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Abstract: In this paper we focus on an existence of a weak solution to a system describing a
self-propelled motion of a single deformable body in a viscous compressible fluid which occupies
a bounded domain in the 3 dimensional Euclidean space. The considered governing system for
the fluid is the isentropic compressible Navier-Stokes equation. We prove an existence of a weak
solution up to a collision.
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1 Introduction

This paper is devoted to a self-propelled motion of a body S in a viscous compressible fluid which
is contained in a bounded domain Ω ⊂ R3.

The problem of self-propelled motion or self-propulsion is a common means of locomotion of
macroscopic objects. Typical examples are motions performed by birds, fishes, airplanes, rockets
and submarines. In the microscopic world, many minute organism, like flagellates and ciliates move
by self-propulsion, were studied by many authors. Even though the hydrodynamical mechanism of
self-propulsion may be different for macroscopic and microscopic bodies see [26], the self-propelled
motion of a body into a viscous liquid is essentially due to the interaction between the boundary
of the body and a liquid. Hence, the boundary of body serves as the driver of body and the
distribution V∗ of the velocity on the boundary of the body, as its thrust. The thrust can be
generated by muscular action, as in animal locomotion or by mechanical device, as in an airplane.
In a famous experiment by Taylor [27], a mechanical fish can happily swim in water but makes
no progress in a very viscous liquid like corn syrup. The fish consists of a cylindrical body with
a plane tail which flaps to and fro. Due to the reversibility of flow in a liquid with no inertia or,
mathematically, due to the linearity of the equations, whatever the fish achieves by one flap or
tail, he/she will immediately lose with the next flap. In a commonly accepted model of Ciliata, the
layer model, the motion of the cilia produces a distribution of velocity on a surface enclosing the
layer of cilia, which serves to propel the animal [1, 19]. A principal characteristic of ”flight’ is that
a significant part of the aerodynamic force is needed to cancel the weight of the organism. Thus,
certain features of flying apply to buoyant fish. In forward flight such a force can be obtained
by creating horizontal vorticity, this being the main purpose of the lifting surface of the body.
The soaring and gliding of birds provides a familiar example where the classical aerodynamics of
fixed-wing aircraft can be applied at once. The observations of birds led to Lanchester (notion of
circulation and induced drag of wings). For more detail see [3].

The system composed by a swimming or flying creature can be considered as a fluid-structure
system. In the recent years, many mathematical works have been published in the field of fluid–
structure interaction problems, many of them tackling the well-posedness of the corresponding
equations of motion. The main difficulties to obtain well-posedness of such systems are the non-
linearity coming from the fluid equations (the Navier-Stokes or the Euler equations), the coupling
between the equations of the fluid and the equations of the structure and the fact that the spatial
domain of the fluid is moving and unknown. The last problem is simpler in the case of a rigid
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body for the structure since in that case, the motion of the structure is completely described by
the rotation and the translation of the structure. In the case where the structure is deformable, for
instance for an elastic structure, the existence of weak solutions could be very difficult to obtain:
if the displacement of the structure is not regular, neither is the domain of the fluid. In [4] and
[2], some approximated models are considered for the motion of an elastic structure in a viscous
incompressible fluid. More precisely, the equations of the elasticity are modified in order to gain
some regularity for the elastic deformation. Note that in the case of plate equations, it is possible
to obtain the existence of weak solution without these approximations (see [16]). Concerning the
mathematical theory of compressible fluids the fundamental results on Newtonian case were ob-
tained in the last two decades by P. L. Lions [21] (barotropic case with p(ρ) = ργ) and E. Feireisl et
al. [12] (generalization to a larger class of exponents γ), E. Feireisl [8] and E. Feireisl, A. Novotný
[10] (heat conductive fluids, singular limits). Based on the entropy inequality, the concept was
further generalized to the notion of dissipative solutions and of the weak–strong uniqueness, see
[9, 11].

The case of 2 dimensions was studied, for example, in [17]. Except for an existence result,
authors prove a uniqueness of solution and they also provide some numerical simulations. In 3
space dimensions, Starovoitov in [23] studies a motion of several rigid bodies whereas in [18]
authors provide an existence result of equation describing self-propelled motion of a body in an
incompressible fluid. The problem of existence of the strong solution of self-propelled motion was
study by Galdi, Silvestre. In [24] the Stokes approximation of the self-propelled motion of a rigid
body in a viscous liquid that fills all the three-dimensional space exterior to the body was studied.
Precisely, the existence and uniqueness of strong solution to the coupled systems of equations
describing the motion of the system body–liquid, for any time and any regular distribution of
velocity on the boundary of the body was proved. In [25] the motion of a self-propelled rigid
body through a Navier- Stokes fluid that fills all the three-dimensional space exterior domain
was investigated. The existence of a weak solution that is defined globally in time, provided that
the net flux across the boundary, of the prescribed boundary values for the velocity, is zero. In
the work of Galdi [14, 15] they were devoted to the self-propulsion of a rigid body at vanishing
Reynolds number. They considered that the shape of the body is constant during the motion,
the thrust is produced either because the body generates a nonzero momentum flux through its
boundary, or/and because it moves portions of its boundary. As it was already mentioned, in the
limit of zero Reynolds number, the importance of inertia in determining the motion of the fluid,
and consequently, the motion of the body, becomes negligible. The motion of the body is therefore
completely determined by its geometry and by the distribution of velocity on its boundary. In
fact, it has been shown in [14] that, in the steady case, the motion of the body can be completely
decoupled from that of the liquid, and the method used in [15] can also be extended to unsteady
self-propelled motion to separate the motions of the body and the liquid.

