verifying:

−∆z +∇ η = f − v · ∇u and divz = h in Ω, z = g on Γ.
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Moreover, the estimate holds

‖z‖W 2,p
0 (Ω) + ‖η‖W 1,p

0 (Ω) ≤

C
(
‖f ‖Lp(Ω) + ‖v‖L3(Ω)‖∇u‖Lp∗(Ω) + ‖h‖W 1,p

0 (Ω) + ‖g‖W 2−1/p,p(Γ)

)
, (4.3)

with C denoting a constant only depending on p and Ω. Let w = z − u and θ = η − π, then we have
(w , θ) belongs to Sp∗0 (Ω). Therefore, if 1 < p < 3/2 i.e 3/2 < p∗ < 3, we deduce from [1] that Sp∗0 = (0, 0)
and thus (u , π) belongs to W 2,p

0 (Ω)×W 1,p
0 (Ω) and we deduce from (4.2) and (4.3) that:

‖u‖W 2,p
0 (Ω) + ‖π‖W 1,p

0 (Ω) ≤

C
(
1 + || v ||L3(Ω)

)4 (‖f ‖Lp(Ω) + ‖h‖W 1,p
0 (Ω) +

(
1 + || v ||L3(Ω)

)
‖g‖W 2−1/p,p(Γ)

)
. (4.4)

If p ≥ 3/2 i.e p∗ ≥ 3, we deduce from the Stokes regularity theory see [1], that (w , θ) belongs to
W 2,p

1 (Ω)×W 1,p
1 (Ω) ⊂W 2,p

0 (Ω)×W 1,p
0 (Ω) and thus (u , π) belongs to W 2,p

0 (Ω)×W 1,p
0 (Ω). Now, using

the following embeddings W 2,p
0 (Ω) ↪→W 1,p∗

0 (Ω) and W 1,p
0 (Ω) ↪→ Lp∗(Ω) and using (4.2), (4.3) and (4.4),

we deduce that

‖w‖W 1,p∗
0 (Ω) + ‖θ‖Lp∗(Ω) ≤

C
(
1 + || v ||L3(Ω)

)4 (‖f ‖Lp(Ω) + ‖h‖W 1,p
0 (Ω) +

(
1 + || v ||L3(Ω)

)
‖g‖W 2−1/p,p(Γ)

)
.

Observe that in the finite dimensional case, all norms are equivalent so we have

‖w‖W 2,p
0 (Ω) + ‖θ‖W 1,p

0 (Ω) ≤

C
(
1 + || v ||L3(Ω)

)4 (‖f ‖Lp(Ω) + ‖h‖W 1,p
0 (Ω) +

(
1 + || v ||L3(Ω)

)
‖g‖W 2−1/p,p(Γ)

)
and thus we obtain (4.4). The uniqueness of the solution (u , π) follows from W 2,p

0 (Ω) ×W 1,p
0 (Ω) ↪→

W 1,p∗
0 (Ω)×Lp∗(Ω) and also in W 1,p∗

0 (Ω)×Lp∗(Ω) the solution is unique up to an element of N p∗
0 (Ω).

4.2 Strong solutions in W 2,p
1 (Ω)

In this subsection, we take f in weighted space Lp(Ω), more precisely f ∈W 0,p
1 (Ω), and the data h in

the corresponding weighted Sobolev space W 1,p
1 (Ω).

Theorem 4.2. Suppose that 1 < p < 3 and p 6= 3/2. Let f ∈W 0,p
1 (Ω), h ∈ W 1,p

1 (Ω), g ∈W2−1/p,p(Γ)
that satisfy the compatibility condition (3.27) if p < 2. Then the Oseen problem (1.1) has a unique
solution (u, π) ∈W2,p

1 (Ω)×W 1,p
1 (Ω)/N p

0 (Ω) such that

inf
(ξ,η)∈Np0 (Ω)

||u + ξ||W2,p
1 (Ω) + ||π + η||W 1,p

1 (Ω) ≤ C
(
1 + || v ||L3(Ω)

)6
×
(
|| f ||W 0,p

1 (Ω) +
(
1 + || v ||L3(Ω)

