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Commutative dilation theory

C. Ambrozie and V. Müller

Abstract

Dilation theory of single Hilbert space contractions is an important and very
useful part of operator theory. By the main result of the theory, every Hilbert
space contraction has the uniquely determined minimal unitary dilation. In many
situations this enables to study instead of a general contraction its unitary dilation,
which has much nicer properties.

The present paper gives a survey of dilation theory for commuting tuples of
Hilbert space operators. The paper is organized as follows:

1. Introduction

2. Dilation theory of single contractions

3. Regular dilations

4. Ando’s dilation and von Neumann inequality

5. Spherical dilations

6. Analytic models

7. Further examples

8. Concluding remarks

1 Introduction

The starting point of dilation theory is the following result of Sz.-Nagy (1953):

Theorem 1.1. Let T be a contraction acting on a Hilbert space H. Then there exists a
unitary dilation of T , i.e., there exist a Hilbert space K ⊃ H and a unitary operator U
acting on K such that

T k = PHU
k|H (k = 0, 1, . . . ),

where PH is the orthogonal projection onto H.
Moreover, under the minimality condition K =

∨
k∈Z U

kH, the unitary dilation U is
determined by T uniquely up to the unitary equivalence.

Since unitary operators have a simple and well-understood structure, in many situa-
tions dilation theory enables one to reduce problems for general contractions to simpler
problems for unitary operators. So dilation theory became an important part of operator

Keywords: commuting multioperator, dilation, model, von Neumann inequality.
MSC: Primary 47A13, Secondary 47A20, 47A45, 47-00.
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theory as an efficient tool for studying Hilbert space operators and as a subject of consid-
erable independent interest. The most comprehensive reference for dilation theory is the
monograph (Sz.-Nagy and Foiaş, 1970), or its recent new edition (Sz.-Nagy et al., 2010).

The goal of this paper is to give a brief survey of more recent extensions of dilation
theory to the setting of n-tuples of mutually commuting operators.

The paper uses the standard multiindex notation. Denote by Z+ the set of all non-
negative integers. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn

+. Then write |α| =
∑n

i=1 αi,
suppα = {i : αi 6= 0}, α! = α1! · · ·αn!, α + β = (α1 + β1, . . . , αn + βn). Write α ≤ β if
αi ≤ βi for all i = 1, . . . , n. For 1 ≤ j ≤ n write ej = (0, . . . , 0, 1, 0, . . . , 0) with 1 on the
j-th position.

All spaces in this paper are complex Hilbert spaces. Denote by B(H) the algebra of all
bounded linear operators on a Hilbert space H. Let T = (T1, . . . , Tn) ∈ B(H)n be an n-
tuple of mutually commuting operators. For α = (α1, . . . , αn) ∈ Zn

+ write Tα =
∏n

i=1 T
αi
i .

Let H,K be Hilbert spaces, let T = (T1, . . . , Tn) ∈ B(H)n and S = (S1, . . . , Sn) ∈
B(K)n be n-tuples of operators. The n-tuples T and S are unitarily equivalent, for short
T

u∼ S, if there exists an invertible isometry V : H → K such that Sj = V −1TjV for
j = 1, . . . , n.

Let H,K be Hilbert spaces, H ⊂ K, n ≥ 1, let T = (T1, . . . , Tn) ∈ B(H)n and
V = (V, . . . , Vn) ∈ B(K)n be n-tuples of commuting operators. Then V is called a
dilation of T if

Tα = PHV
α|H

for all α ∈ Zn
+.

Of special interest are dilations consisting of mutually commuting isometries or unitary
operators. Both of these concepts are closely related because any n-tuple of commuting
isometries can be extended to commuting unitaries, cf. (Sz.-Nagy and Foiaş, 1970, p.22).

Theorem 1.2. Let V = (V1, . . . , Vn) ∈ B(H)n be an n-tuple of commuting isometries.
Then there exist a Hilbert space K ⊃ H and commuting unitary operators U1, . . . , Un ∈
B(K) such that UjH ⊂ H and Vj = Uj|H (j = 1, . . . , n).

Thus, if an n-tuple T has a dilation consisting of commuting isometries, then T has
also a dilation consisting of commuting unitaries.

An n-tuple V = (V1, . . . , Vn) ∈ B(H)n is called doubly commuting if ViVj = VjVi and
V ∗

i Vj = VjV
∗
i for all i, j ∈ {1, . . . , n}, i 6= j.