The main aim of this paper is to provide a similar result as presented in [18] for the case of
a compressible fluid surrounding a body. In order to prove a main theorem, we use a method
presented in [7]. This method is based on an approximative system and on a high viscosity limit
which simulates rigid body. Many parts of the proof are done similarly as in [7] and thus these
parts are only sketched without any rigorous details. However, there are some problems which
appear due to the self-propelled motion and coupling with the compressible fluid. In this paper
we focus ourselves on this differences coming from the non-rigid motion rather than on problems
which was solved in [7].

This paper is organized as follows. In Section 2 we introduce a setting and a governing system.
The main theorem is presented in Section 3. Further, we introduce an approximative system in
Section 4. The deformable body in an approximative system is treated as a part of a fluid which
has tremendous viscosity. In Section 5 we deal with limiting processes in order to obtain the main
result.
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2 Setting

We consider a flying body with the deformable structure which occupies a bounded open connected
set St in an instant t ∈ [0, T ]. The body is surrounded by a viscous compressible fluid in a bounded
domain Ω ⊂ R3, i.e. the fluid fills a domain Ft := Ω\St in an instant t. A function ρSt : St 7→ (0,∞)
stands for a density of the body. We consider that St and Ω are locally Lipschitzian domains in
R3.

The motion of the body consists of three elements: a translation described by a ∈ R3, a rotation
represented by Q ∈ SO(3) and a smooth deformation A : R3 7→ R3 i.e. A is a smooth orientation-
preserving diffeomorphism which is prescribed and stands for the self-propelled motion. Thus, the
domain St can be described using a function η[t] : R3 7→ R3 as follows

St = η[t]S0

i.e. every point x ∈ St can be expressed as

x = η[t](y) = a(t) +Q(t)At(y),

where y ∈ S0 (S0 is an initial position of the body). The velocity of the point x is

x′(t) = η′[t](η−1[t](x)) = a′(t) +Q′(t)At(y) +Q(t)∂tAt(y) = a′(t) + ω(t)× (x− a(t)) + w(t,x),

where w(t,x) = Q(t)∂tAt
(
A−1
t (Q∗(t)(x− a(t)))

)
and

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 S(ω(t)) = Q′(t)QT (t).

In what follows, we use overlined letters for quantities related to the body, which is considered
without any rotation and translation. i.e. in a deformed configuration. Namely:

St = At(S0)

w(t,x) =
∂

∂t
At
(
A−1
t (x)

)
∀x ∈ St.

We assume div w = 0. Moreover, there exists a smooth divergence-less function Λ which
coincides with w on a set St and is supported on a neighborhood of St, i.e.:

Λ(t,x) =

{
w(t,x) for x ∈ St
0 if dist(x,St) ≥ σ,

where σ is sufficiently small. The existence of this smooth function is discussed in [18].
We define

Λ(t, x) = Q(t)Λ(t, (Q∗(t)(x− a(t))) .

We denote the density of a fish in an instant t ∈ [0, T ] by ρS := ρS(., t) : St 7→ (0,∞). This density
is given by

ρS(t,x) =
ρS0

(
A−1
t (Q(t)T [x− a(t)])

)
det(∇At(A−1

t (Q(t)T [x− a(t)])))
.

Consequently, the density in a deformed configuration could be expressed as

ρS(t,x) =
ρS0(A−1

t (x))

det(∇At(A−1
t (x)))

.

In what follows, we assume that At is prescribed and we try to establish equations for a(t) and
Q(t). Moreover, we assume that At satisfies hypothesis presented in [18], namely
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(H1) For every t ≥ 0, the mapping y 7→ A(t,y) is a smooth diffeomorphism from R3 onto R3.
Moreover, for every y ∈ R3, the mapping t 7→ A(t,y) is smooth.

(H2) The total volume of the body remains constant, i.e.:∣∣St∣∣ = |S0| .

(H3) The center of gravity and the angular momenta of the body can not be changed by interior
forces: ∫

St

ρS(t,x)w(t,x)dx = 0,∫
St

ρS(t,x) [x×w(t,x)] dx = 0.

For x ∈ Ω and t ∈ [0, T ], we set1

u(t,x) = χFtuF (t,x) + χSt (∂tη[t])
(

(η[t])
−1

(x)
)
,

ρ(t,x) = χFtρF (t,x) + χStρS(t,x),

where uF , ρF is velocity resp. density of the surrounding fluid. We assume that the following
equations hold: Balance of mass:

∂tρF + div(ρFuF ) = 0 on Ft. (2.1)

Balance of linear momentum:

∂t(ρFuF ) + div(ρFuF ⊗ uF ) +∇p = div T (u) + ρFgF on Ft. (2.2)

The tensor T is given via
T (u) := 2µDu + λI div u, (2.3)

where 2D = ∇+∇T , µ ∈ (0,∞), λ ∈ R and µ+ λ ≥ 0. A pressure p is given by

p = αργF , a > 0, (2.4)

with γ ∈ R restricted below. We consider the following boundary conditions

uF (t,x) = 0, x ∈ ∂Ω,
uF (t,x) = a′(t) + ω(t)× (x− a(t)) + w(t,x) = uS ,x ∈ ∂St.