)(
||h ||W 1,p

1 (Ω) + || g ||W 1/p′,p(∂Ω))
)
. (4.5)

Proof. i) Regularity :

Since the following embeddings hold W 1,p
1 (Ω) ↪→ Lp(Ω), W 2−1/p,p(Γ) ↪→W 1/p′,p(Γ), resp. for p 6= 3/2

we have W 0,p
1 (Ω) ↪→W −1,p

0 (Ω), according to Theorem 3.16 it follows the existence of a unique solution
(u , π) ∈W 1,p

0 (Ω)×Lp(Ω) to the Oseen problem (1.1) if p < 2 and if p ≥ 2 it is unique up to an element
of N p

0 (Ω). Moreover the following estimate is satisfied

inf
(ξ,η)∈Np0 (Ω)

||u + ξ||W 1,p
0 (Ω) + ||π + η||Lp(Ω) ≤ C

(
1 + || v ||L3(Ω)

)3
×
(
|| f ||W 0,p

1 (Ω) + ||h ||W 1,p
1 (Ω) +

(
1 + || v ||L3(Ω)

)
|| g ||W 2−1/p,p(∂Ω)

)
. (4.6)
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The rest of the proof is similar to that of Lemma 3.7, we introduce the same partition of unity as in
Lemma 3.7. With the same notation, we can write

u = λu + µu , π = λπ + µπ.

Let us extend (µu , µ π) by zero in Ω′. Then, the extended distributions denoted by (µ̃u , µ̃ π) belongs to
W 1,p

0 (R3)×Lp(R3) and let w ∈ L3
σ(R3) such as in Theorem 3.5. A quick computation in D′(R3), shows

that the pair (µ̃u , µ̃ π) satisfies the following equations:

−∆(µ̃u) + w · ∇(µ̃u) +∇ (µ̃ π) := f 1 and div(µ̃u) := e1 in R3,

with
f 1 = µ f̃ + (∆λ)ũ − (∇λ)π̃ + 2∇λ · ∇ ũ − (w · ∇λ)ũ and e1 = µ̃ h−∇λ · ũ .

Moreover, owing to the supports of µ and λ, (f 1, e1) belongs to W 0,p
1 (R3) ×W 1,p

1 (R3). It is clear that
f 1 satisfies (3.8) and thus it follows from Theorem 3.4, that there exists a unique (z , θ) ∈W 2,p

1 (R3) ×
W 1,p

1 (R3) such that
−∆ z + w · ∇ z +∇ θ = f 1 and div z = e1 in R3.

and thus,

−∆(µ̃u − z ) + w · ∇(µ̃u − z ) +∇(µ̃ π − θ) = 0 and div(µ̃u − z ) = 0 in R3,

with (µ̃ π−θ) ∈ Lp(R3) and (µ̃u−z ) ∈W 1,p
0 (R3). Then, using the argument of uniqueness in section 4,

we deduce that µ̃u − z = 0 and µ̃ π− θ = 0. Consequently, (µ̃u , µ̃ π) belongs to W 2,p
1 (R3)×W 1,p

1 (R3).
In particular, we have µ̃u = u and µ̃ π = π outside BR0+1, so the restriction of u to ∂BR0+1 belongs to

W 2−1/p,p(∂ BR0+1). Therefore, (u , π) satisfies:

−∆u + v · ∇u +∇π = f and divu = h in ΩR0+1, u |∂BR0+1
= µ̃u and u |Γ = g .

Observe that for any ϕ ∈W 1,p′(ΩR0+1) we have∫
ΩR0+1

u · ∇ϕdx = −
∫

ΩR0+1

ϕdivu dx+

∫
∂ ΩR0+1

ϕu · n dx.