Recall that a commuting n-tuple of unitary operators is automatically doubly com-
muting by the Fuglede-Putnam theorem.

2 Dilation theory of single contractions

The multivariable dilation theory is inspired by the dilation theory of single contractions.
The existence of a unitary dilation of a contraction can be proved in many ways, see (Sz.-
Nagy and Foiaş, 1970; Sz.-Nagy et al., 2010). This section contains a simple geometrical
approach which will be then generalized to the multivariable case in subsequent sections.

Let L be a Hilbert space. Denote by `2(Z+, L) the Hilbert space of all functions
f : Z+ → L satisfying

‖f‖2 :=
∞∑
i=0

‖f(i)‖2 <∞.

2



The backward shift (of multiplicity dimL) is the operator S acting on `2(Z+, L) defined
by (Sf)(i) = f(i+ 1).

Equivalently, `2(Z+, L) may be interpreted as the Hardy space H2(D, L) of all vector-

valued analytic functions f̃ : D → L defined on the open unit disc D, f̃(z) =
∑∞

i=0 f(i)zi

satisfying ‖f̃‖2 :=
∑∞

i=0 ‖f(i)‖2 = limr→1−
1
2π

∫ 2π

0
‖f̃(reit)‖2dt < ∞. Then S is the ad-

joint of the multiplication operator Mz : H2(D, L) → H2(D, L) defined by (Mzf̃)(z) =

zf̃(z) (f̃ ∈ H2(D, L), z ∈ D).
Consider the following simple question: which operators T are unitarily equivalent to

the restriction of a backward shift of some multiplicity to an invariant subspace?
Certainly such an operator must be a contraction. So let H be a Hilbert space and

T ∈ B(H) a contraction. Let L be a Hilbert space and S : `2(Z+, L) → `2(Z+, L)
the backward shift. It is necessary to find an isometry V : H → `2(Z+, L) satisfying
V T = SV . If such an isometry is found, its range V H will be the required subspace
invariant for S and the corresponding restriction S|V H will be unitarily equivalent to T .

Suppose such a V exists. Let V0, V1, . . . be the corresponding coordinate functions,
Vih = (V h)(i) (i ∈ Z+, h ∈ H).

The condition V T = SV can be then rewritten as Vi+1 = ViT for all i ≥ 0. Therefore
by induction Vi = V0T

i. Thus it suffices to find only the operator V0 : H → L, the
remaining operators Vi (i ≥ 1) will be determined by the equations Vi = V0T

i.
Moreover, since V should be an isometry,

‖h‖2 = ‖V h‖2 =
∞∑
i=0

‖Vih‖2 = ‖V0h‖2 + ‖V0Th‖2 + ‖V0T
2h‖2 + · · ·

for all h ∈ H. In particular, for the vector Th ∈ H this gives

‖Th‖2 = ‖V Th‖2 = ‖V0Th‖2 + ‖V0T
2h‖2 + · · ·

By subtracting, one gets ‖V0h‖2 = ‖h‖2 − ‖Th‖2 for all h ∈ H.
The latter inequality is satisfied by the defect operator DT = (I−T ∗T )1/2 ∈ B(H) and

this is essentially the only possible choice of V0. In general, V0 = JDT where J : DTH → L
is any isometry. The simplest choice for L is L = DT := DTH and V0 := DT .

Then for h ∈ H, one has

‖V h‖2 =
∞∑
i=0

‖V0T
ih‖2 =

∞∑
i=0

(‖T ih‖2 − ‖T i+1h‖2) = ‖h‖2 − lim
k→∞

‖T kh‖2.

Hence V is an isometry if and only if T k → 0 in the strong operator topology (SOT).
Thus it was proved:

Theorem 2.1. Let T ∈ B(H) be a contraction satisfying T k → 0 (SOT). Then T is
unitarily equivalent to the restriction of the backward shift S of multiplicity dimDT to an
invariant subspace.