(2.5)

Since the motion At is prescribed, we have to introduce equations for unknowns a(t) and ω(t)
which describe the movement of the body. Before we write down the equations, we set

M :=

∫
St

ρS ,

J(t) :=

∫
St

ρS(t,x)
(
|x− a(t)|2 − (x− a(t))⊗ (x− a(t))

)
dx.

Finally, the functions a(t), ω(t) should satisfy

Ma′′(t) = −
∫
∂St

(T − pI) n +

∫
St

ρSg,

(Jω)
′
(t) = −

∫
∂St

(x− a(t))× (T − pI)ndΓ +

∫
St

ρS(x− a(t))× gdx.

(2.6)

1By χM we denote the characteristic function of a set M .
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The initial state is described through

a(0) = 0, Q(0) = I, A0 = I, ρS(0) = ρS0,
a′(0) = a0, ω(0) = ω0, ρF (0) = ρF0, ρ(0)u(0) = m0.

(2.7)

For abbreviation, ρ0 = χF0
ρF0 + χS0ρS0. We also assume that

m0 = 0 a.e. on the set {x ∈ Ω, ρ0(x) = 0}, |m|2

ρ0
∈ L1(Ω)

and that there exist c1, c2 ∈ (0,∞) such that

ρ0χS0 ∈ [c1, c2].

We define

Hσ(ψ) = {v ∈ L2(Ω) ; ∇ · v = 0 in Ω,

v · n = 0 on ∂Ω, D(v) = 0 in S(ψ)},
Kσ(ψ) = Hσ(ψ) ∩H1

0 (Ω),

where Lη, Hη
0 , Hη are the classical Lebesgue and Sobolev spaces. Further,

L2
σ(Ω) = Hσ(ψ), H1

σ(Ω) = Kσ(ψ).

We set

ρ(t, x) =

{
ρF (t, x) if x ∈ F(t),
ρS(t, x) if x ∈ S(t),

u(t, x) =

{
u(t, x) if x ∈ F(t),
a′(t) + ω(t)× (x− a(t)) + w(t, x) if x ∈ S(t).

2.1 Definition – weak solution. We say that a pair (ρ,u) ∈ L∞(Lγ) × (L2(0, T∗;Kσ(ψ)) ∩
L∞(0, T∗;Hσ(ψ))) is a weak solution of ( (2.1) - (2.7)) if

• ρ ≥ 0;

• A renormalized equation of continuity equation holds in a weak sense, i.e.

∂tb(ρ) + div(b(ρ)u) + (b′(ρ)ρ− b(ρ)) div u = 0 in D′((0, T )× Ω), (2.8)

where b ∈ C1(R);

• Balance of linear momentum holds in a weak sense, i.e.∫ T

0

∫
Ω

(ρu)∂tϕ+ [ρu⊗ u] : Dϕ+ pdivϕdxdt =∫ T

0

∫
Ω

T (u) : Dϕ− ρgϕdxdt+

∫
Ω

m0ϕ(0, .)dx, ∀ϕ ∈ R(St), (2.9)

where

R(St) = {ϕ ∈ C∞0 ([0, T )× Ω),Dϕ(x) = 0 on an open neighborhood of St} ; (2.10)

• The energy inequality

1

2

∫
Ω

ρ(τ)|u(τ)|2 +
a

γ − 1
ργ(τ)dx +

∫ τ

0

∫
Ω

2µ|D(u)|2 + λ(div u)2dxdt ≤ C(ε, ρ(0),u(0),g)

holds for a.e. τ ∈ [0, T ];
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• The movement of the body S is compatible with u in following sense

uF (t, .)− uS(t, .) belongs locally to the space W 1,2
0 (Ω \ St). (2.11)

Remarks:

• There is no a priori reason to assume that the momentum (ρu) is continuous in time. We
can only have that a function

t 7−→
∫
R3

(ρu) · ψ

is continuous in a certain neighborhood of a point t0 provided ψ = ψ(x) ∈ D(Ω) and ψ =
0 on a neighbourhood of S(t0).

• An alternative condition to the concept of compatibility of the velocity u with the rigid
objects was used in [5], [22], namely

u ∈ L2((0, T );W 1,2
0 ∩ V s(Ω)),

where the sets V s = V s(t) are defined as

V s = {u ∈W 1,2(Ω)|D(u)ρS(t) = 0}.