In particular, for ϕ = 1, we have∫
ΩR0+1

h(x) dx =

∫
∂ ΩR0+1

u · n dx =

∫
∂ BR0+1

u · n dx+

∫
Γ

g · n dx. (4.7)

and thus, according to Theorem 14 and Corollary 7 of [10], this problem has a unique (u , π) in
W 2,p(ΩR0+1) ×W 1,p(ΩR0+1). This implies that (u , π) ∈ W 2,p

1 (Ω) ×W 1,p
1 (Ω). The uniqueness of the

solution (u , π) follows from this inclusion W 2,p
1 (Ω) × W 1,p

1 (Ω) ⊂ W 1,p
0 (Ω) × Lp(Ω) which holds for

p 6= 3/2.
ii) A priori Estimate :
First observe that each solution (ξ, η) ∈ W 1,p

0 (Ω) × Lp(Ω) to the Oseen problem (1.1) with null data
obviously belongs to W 2,p

1 (Ω)×W 1,p
1 (Ω). In fact the proof is very similar to that of Lemma 3.11 of [6].

Conversly, we have W 2,p
1 (Ω)×W 1,p

1 (Ω) ⊂W 1,p
0 (Ω)×Lp(Ω). Now, considering the first step of regularity,

it follows that the continuous operator

O′ : W 2,p
1 (Ω)×W 1,p

1 (Ω)/N p
0 (Ω) −→W 0,p

1 (Ω)×W 1,p
1 (Ω)×W 2−1/p,p(Γ)

defined by : O′(u , π) =
(
− ∆u + v · ∇u + ∇π,divu ,u |Γ

)
is an isomorphism. Thus there exists a

constant C(v) depending on v ∈ L3
σ(Ω), Ω and p such that

inf
(ξ,η)∈Np0 (Ω)

||u + ξ||W 2,p
1 (Ω) + ||π+ η||W 1,p

1 (Ω) ≤ C(v)
(
||f ||W 0,p

1 (Ω) + ||h||W 1,p
1 (Ω) + ||g ||W 2−1/p,p(Γ)

)
. (4.8)

Proceeding then as in Theorem 3.12 and Corollary 3.14, we can characterize the constant C(v) and we
obtain (4.5).

Remark 4.3. As in the case of the Oseen problem in R3, for p ≥ 3 and α = 0 or α = 1, the hypothesis
of f ∈W 0,p

α (Ω), h ∈W 1,p
α (Ω), g ∈W 2−1/p,p(Γ) and v ∈ H 3(Ω) is not sufficient to ensure the existence

of strong solutions for problem (1.1) in W 2,p
α (Ω)×W 1,p

α (Ω).
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5 Very weak solutions for the Oseen problem

In this section, we are interested in the existence and the uniqueness of very weak solutions for the Oseen
problem (1.1).

5.1 Preliminary results

We recall some density results and Green formulas proved in [6]. Let us introduce the following space:

X `
r,p(Ω) =

{
ϕ ∈ W̊

1,r

` (Ω); divϕ ∈ W̊ 1,p
` (Ω)

}
.

According to Poincaré-type inequality (see [5]), this space can be equipped with the following norm:

‖ ϕ ‖X `
r,p(Ω)=

∑
1≤i,j≤3

‖ ∂ϕi
∂xj
‖W 0,r

` (Ω) + ‖ divϕ ‖W 1,p
` (Ω) .

Note that if f ∈ (X `
r,p(Ω))

′
with ` = 1 or ` = 0 then there exist F0 = (fij)1≤i,j≤3 ∈W 0,r′

−` (Ω) and

f1 ∈W−1,p′

−` (Ω) such that:
f = divF0 +∇f1. (5.1)

Moreover, we can define

‖ f ‖[X `
r,p(Ω)]′= max

{
‖ fij ‖W 0,r′

−` (Ω)
, 1 ≤ i, j ≤ 3, ‖ f1 ‖W−1,p′

−` (Ω)

}
.