The condition T k → 0 (SOT) is clearly also necessary.
If the condition T k → 0 (SOT) is not satisfied, then V constructed above is not an

isometry and satisfies only ‖V h‖2 = ‖h‖2 − limk→∞ ‖T kh‖2 (h ∈ H). In this case, it is
possible to extend it to an isometry.
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Theorem 2.2. Let T ∈ B(H) be a contraction. Then there exist a Hilbert space H ′, a
unitary operator W ∈ B(H ′) and a subspace M ⊂ `2(Z+,DT )⊕H ′ invariant for S ⊕W
such that

T
u∼ (S ⊕W )|M . (1)

Proof. By the previous construction, there exists an operator V ′ : H → `2(Z+,DT )
satisfying V ′T = SV ′ and

‖V ′h‖2 = ‖h‖2 − lim
k→∞

‖T kh‖2 (h ∈ H).

Define a new seminorm ||| · ||| on H by

|||h|||2 = lim
k→∞

‖T kh‖2.

Let N = {x ∈ H : |||x||| = 0}. It is easy to see that N is a subspace invariant for T . Let

H̃ be the completion of (H/N, |||·|||). Then H̃ is a Hilbert space. Define T̃ : H/N → H/N

by T̃ (h + N) = Th + N . Then T̃ is an isometry and can be extended uniquely to an

isometry (denoted by the same symbol T̃ ) on H̃.
Since any isometry can be extended to a unitary operator, there exist a Hilbert space

H ′ ⊃ H̃ and a unitary operator W ∈ B(H ′) such that T̃ = W |
eH .

Let V ′′ : H → H ′ be defined by V ′′h = h + N ∈ H/N ⊂ H̃ ⊂ H ′. Let V : H →
`2(Z+,DT ) ⊕H ′ be defined by V h = V ′h ⊕ V ′′h (h ∈ H). Then V T = (S ⊕W )V and
‖V h‖2 = ‖h‖2 − limk→∞ ‖T kh‖2 + |||h|||2 = ‖h‖2. So V is an isometry and its range V H
is the subspace invariant for S ⊕W satisfying T

u∼ (S ⊕W )|V H .

Remark 2.3. Note that the operator S ⊕W is a coisometry. So every contraction has a
coisometric extension.

Moreover, the backward shift S is a compression of the bilateral shift U acting on the
space `2(Z,DT ) defined by (Uf)(i) = f(i+ 1) (f ∈ `2(Z,DT ), i ∈ Z). Clearly U ⊕W is
the unitary dilation of T .

Of course, all the dilation theory can be formulated equivalently for T ∗ rather than
for T . It is easy to see that (1) is equivalent to T ∗ = PH(Mz ⊕W ∗)|H , where Mz ⊕W ∗ is
an isometrical dilation of T ∗.

3 Regular dilations

The closest multivariable analogy of the single-contraction case are n-tuples of commuting
contractions having a regular dilation.

The role of the backward shift is played by the backward multishift. Let L be a Hilbert
space and let n ∈ N be fixed.

Let `2(Zn
+, L) denote the Hilbert space of all vector-valued functions f : Zn

+ → L
such that ‖f‖2 :=

∑
α∈Zn

+
‖f(α)‖2 < ∞. Consider the operators Sj : `2(Zn

+, L) →
`2(Zn

+, L) (j = 1, . . . , n) defined by (Sjf)(α) = f(α + ej). Equivalently, `2(Zn
+, L)

can be interpreted as the Hardy space H2(Dn) of all analytic functions f̃ : Dn → C,

f̃(z) =
∑

α∈Zn
+
f(α)zα (z ∈ Dn) satisfying ‖f̃‖ :=

∑
α∈Zn

+
‖f(α)‖2 < ∞. The operators
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Sj (j = 1, . . . , n) are then the adjoints of the multiplication operators Mzj
: H2(Dn) →

H2(Dn) defined by Mzj
(f̃)(z) = zj f̃(z) (z ∈ Dn).

The n-tuple S = (S1, . . . , Sn) will be called the backward multishift (of multiplicity
dimL). Note that S1, . . . , Sn are doubly commuting coisometries.

Let H be a Hilbert space and T = (T1, . . . , Tn) ∈ B(H)n a commuting n-tuple of
contractions. As in the previous section, one tries to find out when T is unitarily equivalent
to the restriction of the backward multishift to an invariant subspace.

Suppose that a Hilbert space L and an isometry V : H → `2(Zn
+, L) satisfying

V Tj = SjV (j = 1, . . . , n)

have been found. For α ∈ Zn
+ let Vα : H → H be the corresponding coordinate function,

Vαh = (V h)(α).
The intertwining relations V Tj = SjV mean that for each α ∈ Zn

+ and h ∈ H one has

VαTjh = (V Tjh)(α) = (SjV h)(α) = Vα+ej
h.