3 Main result

3.1 Theorem – Main result. Let Ω be a C2+ν domain, ν > 0, γ > 3/2 and S0 ⊂⊂ Ω be a
compact connected set. Let there exist c1, c2 > 0 and initial data ρ0, m0 be such that

ρ0 ≥ 0, ρ0χS0 ∈ [c1, c2], ρ0 ∈ Lγ(Ω), (3.1)

m0 = 0 a.e. on the set {x ∈ Ω | ρ0 = 0}, m2
0

ρ0
∈ L1(Ω). (3.2)

Then there exists T∗ ∈ (0,∞) such that there exists a weak solution (ρ,u) of (2.1) – (2.7) on an
interval (0, T∗).

Remarks: The approximation of the problem (2.1) – (2.7) is constructed by the following way:

• d - approximation

We approximate the continuity equation by adding the term d∆ρ and we also add the term
d∇ρ∇u to the momentum equation.

• β -approximation

We introduce the artificial pressure to adding a term bρβ , with β > 2 to the constitutive
equation.

• n approximation

We use the penalization method introduced by Starovoitov et all. [22] to consider the viscosity
coefficients dependent on the distance to the boundary.

Letting n→∞, d→ 0 and β → 0 we get the existence of the weak solution of the problem.
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4 Approximative problem

4.1 Approximation (d, β, n)

We use an approximative scheme which is proposed in [18] in Remark 11, i.e. we suppose that the
viscosity of a compressible fluid rapidly increases on the body St together with known approxima-
tion scheme [20]. The part of the velocity which is zero on a ”fluid domain” and grows rapidly on
a ”body domain” is denoted by µχ, resp. λχ. These viscosities are defined precisely later. Now it
is enough to assume that functions µχ : R× R3 7→ R and λχ : R× R3 7→ R obey

µχ ≥ 0, λχ + µχ + µ+ λ ≥ 0, (4.1)

where the variable χ depends on u and will be specified later.
The approximative problem consists of following equations:

• A continuity equation

∂tρ+ div(ρu) = d∆ρ, d > 0,

∇ρ · n|∂Ω = 0. (4.2)

• A momentum equation (we define v = u−Λ)

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) + d∇ρ∇u = div (µD(u) + µχ(Dv))

+ div (λI div u + λχI div(v))

+ divF,

u|∂Ω = 0, (4.3)

where Λ := Λu : [0, T ]× Ω 7→ Rn is a given function depending on u.

• A constitutive relation for a pressure

p = p(ρ) = aργ + bρβ , a, b > 0, β > max{4, γ}. (4.4)

• We complement this system by the following initial data

ρ(0) = ρ0, (ρu)(0) = m0, (4.5)

where ρ0 ∈ C2+ν(Ω), 0 < c2 ≤ ρ0 ≤ c3, ∇ρ0 · n|∂Ω = 0 and m0 ∈ C2(Ω).

4.1 Lemma - existence of solution to approximative system. Let Ω ⊂ R3 and St be bounded
C2+ν , ν > 0 domains, g ∈ D((0, T ) × Ω) be given. Let (4.1) hold and let β > max{4, γ}, γ > 3

2 .
Moreover, let Λ satisfy

‖∂tΛ‖L2(0,T,L∞(Ω)) ≤ C(1 + ‖u‖L2((0,T,L2(Ω)))),

‖Λ‖L∞(0,T0,L∞(Ω) + ‖∇Λ‖L∞(0,T,L∞(ω)) + ‖∆Λ‖L∞(0,T,(L∞)(Ω) ≤ C,
Λ|∂Ω = 0.

Then there exists a weak solution (ρ,u) ∈ L∞(0, T, Lβ(Ω)) × L2(0, T,W 1,2
0 (Ω)) to a problem

(4.2)–(4.5).

Proof. The proof can be done in a similar way as in [20]. The presence of two unknowns Λ and χ
does not bring any crucial problem.
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5 Proof of the main theorem

5.1 Average rigid motion

Let St be a set defined for all times t. Hereinafter, we write simply χ instead of χSt :

M[χ,ρ] =

∫
Ω

ρχ, a[χ,ρ] =
1

M[χ,ρ]

∫
Ω

ρ(x)χ(x)xdx,

I[χ,ρ] =

∫
Ω

ρ(x)χ(x)
(
|x− a[χ,ρ]|2 − (x− a[χ,ρ])⊗ (x− a[χ,ρ])

)
dx,

l[χ,ρ,u] =
1

M[χ,ρ]

∫
Ω

ρχu,

ω[χ,ρ,u] =
(
I[χ,ρ]

)−1
∫

Ω

ρ(x)χ(x)
(
(x− a[χ,ρ])× u(x)

)
dx.

The quantities l[χ,ρ] and ω[χ,ρ,u] express an average transition and rotation of St. Thus, an average
rigid motion of a body S can be described by a function Π[χ,ρ,u] which is defined as follows:

Π[χ,ρ,u](x) = l[χ,ρ,u] + ω[χ,ρ,u] × (x− a[χ,ρ]).

Further, we define a function Q[χ,ρ,u] : R 7→ Rn×n as a solution to the following ODE

Q′[χ,ρ,u](t) = S(ω[χ,ρ,u]Q[χ,ρ,u](t), Q[χ,ρ,u](0) = I,

and a function c[χ,ρ,u] : R 7→ R3 as a solution of

c′[χ,ρ,u](t) = ω[χ,ρ,u](t)× c[χ,ρ,u](t) + l[χ,ρ,u](t), c(0) = 0.