The first result is given by the following lemma:

Lemma 5.1. (Amrouche and Meslameni [6]). Suppose that 0 ≤ 1
r −

1
p ≤

1
3 , then

i) For all q ∈W−1,p
−1 (Ω) and ϕ ∈ X1

r′,p′(Ω), we have

〈∇q,ϕ〉[X1
r′,p′ (Ω)]′×X1

r′,p′ (Ω) = −〈q,divϕ〉
W−1,p
−1 (Ω)×W̊ 1,p′

1 (Ω)
. (5.2)

ii) If in addition p′ 6= 3, then for all q ∈W−1,p
0 (Ω) and ϕ ∈ X0

r′,p′(Ω), we have

〈∇q,ϕ〉[X0
r′,p′ (Ω)]′×X0

r′,p′ (Ω) = −〈q,divϕ〉
W−1,p

0 (Ω)×W̊ 1,p′
0 (Ω)

. (5.3)

Giving a meaning to the trace of a very weak solution of the Oseen problem is not trivial task. We
need to introduce appropriate spaces. First, we consider the space:

Y p′,`(Ω) =
{
ψ ∈W 2,p′

` (Ω), ψ|Γ = 0, divψ|Γ = 0
}
,

that can also be described (see [6]) as:

Y p′,`(Ω) =

{
ψ ∈W 2,p′

` (Ω),ψ|Γ = 0,
∂ψ

∂n
· n |Γ = 0

}
. (5.4)

Note that if ψ ∈ Y p′,`(Ω), then divψ ∈ W 1,p′

` (Ω) and the range space of the normal derivative γ1 :

Y p′,`(Ω) −→W 1/p,p′(Γ) is

Z p′(Γ) =
{
z ∈W 1/p,p′(Γ); z · n = 0

}
.

Secondly, we shall use the space:

T `
r,p(Ω) =

{
v ∈W 0,p

−` (Ω); ∆v ∈ [X `
r′,p′(Ω)]

′
}
,

equipped with the norm:

‖ v ‖T `r,p(Ω)= ‖ v ‖W 0,p
−` (Ω) + ‖ ∆v ‖[X `

r′,p′ (Ω)]′ .

We also introduce the following space:

H r
p,`(div,Ω) =

{
v ∈W 0,p

`−1(Ω); div v ∈W 0,r
`−1(Ω)

}
.

This space is equipped with the graph norm. Moreover, we have the following result (see [6] for the
proof):
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Lemma 5.2. (Amrouche and Meslameni [6]). Let 3
2 < p < ∞ and 1

p + 1
3 = 1

r . Then the mapping

γτ : v −→ vτ |Γ on the space D(Ω) can be extended by continuity to a linear and continuous mapping,

still denoted by γτ , from T `
r,p(Ω) into W−1/p,p(Γ) for ` = 0 and if p 6= 3 for ` = 1 and we have the Green

formula: for any v ∈ T `
r,p(Ω) and ψ ∈ Yp′,`(Ω),

〈∆v,ψ〉[X`
r′,p′ (Ω)]′×X`

r′,p′ (Ω) =

∫
Ω

v ·∆ψdx−
〈
vτ ,

∂ψ

∂n

〉
Γ

, (5.5)

where the duality on Γ is defined by: 〈., .〉Γ = 〈., .〉W−1/p,p(Γ)×W1/p,p′ (Γ).

Finally, we have

Lemma 5.3. (Amrouche and Meslameni [6]). Let Ω be a Lipschitz open set in R3. Suppose that
0 6 1

r −
1
p 6 1

3 and ` = 0 or ` = 1. Then

i) The space D(Ω) is dense in Hr
p,`(div,Ω).

ii) The mapping γn : v −→ v · n|Γ on the space D(Ω) can be extended by continuity to a linear and

continuous mapping, still denoted by γn, from Hr
p,`(div ,Ω) into W−1/p,p(Γ). If in addition 1

r = 1
p + 1

3

and 3
2 < p <∞, we have the following Green formula: for any v ∈ Hr

p,`(div ,Ω) and ϕ ∈W 1,p′

1−` (Ω),∫
Ω

v · ∇ϕdx +

∫
Ω

ϕdiv v dx = 〈v · n, ϕ〉Γ . (5.6)

5.2 Very weak solutions in Lp(Ω)

To begin with we introduce the definition of very weak solution.
Let

f ∈ [X 0
r′,p′(Ω)]

′
, h ∈ Lr(Ω), and g ∈W−1/p,p(Γ), (5.7)

with
3

2
< p <∞ and

1

p
+

1

3
=

1

r
, (A1)

yielding 1 < r < 3.