Hence Vα+ej
= VαTj for all α ∈ Zn

+ and j = 1, . . . , n. By induction, this gives

Vα = V0,...,0T
α (2)

for all α ∈ Zn
+. Thus one can choose only V0,...,0 : H → H, the remaining operators Vα

are already given by (2).
Moreover, since V should be an isometry, it must satisfy

‖h‖2 = ‖V h‖2 =
∑
α∈Zn

+

‖Vαh‖2 =
∑
α∈Zn

+

‖V0,...,0T
αh‖2 for all h ∈ H.

In particular, for each F ⊂ {1, . . . , n} one has

‖TFh‖2 =
∑
α∈Zn

+

‖V0,...,0T
αTFh‖2,

where
TF =

∏
j∈F

Tj

(in particular, T∅ = IH). Denote by |F | the cardinality of F . It follows from (2) that∑
F⊂{1,...,n}

(−1)|F |‖TFh‖2 =
∑

F⊂{1,...,n}

(−1)|F |
∑
α∈Zn

+

‖V0,...,0T
αTFh‖2

=
∑
β∈Zn

+

‖V0,...,0T
βh‖2

∑
α≤β

max{βj−αj}≤1

(−1)|β|−|α| = ‖V0,...,0h‖2.

Hence T must satisfy ∑
F⊂{1,...,n}

(−1)|F |‖TFh‖2 ≥ 0 (3)

for all h ∈ H, or equivalently, ∑
F⊂{1,...,n}

(−1)|F |T ∗FTF ≥ 0. (4)
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If (4) is satisfied then set DT :=
(∑

F⊂{1,...,n}(−1)|F |T ∗FTF

)1/2

and DT := DTH.

The simplest choice for L is L = DT , V0,...,0 = DT and Vα = DTT
α (α ∈ Zn

+).
Then for each h ∈ H one has

‖V h‖2 =
∑
α∈Zn

+

‖Vαh‖2 = lim
k→∞

∑
max αj≤k−1

‖V0,...,0T
αh‖2

= lim
k→∞

∑
max αj≤k−1

∑
F⊂{1,...,n}

(−1)|F |‖TαTFh‖2

= lim
k→∞

∑
max βj≤k

‖T βh‖2
∑

α≤β,max(βj−αj)≤1

max αj≤k−1

(−1)|β|−|α|.

Note that ∑
α≤β,max(βj−αj)≤1

max αj≤k−1

(−1)|β|−|α| = 0

unless {β1, . . . , βn} ⊂ {0, k}. If {β1, . . . , βn} ⊂ {0, k}, then the sum is equal to (−1)|supp β|.
So

‖V h‖2 = lim
k→∞

∑
F⊂{1,...,n}

(−1)|F |‖T k
Fh‖2 = ‖h‖2 + lim

k→∞

∑
∅6=F⊂{1,...,n}

(−1)|F |‖T k
Fh‖2.

So V will be an isometry if (SOT)−limk→∞ T k
j = 0 for j = 1, . . . , n. Thus the following

theorem was proved:

Theorem 3.1. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of contractions
satisfying

∑
F⊂{1,...,n}(−1)|F |T ∗FTF ≥ 0 and (SOT) − limk→∞ T k

j = 0 for all j = 1, . . . , n.

Then there exists a subspace M ⊂ `2(Zn
+,DT ) invariant for all S1, . . . , Sn such that T

u∼
S|M .

If the conditions (SOT) − limk→∞ T k
j = 0 (j = 1, . . . , n) are not satisfied then a

weaker statement can be proved:

Theorem 3.2. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of contractions sat-
isfying

∑
F⊂{1,...,n}(−1)|F |T ∗FTF ≥ 0. Then there exists an operator V : H → `2(Zn

+,DT )

satisfying V Tj = SjV (j = 1, . . . , n) and

‖V h‖2 = lim
k→∞

∑
F⊂{1,...,n}

(−1)|F |‖T k
Fh‖2

for all h ∈ H.

As in the single variable case one would like to complete V to an isometry. This is
little bit more complicated than before. The starting point is the following lemma.