We set Λ[χ,ρ,u](t,x) = Q[χ,ρ,u](t)Λ(t, Q∗[χ,ρ,u](x− c[χ,ρ,u])).

Let S0 ∈ Ω and u, ρ0 be given with ρ0(x) ∈ [c1, c2] for all x ∈ S0. We prescribe the movement
of body St by the following system of equations

∂tρ̃+ div(ρ̃(Π[χ,ρ̃,u] + Λ[χ,ρ̃,u])) = 0 on St
∂tχ+ div(χ(Π[χ,ρ̃,u] + Λ[χ,ρ̃,u])) = 0, (5.1)

where St = suppχ(t). We complete (5.1) with the following initial conditions

ρ̃(0) = ρ0 in S0 and χ(0) = χS0 . (5.2)

According to Lemma 6.4 a solution to (5.1), (5.2) exists. Moreover, since Π[χ,ρ̃,u] + Λχ,ρ̃,u is
solenoidal and ρ̃ ∈ [C1, C2], we use Lemma 6.2 and Lemma 6.3 in order to obtain

‖Π[χ,ρ̃,u]‖L∞(Ω) ≤ c‖u‖L2(Ω), (5.3)

‖∂tΛ[χ,ρ̃,u]‖L2(0,T,L∞(Ω) ≤ c(1 + ‖u‖L2(Ω)), (5.4)

‖Λ[χ,ρ̃,u]‖L∞(0,T,L∞(Ω)) + ‖∇Λ[χ,ρ̃,u]‖L∞(0,T,L∞(Ω)

+‖∆Λ[χ,ρ̃,u]‖L∞(0,T,L∞(Ω)) ≤ c. (5.5)

Moreover, since Π is a linear function, we get ∇xΠ = S(ω) and one may derive that

‖∇xΠ‖L2(0,T,L∞(Ω)) ≤ c‖u‖L2(0,T,L2(Ω). (5.6)

For details we refer reader to the proof of Lemma 4 in [18].
From (5.3) one may also derive that there exists T > 0 such that Λ[χ,ρ̃,u](t)|∂Ω = 0 for all

t < T .
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5.1 Proposition. For every u ∈ L1(0, T, L1) it holds that

Π[χ,ρ̃,u] = Π[χ,ρ̃,u+Λ[χ,ρ̃,u]].

Consequently,
Λ[χ,ρ̃,u] = Λ[χ,ρ̃,u+Λ[χ,ρ̃,u]].

Proof. The first identity follows from the definition of Π and from hypothesis (H3). The second
identity is an easy consequence of the definition of Λ.

5.2 High viscosity limit - approximation n

Let {µχn}∞n=1 and {λχn}∞n=1 be sequences of viscosities specified later. Let un and ρn be cor-
responding weak solution to (4.1) – (4.5), where Λn := Λ[χn,ρ̃n,un] and Πn := Π[χn,ρ̃n,un] are
constructed as in subsection 5.1. Further, we define a set Snt as Snt = suppχn(t, .). We set
un = vn + Λn. In what follows, we assume

un|∂Ω = vn|∂Ω = Λn|∂Ω = 0,

at least on some time interval (0, Tn). In order to proceed to the limit (letting n 7→ ∞), we have
to estimate norms of solutions independently on n. From (4.1) we get (testing by 1)

‖ρn‖L∞(0,T,L1(Ω)) ≤ C.

We multiply (4.3) by v in order to get∫
Ω

1− ε
2

ρn(T )|un(T )|2 +
a

γ − 1
(ργn)(T ) +

b

β − 1
ρβn(T )dx

+

∫ T

0

∫
Ω

(2(µ+ µΨn)− ε)|Dvn|2 + (λ+ λΨn − ε)|div vn|dxdt ≤

C(ε, ρ(0),u(0),m0,Λ) + C(ε)

∫ T

0

∫
Ω

ρn|un|2dxdt+ C(ε, a, b)

∫ T

0

∫
Ω

ργn + ρβndxdt. (5.7)

Using Gronwall’s inequality we obtain

‖vn‖L2(0,T,W 1,2(Ω)) + ‖ρn|un|2‖L∞(0,T,L1(Ω)) + ‖ρβn‖L∞(0,T,L1(Ω)) ≤ C(T0), (5.8)

where the constant on the right hand side is independent on n and d. Further, using this and (4.1),
we get

‖∇ρn‖22 ≤ C, (5.9)

where the right hand side again does not depend on n and d. According to (5.3) – (5.5) the
quantities Λn and Πn are estimated uniformly and thus there exists T∗ > 0 such that

Λn(t)|∂Ω = 0

for all t ∈ (0, T∗) and ∀ n ∈ N. From now we work on this time interval unless stated otherwise.
We define viscosities µn := µχn and λn := λχn by the following formula

λn = nχn,
µn = nχn.