Definition 5.4. (Very weak solution for the Oseen problem) We suppose that r and p satisfy (A1)
and let f, h and g satisfy (5.7) and let v ∈ L3

σ(Ω). We say that (u, π) ∈ Lp(Ω)×W−1,p
0 (Ω) is a very weak

solution of problem (1.1) if the following equalities hold: For any ϕ ∈ Yp′,0(Ω) and θ ∈W1,p′

0 (Ω),∫
Ω

u · (−∆ϕ− div(v⊗ϕ)) dx− 〈π,∇ ·ϕ〉
W−1,p

0 (Ω)×W̊1,p′
0 (Ω)

= 〈f,ϕ〉Ω −
〈
gτ ,

∂ϕ

∂n

〉
Γ

, (5.8)

∫
Ω

u · ∇θ dx = −
∫

Ω

h θ dx + 〈g · n, θ〉Γ , (5.9)

where the duality on Ω is defined by:

〈., .〉Ω = 〈., .〉[X0
r′,p′ (Ω)]′×X0

r′,p′ (Ω) .

Note that if (A1) is satisfied, we have:

W 1,p′

0 (Ω) ↪→ Lr
′
(Ω) and Y p′,0(Ω) ↪→ X 0

r′,p′(Ω),

and

∫
Ω

u · (v · ∇ϕ) dx is well defined , which means that all the brackets and integrals have a sense.

Proposition 5.5. Let p and r satisfy (A1) and let f ∈ [X0
r′,p′(Ω)]

′
, h ∈ Lr(Ω), v ∈ L3

σ(Ω) and g ∈
W−1/p,p(Γ). Then the following two statements are equivalent:

i) (u, π) ∈ Lp(Ω)×W−1,p
0 (Ω) is a very weak solution of (1.1)

ii) (u, π) satisfies (1.1) in the sense of distributions.
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Proof. i)⇒ ii) Let (u , π) ∈ Lp(Ω)×W−1,p
0 (Ω) be a very weak solution of (1.1), then if we take ϕ ∈ D(Ω)

and θ ∈ D(Ω) we can deduce by (5.8) and (5.9) that

−∆u + v · ∇u +∇π = f in Ω and ∇ · u = h in Ω,

Since v ∈ L3
σ(Ω) and 1

p + 1
3 = 1

r , we can deduce by Hölder that v ⊗ u ∈ Lr(Ω). Moreover, we have

−∆u = −div(v ⊗ u)−∇π + f ∈ [X 0
r′,p′(Ω)]

′
and u ∈ T 0

p,r(Ω). Now, let ϕ ∈ Y p′,0(Ω) ⊂ X 0
r′,p′(Ω), it

follows
〈−∆u ,ϕ〉Ω = 〈−∇π − div(v ⊗ u) + f ,ϕ〉Ω .

Lemma 5.2 implies that

〈−∆u ,ϕ〉Ω =

∫
Ω

u ·∆ϕ dx−
〈
uτ ,

∂ϕ

∂n

〉
Γ

and from (5.3) that
〈∇π,ϕ〉Ω = −〈π,∇ ·ϕ〉

W−1,p
0 (Ω)×W̊ 1,p′

0 (Ω)
.

On the other hand, we have ∇ϕ ∈ Lr
′
(Ω) and div(v ⊗ϕ) = v · ∇ϕ ∈ Lp

′
(Ω). Then we obtain

〈div(v ⊗ u),ϕ〉Ω = 〈div(v ⊗ u),ϕ〉
W−1,r

0 (Ω)×W̊ 1,r′
0 (Ω)

= −〈v ⊗ u ,∇ϕ〉Lr(Ω)×Lr′ (Ω)

= −
∫

Ω

u · div(v ⊗ϕ) dx.

Thus we have∫
Ω

u∆ϕ dx−
〈
uτ ,

∂ϕ

∂n

〉
Γ

= 〈π,∇ ·ϕ〉
W−1,p

0 (Ω)×W̊ 1,p′
0 (Ω)

+ 〈f ,ϕ〉Ω +

∫
Ω

u · div(v ⊗ϕ) dx.,

and we can deduce that for any ϕ ∈ Y p′,0(Ω)〈
uτ ,

∂ϕ

∂n

〉
Γ

=

〈
gτ ,

∂ϕ

∂n

〉
Γ

.