Lemma 3.3. Let G ⊂ {1, . . . , n}, m = |G|, G = {i1, . . . , im}. Set G = {1, . . . , n} \
G. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of contractions satisfying∑

F⊂G(−1)|F |T ∗FTF ≥ 0 such that the operators Tj for j ∈ G are isometries. Then there

6



exist a Hilbert space HG, commuting unitary operators WG,j ∈ B(HG) (j ∈ G) and a
mapping V : H → `2(Zm

+ , HG) such that

‖V h‖2 = lim
k→∞

∑
F⊂G

(−1)|F |‖T k
Fh‖2 (h ∈ H),

V Tji
= SiV (i = 1, . . . ,m),

and
V Tj = WG,jV (j /∈ G),

where WG,j is lifted to `2(Zm
+ , HG) by (WG,jf)(α) = WG,jf(α) (α ∈ Zm

+ , f ∈ `2(Zm
+ , HG)).

Moreover, the n-tuple S1, . . . , Sm,WG,j (j ∈ G) is doubly commuting.

Proof. Let DG :=
(∑

F⊂G(−1)|F |T ∗FTF

)1/2

. Clearly

N(DG) =
{
x ∈ H :

∑
F⊂G

(−1)|F |‖TFx‖2 = 0
}
.

Let j ∈ G. Since Tj is an isometry commuting with all TF (F ⊂ G), one has TjN(DG) ⊂
N(DG). Define a mapping T̃j : DGH → DGH by T̃jDGh = DGTjh (h ∈ H). Since
TjN(DG) ⊂ N(DG), the definition is correct. Moreover,

‖T̃jDGh‖2 =
∑
F⊂G

(−1)|F |‖TFTjh‖2 =
∑
F⊂G

(−1)|F |‖TFh‖2 =‖DGh‖2,

so T̃j is an isometry and can be extended uniquely to an isometry (denoted also by T̃j)
on the space DG := DGH.

Clearly T̃j (j ∈ G) are commuting isometries and can be extended to commuting
unitary operators WG,j (j ∈ G) acting on a Hilbert space HG ⊃ DG.

Lift WG,j (j ∈ G) to the space `2(Zm
+ , HG) by

(WG,jf)(α) = WG,jf(α).

Applying the previous theorem for the |G|-tuple (Tj : j ∈ G), one concludes that
there exists an operator V : H → `2(Zm

+ ,DG) ⊂ `2(Zm
+ , HG) such that V Tji

= SiV (i =
1, . . . ,m) and

‖V h‖2 =
∑
F⊂G

(−1)|F | lim
k→∞

‖T k
Fh‖2 (h ∈ H).

For α = (α1, . . . , αm) ∈ Zm
+ define α̃ = (α̃1, . . . α̃n) ∈ Zn

+ by α̃ji
= αi (i = 1, . . . ,m) and

α̃j = 0 (j ∈ G). For j ∈ G and α ∈ Zm
+ one has

(WG,jV h)(α)=WG,j(V h(α))=WG,jVαh=WG,jDGT
eαh=DGTjT

eαh=VαTjh=(V Tjh)(α).

So V Tj = WG,jV (j /∈ G).
Clearly the n-tuple S1, . . . , Sm,WG,j (j ∈ G) is commuting and S∗i Sj = SjS

∗
i (1 ≤

i, j ≤ m, i 6= j). By the Fuglede-Putnam theorem, the n-tuple S1, . . . , Sm,WG,j (j ∈ G)
is doubly commuting.

Corollary 3.4. Let G ⊂ {1, . . . , n}, G = {i1, . . . , im}. Let G = {1, . . . , n} \G. Let T =
(T1, . . . , Tn) ∈ B(H)n be a commuting tuple of contractions with

∑
F⊂G(−1)|F |T ∗FTF ≥ 0.

7



Then there exist a Hilbert space HG, commuting unitary operators WG,j ∈ B(HG) (j ∈
G) and a mapping VG : H → `2(Zm

+ , HG) such that

‖VGh‖2 = lim
k→∞

∑
F⊂G

(−1)|F |‖T k
G
T k

Fh‖2 (h ∈ H),

VGTji
= SiVG (i = 1, . . . ,m),

and
VGTj = WG,jVG (j ∈ G),

where as above WG,j is lifted to `2(Zm
+ , HG). Moreover, the n-tuple S1, . . . , Sm, Tj (j ∈ G)

is doubly commuting.