We also define the following distance

dbS(x) = d
RN\S(x)− dS(x),

where dK(x) = miny∈K |x−y|, provided K ⊂ Rn is a closed set. We use dbS to define convergence

of sets. We write Snt
b→ St if and only if dbSnt → dbSt in Cloc(R3).
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We proceed to a limit as n tends to ∞ (passing to a subsequence if needed). Since the limiting
process is the same as in [7], we present here only conclusions without detailed proof. From (5.7),
(5.8) and (5.9) it follows, passing to a subsequences if necessary,

ρn → ρ in Lβ((0, T )× Ω),

∇ρn → ∇ρ weakly in L2((0, T )× Ω),

vn → v weakly in L2(0, T,W 1,2
0 (Ω)),

ρnun → ρu weakly in L2((0, T )× Ω),

ρnvn ⊗ vn → P weakly inL
2N

2N−1 ((0, T )× Ω).

From (4.2) one may derive

‖ρn(τ)‖2L2(Ω) + 2d

∫ τ

0

∫
Ω

‖∇ρn‖2 = −
∫ τ

0

∫
Ω

div un|ρn|2 + ‖ρ0‖2L2(Ω)

and also

‖ρ(τ)‖2L2(Ω) + 2d

∫ τ

0

∫
Ω

‖∇ρ‖2 = −
∫ τ

0

∫
Ω

div u|ρ|2 + ‖ρ0‖2L2(Ω).

Thus, ‖∇ρn‖L2(0,T,L2(Ω)) → ‖∇ρ‖L2(0,T,L2(Ω)) and since L2 is a strictly convex space, we get
∇ρn → ∇ρ strongly in L2((0, T )× Ω). Consequently

∇vn∇ρn → ∇v∇ρ in D′((0, T )× Ω).

According to (5.3), (5.5) and (5.6), Πn + Λn is bounded in L2(0, T,W 1,∞(Ω)) independently of
n. Thus, the hypothesis of Lemma 6.1 are fulfilled and one may derive that

Πn + Λn → Π[χ,ρ̃,u] + Λ[χ,ρ̃,u] in Cloc(R3) uniformly in t,

and also
Snt

b→ St uniformly in t.

We define

P s = {(t,x),x ∈ St} ,
P f = ([0, T∗]× Ω) \ P s.

It follows easily that P s is closed and P f is open. Thus, for a point (t,x) ∈ P f there exists an
open interval J ⊂ [0, T ] and U ⊂ P f such that

(t,x) ∈ J × U ⊂ J × U ⊂ P f .

We have ∂tρn bounded in Lq(J,W−k,q(U)) for some q > 1, k ≥ 1 and, consequently

(ρnun)→ (ρu) in C(J, L
2β
β+1 (U)).

Due to a compact embedding L
2β
β+1 ⊂W−1,2 we get

ρnun ⊗ un → ρu⊗ u weakly in L
6
5 (J × U).

Thus P = ρu ⊗ u on P f . Moreover, since µΨn and λΨn tends to infinity on every compact
Ks ⊂ intP s, we derive from (5.7) that Dvn → 0 in L2(Ks). Therefore,∫ T

0

∫
Ω

(ρu)∂tϕ+ [ρu⊗ u] : Dϕ+ p divϕ+ d∇u∇ρϕdxdt

=

∫ T

0

∫
Ω

µDuDϕ+ λ div u divϕ+ gϕdxdt+

∫
Ω

m0ϕ(0, .)dx,

whenever ϕ ∈ R(St) (see (2.10) for a definition).
We have just proven the following lemma.
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5.2 Lemma. Let Ω ⊂ R3 be a bounded C2+ν domain with ν > 0. Let p be given by (4.4) with β >
max{4, γ}, γ > 3/2. Let (4.5) hold and let S0 ⊂ Ω. Then there exists time T∗ and such functions
ρ ∈ L∞(0, T∗, L

β), u ∈ L2(0, T∗,W
1,2
0 )∩L∞(0, T∗L

2), ρ̃ ∈ L∞(0, T∗, L
∞) and χ ∈ Char(0, T∗,R3)

that

• ρ,u satisfy (4.2), (2.9) and initial condition (4.5) in a weak sense, ρ ∈ C([0, T∗], L
1),

• ρ̃ and χ satisfy (5.1).

5.3 Vanishing viscosity limit

In this subsection, we proceed to a limit with the parameter d. Let dn → 0 and let un and ρn be
corresponding weak solution to (4.2)–(4.5) which are constructed as in Lemma 5.2. Further, let
Snt be bodies with corresponding motion described by Πn = Π[χn,ρ̃n,un] and Λn = Λ[χn,ρ̃n,un].
From estimates (5.8) and (5.9) we get following convergences

dn∇un∇ρn → 0 in L1((0, T )× Ω)

dn∆ρn → 0 in L2((0, T ),W−1,2(Ω))

ρn → ρ in C([0, T ], Lβweak)

un → u weakly in L2((0, T ),W 1,2
0 )

and, consequently,

(ρnun)→ (ρu) weakly star in L∞((0, T ), L
2β
β+1 (Ω)).

Thus, ρ and u satisfy the continuity equation in D′((0, T ) × Ω), and using same regularization
procedure as in [6], it can be derive that ρ and u satisfy also renormalized continuity equation.

According to Lemmata 6.2 and 6.3, it holds that∥∥Π[χn,ρn,un] + Λ[χn,ρn,un]

∥∥
L2(L∞)

+
∥∥∇ (Π[χn,ρn,un] + Λ[χn,ρn,un]

)∥∥
L2(L∞)

≤ C.