Now let µ ∈W 1/p,p′(Γ), then we have 〈uτ − gτ ,µ〉Γ = 〈uτ − gτ ,µτ 〉Γ.It is clear that µτ ∈ Z p′(Ω) and

it implies that there exists ϕ ∈ Y p′,0(Ω) such that
∂ϕ

∂n
= µτ on Γ. We can deduce that uτ = gτ in

W−1/p,p(Γ). From the equation ∇ · u = h, we deduce that u ∈ H r
p,1(div,Ω), then it follows from (5.6),

that for any θ ∈W 1,p′

0 (Ω),
〈u · n , θ〉Γ = 〈g · n , θ〉Γ .

Consequently u · n = g · n in W−1/p,p(Γ) and finally u = g on Γ.
ii)⇒ i) The converse is a simple consequence of (5.6), (5.3) and Lemma 5.2.

Theorem 5.6. Let Ω be an exterior domain with C1,1 boundary and let p and r satisfy (A1) and let f,
h, and g satisfy (5.7), v ∈ H3(Ω). Then the Oseen problem (1.1) has a unique solution u ∈ Lp(Ω) and

π ∈W−1,p
0 (Ω) if and only if for any (λ, µ) ∈ N (p′)∗

0 (Ω):

〈f,λ〉 − 〈h, µ〉+ 〈g, (µI −∇λ) · n〉Γ = 0.

Moreover, there exists a constant C > 0 depending only on p, r and Ω such that:

‖ u ‖Lp(Ω) + ‖ π ‖W−1,p
0 (Ω)≤ C

(
1 + || v ||L3(Ω)

)4 (‖ f ‖[X0
r′,p′ (Ω)]′ + ‖ h ‖Lr(Ω) + ‖ g ‖W−1/p,p(Γ)

)
. (5.10)

Proof. It remains to consider the equivalent problem: Find (u , π) ∈ Lp(Ω)×W−1,p
0 (Ω) such that for any

w ∈ Y p′,0(Ω) and θ ∈W 1,p′

0 (Ω) it holds:∫
Ω

u · (−∆w + v · ∇w +∇ θ)dx− 〈π,divw〉
W−1,p

0 (Ω)×W̊1,p′
0 (Ω)

=

〈f ,w〉Ω −
〈
gτ ,

∂w

∂n

〉
Γ

+ 〈g · n , θ〉Γ −
∫

Ω

h θ dx.
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Let T be a linear form defined by:

T : Lp
′
(Ω)× W̊ 1,p′

0 (Ω) −→ R

(F, ϕ) 7−→ 〈f ,w〉Ω −
〈
gτ ,

∂w

∂n

〉
Γ

+ 〈g · n , θ〉Γ −
∫

Ω

h θdx,

with (w, θ) ∈W 2,p′

0 (Ω)×W 1,p′

0 (Ω) is a solution of the following Oseen problem:

−∆w + v · ∇w +∇ θ = F and divw = ϕ in Ω, w = 0 on Γ,

and satisfying the following estimate: (see Theorem 4.1)

inf
(ξ,η)∈N (p′)∗

0 (Ω)

‖w + ξ‖
W 2,p′

0 (Ω)
+ ‖θ + η‖

W 1,p′
0 (Ω)

≤

C
(
1 + || v ||L3(Ω)

)4 (‖F‖Lp′ (Ω) + ‖ϕ‖
W 1,p′

0 (Ω)

)
. (5.11)

Then we have for any pair (F, ϕ) ∈ Lp
′
(Ω)× W̊ 1,p′

0 (Ω) and for any (ξ, η) ∈ N (p′)∗
0 (Ω)

|T (F, ϕ)| = | 〈f ,w + ξ〉Ω −
〈
gτ ,

∂(w + ξ)

∂n

〉
Γ

+ 〈g · n , θ + η〉Γ −
∫

Ω

h (θ + η)dx |

≤ C
(
‖ f ‖[X0

r′,p′ (Ω]′ + ‖ g ‖W−1/p,p(Ω) + ‖ h ‖Lr(Ω)

)
×
(
‖ w + ξ ‖

W2,p′
0 (Ω)

+ ‖ θ + η ‖
W 1,p′

0 (Ω)

)
.