Proof. Define a new seminorm ||| · ||| on H by |||h||| = limk→∞ ‖T k
G
h‖2. Let N = {x ∈

H : |||x||| = 0}. Then N is a subspace invariant for all Tj (j = 1, . . . , n). Let L be the
completion ofH/N with the norm |||·|||. Then L is a Hilbert space. For j = 1, . . . , n define

T̃j : H/N → H/N by T̃j(h+N) = Tjh+N . Then T̃j extends uniquely to an operator acting

on L. The operators T̃1, . . . , T̃n are commuting contractions, T̃j is an isometry for j ∈ G
and the m-tuple T̃j (j ∈ G) satisfies the condition

∑
F⊂G(−1)|F ||||T̃Fx|||2 ≥ 0 (x ∈ L).

By Lemma 3.3, there exist a Hilbert space HG, commuting unitary operators WG,j ∈
B(HG) (j ∈ G) and a mapping V ′ : L→ `2(Zm

+ , HG) satisfying

V ′T̃ji
= SiV

′ (i = 1, . . . ,m),

V ′T̃j = WG,jV
′ (j ∈ G),

and
‖V ′h‖2 = lim

k→∞

∑
F⊂G

(−1)|F ||||T̃ k
Fh|||2.

Let V ′′ : H → L be defined be V ′′h = h + N ∈ H/N ⊂ L and let VG := V ′V ′′ : H →
`2(Zm

+ , HG). Then

VGTji
= SiVG (i = 1, . . . ,m),

VGTj = WG,jVG (j ∈ G)

and
‖VGh‖2 = lim

k→∞

∑
F⊂G

(−1)|F |‖T k
G
T k

Fh‖2.

Clearly the n-tuple S1, . . . , Sm, Tj (j ∈ G) is doubly commuting.

Let T = (T1, . . . , Tn) ∈ B(H)n be commuting contractions. One says that T satisfies
the Brehmer conditions if ∑

F⊂G

(−1)|F |T ∗FTF ≥ 0 (5)

for all G ⊂ {1, . . . , n}, see (Sz.-Nagy and Foiaş, 1970, Section I.9) or (Brehmer, 1961).

Theorem 3.5. Let T1, . . . , Tn ∈ B(H) be commuting contractions satisfying (5). Then
for each G ⊂ {1, . . . , n} there exist a Hilbert space XG, doubly commuting coisometries
UG,1, . . . , UG,n ∈ B(XG) and an isometry V : H →

⊕
GXG such that

V Tj =
( ⊕

G⊂{1,...,n}

UG,j

)
V h (j = 1, . . . , n).

8



Moreover, for each G ⊂ {1, . . . , n} the |G|-tuple UG,j (j ∈ G) is the backward multishift
and the operators UG,j (j /∈ G) are unitaries.

Proof. Let XG = `2(Z|G|+ , HG) and VG : H → XG be as in Corollary 3.4. Let V =⊕
G⊂{1,...,n} VG. Then

‖V h‖2 =
∑

G⊂{1,...,n}

‖VGh‖2 =
∑

G⊂{1,...,n}

∑
F⊂G

(−1)|F | lim
k→∞

‖T k
G
T k

Fh‖2

=
∑

A⊂{1,...,n}

lim
k→∞

‖T k
Ah‖2

∑
F⊂A

(−1)|F |.

For each A 6= ∅ one has
∑

F⊂A(−1)|F | = 0. Hence ‖V h‖2 = ‖h‖2 for each h ∈ H, and so
V is an isometry.

By Theorem 1.2, any n-tuple T = (T1, . . . , Tn) ∈ B(H)n satisfying the Brehmer condi-
tions has a dilation consisting of commuting unitaries. However, a stronger result is true.
An n-tuple U = (U1, . . . , Un) ∈ B(K)n is called a regular dilation of T if

T ∗αT β = PHU
∗αUβ|H

for all α, β ∈ Zn
+ with suppα ∩ supp β = ∅. Equivalently, 〈Tαh, T βh′〉 = 〈Uαh, Uβh′〉 for

all α, β ∈ Zn
+, suppα ∩ supp β = ∅ and all h, h′ ∈ H.