It follows from Lemma 6.1 that
Snt

b→ St
and

Π[χn,ρn,un] + Λ[χn,ρn,un] → Π[χ,ρ̃,u] + Λ[χ,ρ̃,u] weakly star in L2(0, T,W 1,∞(Ω)).

Further, we define

P s = {(t,x), x ∈ St},
P f = ((0, T )× Ω) \ P s.

Similarly as in previous subsection (see also section 8 in [7]) we have

ρnun ⊗ un → P in L
6
5 ((0, T )× Ω)

and
P = ρu⊗ u on P f .

Following step by step the procedure in section 8 in [7], we derive that p(ρn)→ p(ρ) weakly in

L
β+1
β (Kf ) for any compact Kf ⊂ P f .

Precisely, we claim that the pressure p(ρn) is locally bounded in L
β+1
β

loc (P f ).
Similarly as in [7], one may derive the following lemma.

5.3 Lemma. For any compact Kf ⊂ P f , there exists a constant c independent of ε, such that

‖ρn‖Lβ+1(Kf ) + ‖ρn‖Lγ+1(Kf ) ≤ c(Kf , E0).
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This implies that

p(ρn)→ p(ρ) weakly in L
β+1
β (Kf ) for any compact Kf ⊂ P f .

Then we can pass to the limit∫ T

0

∫
RN

(ρu)∂tϕ+ [ρu⊗ u] : D(ϕ) + p(ρ) divϕdxdt =

∫ t

0

∫
RN

T(u) : D(ϕ)− ρFϕdxdt.

Our final task is the strong convergence of density. Similarly as in [7] we apply the following
result

5.4 Lemma. Let β > 7.
Then

lim
n→∞

∫ T

0

∫
Rn

φ(p(ρn)− (λ+ 2µ) div un)ρndxdt =

∫ T

0

∫
Rn

φ((p(ρ)− (λ+ 2µ)div u)ρdxdt

for any φ ∈ D(Qf ).

This lemma implies that

ρn → ρ in L1((0, T )× Ω)

and

p(ρ) = p(ρ) on on P f .

Thus the functions u and ρ satisfy (2.8) and (2.9).
We are in the best position to prove uχ =

(
Π[χ,ρ,u] + Λ[χ,ρ,u]

)
χ. We point out that Dvχ = 0

a.e. and thus v is a rigid velocity on a body S. According to considerations in section 3.1 in [18],
it holds that vχ =

(
Π[χ,ρ̃,v]

)
χ. Due to Proposition 5.1 we have

uχ =
(
v + Λ[χ,ρ̃,u]

)
χ =

(
Π[χ,ρ̃,v] + Λ[χ,ρ̃,u]

)
χ =

(
Π[χ,ρ̃,u] + Λ[χ,ρ̃,u]

)
χ.

Moreover, from the uniqueness of a solution to a transport equation, we get ρ̃χ = ρχ. In order to
conclude this subsection, we formulate all results into the following lemma.

5.5 Lemma. Let Ω ⊂ RN be a bounded C2+ν domain with ν > 0. Let p be given by (4.4) with
β > max{4, γ}, γ > 3/2. Then there exists time T∗ and such functions ρ ∈ L∞(0, T∗, L

β), u ∈
L2(0, T∗,W

1,2
0 ) ∩ L∞(0, T∗, L

2) and χ ∈ Char(0, T∗,R3) that ρ and u solve (2.8), (2.9) and the
compatibility condition (2.11) is satisfied.

5.4 Limit in pressure and domain

Our final task is to prove an existence of a solution for a pressure given by (2.4) and for a
general domain Ω. We take a sequence of real numbers bn → 0, asequence of domains Ωn, Ωn ⊂
Ωn+1, Ωn

b→ Ω and a sequence of weak solutions un, ρn constructed in Lemma 5.5. This idea is
summarized in the following lemma.

5.6 Lemma. Let Ωn,Ω ⊂ R3, be a bounded domains such that

Ωn ⊂ Ωn+1, Ωn
b→ Ω as n→∞.

Let the pressure p = pn is given by

pn(ρ) = αργ + bnρ
β
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with
γ > 3/2, β > 1, bn → 0 as n→∞.

Let ρn, un be solutions to (2.1)–(2.3), (2.4)–(2.7).
Then there is a sub-sequence such that

ρn → ρ in C([0, T∗],R3),

un → u weakly in L2(0, T,W 1,2
0 ),

where ρ and u is a weak solution to (2.1)–(2.7).

Proof. The proof can be done in a similar way as the proof of Theorem 9.1. in [7], since there is
no difficulty arising from a self-deformation of the body.

Proof of Theorem 3.1. We approximate a general bounded domain Ω by a sequence of smooth

domains Ωn, Ωn
b→ Ω, Ωn ⊂ Ωn+1. This approximation exists according to Lemma 7.1 in [13].

According to Lemma 5.5 there exists a solution ρn, un on Ωn which satisfy hypothesis of Lemma
5.6. In order to get a claim of the main result, it suffices to proceed to a limit with n→∞.