Using (5.11), we prove that

| T (F, ϕ) | ≤ C
(
1 + || v ||L3(Ω)

)4 (||F||Lp′ (Ω) + ||ϕ||
W 1,p′

0 (Ω)

)
×
(
||f ||[X0

r′,p′ (Ω]′ + ||g ||W−1/p,p(Ω) + ||h||Lr(Ω)

)
.

It implies that the linear form T is continuous on Lp
′
(Ω)× W̊ 1,p′

0 (Ω) and moreover there exists a unique
solution(u , π) ∈ Lp(Ω)×W−1,p

0 (Ω) solution of the Oseen problem (1.1) satisfying estimate (5.10).

5.3 Very weak solutions in W 0,p
−1(Ω)

Here, we are interested in the case of the following assumptions:

f ∈ [X 1
r′,p′(Ω)]

′
, h ∈W 0,r

−1 (Ω) and g ∈W−1/p,p(Γ), (5.12)

with

3

2
< p <∞, p 6= 3 and

1

p
+

1

3
=

1

r
, (A2)

yielding 1 < r < 3.

Definition 5.7. (Very weak solution for the Oseen problem) Suppose that (A2) is satisfied and let
f, h and g satisfying (5.12) and let v ∈ L3

σ(Ω). We say that (u, π) ∈W0,p
−1(Ω)×W−1,p

−1 (Ω) is a very weak

solution of (1.1) if the following equalities hold: For any ϕ ∈ Yp′,1(Ω) and θ ∈W1,p′

1 (Ω),∫
Ω

u · (−∆ϕ− div(v⊗ϕ)) dx− 〈π,divϕ〉
W−1,p
−1 (Ω)×W̊1,p′

1 (Ω)
= 〈f,ϕ〉Ω −

〈
gτ ,

∂ϕ

∂n

〉
Γ

(5.13)

∫
Ω

u · ∇ θ dx = −
∫

Ω

h θdx + 〈g · n, θ〉Γ (5.14)

where the duality on Ω is defined by:

〈., .〉Ω = 〈., .〉[X1
r′,p′ (Ω)]′×X1

r′,p′ (Ω) .
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Note that if 3
2 < p <∞ and 1

p + 1
3 = 1

r , we have:

W 1,p′

1 (Ω) ↪→W 0,r′

1 (Ω), and Y p′,1(Ω) ↪→ X 1
r′,p′(Ω),

and

∫
Ω

u · div(v ⊗ ϕ) dx is well defined which means that all the brackets and integrals have a sense.

As previously we prove under the assumption (A2), that if f , h, g satisfy (5.12) and v ∈ L3
σ(Ω), then

(u , π) ∈ W 0,p
−1(Ω) ×W−1,p

−1 (Ω) is a very weak solution of (1.1) if and only if (u , π) satisfy (1.1) in the
sense of distributions.

Theorem 5.8. Let Ω be an exterior domain with C1,1 boundary. Suppose that (A2) is satisfied and let
f, h, g satisfy (5.12) and let v ∈ H3(Ω). Then the Oseen problem (1.1) has a solution u ∈W 0,p

−1 (Ω) and

π ∈W −1,p
−1 (Ω) if and only if for any (λ, µ) ∈ N p′

0 (Ω):

〈f,λ〉 − 〈h, µ〉+ 〈g, (ηI −∇λ) · n〉Γ = 0.