Theorem 3.6. Let T = (T1, . . . , Tn) ∈ B(H)n be commuting contractions. Then the
following statements are equivalent:

(i) T satisfies the Brehmer conditions (5);

(ii) there exists an extension of T consisting of doubly commuting coisometries;

(iii) T has a regular unitary dilation.

Proof. (i)⇒(ii) was proved in the previous theorem.

(ii)⇒(iii): Let V = (V1, . . . , Vn) be doubly commuting coisometric extensions of T
and let U∗ = (U∗

1 , . . . , U
∗
n) be the unitary extension of V ∗. For α, β ∈ Zn

+ with disjoint
supports and h, h′ ∈ H one has

〈U∗αUβh, h′〉 = 〈U∗αh, U∗βh′〉 = 〈V ∗αh, V ∗βh′〉 = 〈V ∗αV βh, h′〉
= 〈V βh, V αh′〉 = 〈T βh, Tαh′〉 = 〈T ∗αT βh, h′〉.

(iii)⇒(i): Let U = (U1, . . . , Un) be a regular dilation of T , i.e., 〈Uαh, Uβh′〉 =
〈Tαh, T βh′〉 for all α, β ∈ Zn

+, suppα ∩ supp β = {0}, h, h′ ∈ H. Let G ⊂ {1, . . . , n}
and x ∈ H. Then ∥∥∥∑

F⊂G

(−1)|F |UG\FTFx
∥∥∥2

≥ 0. (6)

The left hand side of (6) is equal to∑
F,F ′⊂G

(−1)|F |+|F
′|〈UG\FTFx, UG\F ′TF ′x〉 =

∑
F,F ′⊂G

(−1)|F |+|F
′|〈U(F∪F ′)\FTFx, U(F∪F ′)\F ′TF ′x〉
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=
∑

F,F ′⊂G

(−1)|F |+|F
′|‖TF∪F ′x‖2 =

∑
L⊂G

c(L)‖TLx‖2,

where
c(L) =

∑
F,F ′⊂L,F∪F ′=L

(−1)|F |+|F
′| =

∑
M⊂L

∑
F,F ′:M=F∩F ′

F∪F ′=L

(−1)|F\M |+|F ′\M |.

Let M ⊂ L ⊂ {1, . . . , n}, |M | = m, |L| = l. Then∑
F,F ′:M=F∩F ′

F∪F ′=L

(−1)|F\M |+|F ′\M | = (−1)l−m2l−m,

and so

c(L) =
l∑

m=0

(
l

m

)
(−1)l−m2l−m = (−1)l(2− 1)l = (−1)l.

This together with (6) gives the Brehmer conditions.

The fact that Brehmer’s conditions imply the existence of a regular dilation is already
classical, cf. (Sz.-Nagy and Foiaş, 1970, p. 32). The structure of the regular dilation was
studied in more details in (Curto and Vasilescu, 1993; 1995; Gaspar and Suciu, 1997).
Theorem 3.5 was formulated explicitly in (Timotin, 1998).

Examples 3.7. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of contractions.
The Brehmer conditions are satisfied, and so T has a regular unitary dilation, in particular
in the following cases:

(i) the operators T1, . . . , Tn are doubly commuting. Indeed, in this case〈∑
F⊂G

(−1)|F |T ∗FTFx, x
〉

=
〈∏

i∈G

(I − T ∗i Ti)x, x
〉

=
∥∥∥∏

i∈G

DTi
x
∥∥∥2

≥ 0.

(ii) the operators T1, . . . , Tn are isometries. Indeed,
∑

F⊂G(−1)|F |‖TFx‖2 = 0 for all
G ⊂ {1, . . . , n} and x ∈ H. (In fact, it is sufficient to assume that all operators Tj

but one are isometries.)

(iii) Suppose that
∑n

i=1 ‖Tix‖2 ≤ ‖x‖2 for all x ∈ H (such n-tuples are called spherical
contractions). Then it is easy to show that∑

F⊂G,|F |=k+1

‖TFx‖2 ≤
∑

F⊂G,|F |=k

‖TFx‖2

for all G ⊂ {1, . . . , n}, k = 0, . . . , |G| − 1 and x ∈ H. Consequently, T satisfies the
Brehmer conditions.

Remark 3.8. In general it is not sufficient to assume only that (3), namely∑
F⊂{1,...,n}

(−1)|F |‖TFx‖2 ≥ 0,

holds for all x ∈ H. Indeed, this condition is automatically satisfied if one of the operators
T1, . . . , Tn is an isometry, but the Brehmer conditions may be false.