Precisely, similarly as in Section 3.6 we get

ρn → ρ in C([0, T ];Lγ
weak

(Ω)) (5.10)

un → u weakly in L2(0, T,W 1,2
0 (Ω)) (5.11)

ρnun → ρu weakly star in L∞(0, T, L
2γ
γ+1 (Ω)) (5.12)

and ρ,u solve the continuity equation (2.8) in D′((0, T )× R3). Again we get

Π[χn,ρn,un] + Λ[χn,ρn,un] → Π[χ,ρ,u] + Λ[χ,ρ,u] weakly star in L2(W 1,2) (5.13)

Snt
b→ St for any t ∈ [0, T ] (5.14)

and Π[χ,ρ,u] + Λ[χ,ρ,u] = uχSt for all t ∈ [0, T ]. Finally

ρnun ⊗ un → Q weakly in L2(0, T, Lq(Ω)), q =
6γ

6γ − 2γ + 3

and

Q = ρu⊗ u a.e. on P f .

For the pressure we get that

‖ρn‖γ+θ
Lγ+θ(Kf )

+ bn‖ρn‖β+θ
Lβ+θ(Kf )

≤ C(Kf , En,0),

and
p(ρn)→ p(ρ) = aργ weakly in L

γ+θ
γ (K) for any compact Kf ⊂ P f .

Moreover, the limit functions satisfy the integral identity∫ T

0

∫
R3

(ρu)∂tϕ+ (ρu⊗ u)∇ϕ+ p(ρ) div ϕ dxdt

=

∫ t

0

∫
R3

T(u) : D(ϕ)− ρFϕ dxdt,

for all ϕ ∈ R(St). Similarly to [7], we can prove the strong convergence of density

ρn → ρ in C([0, T ];L1(R3)).
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6 Appendix

6.1 Lemma. (Proposition 5.1 [7]) Let ~un(t,x) be a family of functions such that t → ~un(t, ·) is
continuous from [0, T ] to R3, x→ ~un(·,x) is measurable from R3 to R3 and

t→ ‖~un(t, ·)‖L∞(R3) + ‖∇~un(t, ·)‖L∞(R3),

is bounded in L2(0, T ).
Let ~ηn[t] : R3 → R3 be the solution of the problem

d

dt
~ηn[t](x) = ~un(t, ~ηn[t](x)), ηn[0](x) = x x ∈ R3.

Let also Bn ⊂ R3 be a sequence such that Bn
b→ B, and denote by Bn(t) = ηn[t](Bn) the image

of Bn by the flow ~un.
Then passing to sub-sequences

ηn[t]→ η[t] in Cloc(R3) as n→∞ uniformly in [0, T ],

where η[t] solves
d

dt
~η[t](x) = ~u(t, ~η[t](x)), η[0](x) = x, x ∈ R3,

and ~un → ~u weakly-star in L2(0, T ;W 1,∞(R3)).

Moreover, Bn(t)
b→ B(t) uniformly in [0, T ], where B(t) = η[t](B).

6.2 Lemma. (Lemma 4, [18] ) Assume ψ0 is the characteristic function of S0. Then, there exists a
positive constant C = C(Ω,S0, C1, C2,A) such that for all ρ ∈ L∞((0, T )×Ω), v ∈ L∞(0, T ;L2(Ω))
and ρ(t, ·) ∈ [C1, C2] for a.e. t ∈ [0, T ], we have∥∥Π[ψ,ρ,v]

∥∥
L∞(Ω)

≤ C ‖v‖L2(Ω) ,

where χ is the solution of ( 5.1).

6.3 Lemma. (Lemma 5 [18]) Assume ψ0 is the characteristic function of S0. Then, there exists a
positive constant C = C(Ω,S0, C1, C2,A) such that for all ρ ∈ L∞((0, T )×Ω), v ∈ L∞(0, T ;L2(Ω))
such that ρ(t, ·) ∈ [C1, C2] for a.e. t ∈ [0, T ], we have∥∥∥∥∂Λ[ψ,ρ,v]

∂t

∥∥∥∥
L2(0,T ;L∞(Ω))

≤ C
(

1 + ‖v‖L2(0,T ;L2(Ω))

)
,∥∥Λ[ψ,ρ,v]

∥∥
L∞(0,T ;L∞(Ω))

+
∥∥∇Λ[ψ,ρ,v]

∥∥
L∞(0,T ;L∞(Ω))

+
∥∥∆Λ[ψ,ρ,v]

∥∥
L∞(0,T ;L∞(Ω))

≤ C.

6.4 Lemma. (Lemma 8, [18]) Assume v ∈ L∞(0, T ;L2
σ(Ω)), ρ0ε ∈ C∞(R3), ρ0ε ∈ [C1, C2] ⊂

(0,∞) for a.e. x ∈ R3, ψ0 ∈ Char(R3), and S(ψ0) is bounded and of nonempty interior. Then the
problem 5.1 admits a unique solution (ρ, ψ) ∈ L∞((0, T )× R3). Moreover, for a.e. t ∈ (0, T ),

ρ(t) ∈ [C1, C2] for a.e. x ∈ R3, ψ(t) ∈ Char(R3). (6.1)
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