In W0,p
−1(Ω)×W−1,p

−1 (Ω), each solution is unique up to an element of N p
0 (Ω) and there exists a constant

C > 0 depending only on p, r and Ω such that:

inf
(ξ,η)∈Np0 (Ω)

(||u + ξ||W0,p
−1 (Ω) + ||π + η||W−1,p

−1 (Ω))

≤ C
(
1 + || v ||L3(Ω)

)7
(||f||[X1

r′,p′ (Ω)]′ + ||h||W 0,r
−1 (Ω) + ||g||W−1/p,p(Γ)). (5.15)

Proof. It remains to consider the equivalent problem: Find (u , π) ∈W 0,p
−1(Ω)×W−1,p

−1 (Ω) such that for

any w ∈ Y p′,0(Ω) and θ ∈W 1,p′

1 (Ω) the following equality holds:∫
Ω

u · (−∆w + v · ∇w +∇θ)dx− 〈π,divw〉
W−1,p
−1 (Ω)×W̊ 1,p′

1 (Ω)
= 〈f ,w〉Ω −

〈
gτ ,

∂w

∂n

〉
Γ

+ 〈g · n , θ〉Γ −
∫

Ω

h θdx.

Let T be a linear form defined from
(
W0,p′

1 (Ω)× W̊ 1,p′

1 (Ω)) ⊥ N p
0 (Ω)

)
onto R by:

T (F, ϕ) = 〈f ,w〉Ω −
〈
gτ ,

∂w

∂n

〉
Γ

+ 〈g · n , θ〉Γ −
∫

Ω

h θdx,

with (w, θ) ∈W 2,p′

1 (Ω)×W 1,p′

1 (Ω) is a solution of the following Oseen problem:

−∆w + v · ∇w +∇ θ = F and divw = ϕ in Ω, w = 0 on Γ,

and satisfying the following estimate: (see Theorem 4.2)

inf
(ξ,η)∈Np

′
0 (Ω)

(||w + ξ||
W 2,p′

1 (Ω)
+ ||θ + η||

W 1,p′
1 (Ω)

) 6 C

(
1 + || v ||L3(Ω)

)6 (||F||
W 0,p′

1 (Ω)
+
(
1 + || v ||L3(Ω)

)
||ϕ||

W 1,p′
1 (Ω)

)
. (5.16)

Then for any pair (F, ϕ) ∈ (W0,p′

1 (Ω)× W̊ 1,p′

1 (Ω))⊥N 1,p
0 (Ω) and for any (ξ, η) ∈ N p′

0 (Ω)

|T (F, ϕ)| = | 〈f ,w + ξ〉Ω −
〈
gτ ,

∂(w + ξ)

∂n

〉
Γ

+ 〈g · n , θ + η〉Γ −
∫

Ω

h (θ + η)dx |

≤ C
(
‖ f ‖[X1

r′,p′ (Ω]′ + ‖ g ‖W−1/p,p(Ω) + ‖ h ‖W 0,r
−1 (Ω)

)
×
(
‖ w + ξ ‖

W2,p′
1 (Ω)

+ ‖ θ + η ‖
W 1,p′

1 (Ω)

)
.

Using (5.16), we prove that
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|T (F, ϕ)| ≤ C
(
1 + || v ||L3(Ω)

)6 (||F||
W 0,p′

1 (Ω)
+
(
1 + || v ||L3(Ω)

)
||ϕ||

W 1,p′
1 (Ω)

)
×
(
‖ f ‖[Xp′ (Ω]′ + ‖ g ‖W−1/p,p(Ω) + ‖ h ‖W 0,r

−1 (Ω)

)
.

From this we can deduce that the linear form T is continuous on the following space

W0,p′

1 (Ω)× W̊ 1,p′

1 (Ω) ⊥ N p
0 (Ω) and we deduce that there exists (u , π) ∈ (W0,p

−1(Ω)×W−1,p
−1 (Ω)) solution

of the Oseen problem (1.1), which is unique up to an element of N p
0 (Ω), satisfying the estimate (5.15).

Remark 5.9. Observe that each solution (ξ, η) ∈W 0,p
−1(Ω)×W−1,p

−1 (Ω) to the Oseen problem (1.1) with
null data obviously belongs to N p

0 (Ω), in fact the proof is very similar to that of Lemma 3.11 of [6].
Moreover, if p 6= 3, we have N p

0 (Ω) ⊂W 0,p
−1(Ω)×W−1,p

−1 (Ω).
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[34] M. Pokorný. Asymptotic behaviour of some equations describing the flow of fluids in unbounded
domains. PhD thesis, charles University Prague and University of Toulon, 1999.
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