On the other hand, if additional conditions (SOT) − limk→∞ T k
j = 0 for j = 1, . . . , n

are assumed, then T has a regular dilation by Theorem 3.1, and so T satisfies Brehmer’s
conditions (5).
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4 The Ando dilation and von Neumann inequality

For n = 2 the situation is better. Any pair of commuting contractions has a unitary
dilation, cf. (Sz.-Nagy and Foiaş, 1970, p. 20).

Theorem 4.1. (Ando) Let T1, T2 ∈ B(H) be commuting contractions. Then there exist
a Hilbert space K ⊃ H and commuting isometries V1, V2 ∈ B(K) such that

T i
1T

j
2 = PHV

i
1V

j
2 |H

for all i, j ∈ Z+.

Proof. Let K =
⊕∞

i=0H. Define operators Wi : K → K (i = 1, 2) by

Wi(h0, h1, . . . ) = (Tih0, DTi
h0, 0, h1, h2, . . . ) (i = 1, 2).

Clearly W1,W2 are isometries since ‖Tih0‖2 + ‖DTi
h0‖2 = ‖h0‖2. However, in general W1

and W2 do not commute. In order to obtain commuting isometries, one can modify the
operators W1,W2 in the following way.

Set L = H⊕H⊕H⊕H and identify K with H⊕
⊕∞

i=1 L by the natural identification

(h0, h1, h2, . . . ) =
(
h0, (h1, h2, h3, h4), (h5, h6, h7, h8), . . .

)
.

Let G : L→ L be a unitary operator. Define Ĝ : K → K by

Ĝ(h0, h1, h2, . . . ) =
(
h0, G(h1, h2, h3, h4), G(h5, h6, h7, h8), . . .

)
.

Clearly Ĝ is also unitary and V1 := ĜW1 and V2 := W2Ĝ
−1 are isometries. One is looking

for G such that V1, V2 will be commuting. A direct calculation gives

V1V2(h0, h1, h2, . . . ) =
(
T1T2h0, G(DT1T2h0, 0, T2h0, 0), (h1, h2, h3, h4), (h5, h6, h7, h8), . . .

)
and

V2V1(h0, h1, h2, . . . ) =
(
T2T1h0, (DT2T1h0, 0, T1h0, 0), (h1, h2, h3, h4), (h5, h6, h7, h8), . . .

)
.

Since T1T2 = T2T1, the isometries V1 and V2 will be commuting if and only if

G(DT1T2h0, 0, T2h0, 0) = (DT2T1h0, 0, T1h0, 0) (h0 ∈ H). (7)

Let L1 = {(DT1T2h0, 0, T2h0, 0) : h0 ∈ H}− and L2 = {(DT2T1h0, 0, T1h0, 0) : h0 ∈ H}−.
It is easy to verify that ‖DT1T2h0‖2 + ‖T2h0‖2 = ‖DT2T1h0‖2 + ‖T1h0‖2 and dimL	L1 =
dimL	 L2, so it is possible to define a unitary operator G : L→ L satisfying (7).

Define V1 = ĜW1 and V2 = W2Ĝ
−1. It is easy to see that the pair (V1, V2) is a

commuting isometric dilation of (T1, T2).

By Theorem 1.2, the isometries V1, V2 can be extended to commuting unitary opera-
tors, so any pair of commuting contractions has a unitary dilation. This implies immedi-
ately the following important von Neumann type inequality.

Corollary 4.2. Let T1, T2 ∈ B(H) be commuting contractions. Then

‖p(T1, T2)‖ ≤ ‖p‖D2 := sup{|p(z1, z2)| : (z1, z2) ∈ D2}
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for all polynomials p in two variables.

Proof. By Theorem 4.1, there exist a Hilbert space K ⊃ H and commuting unitary
operators U1, U2 ∈ B(K) dilating T . So

‖p(T )‖ = ‖PHp(U)|H‖ ≤ ‖p(U)‖ = r(p(U)) ≤ sup{|p(z1, z2)| : (z1, z2) ∈ D2}.

An alternative proof follows from (Agler and McCarthy, 2005), where it was shown
that any pair of commuting contractive matrices has a commutative coisometric-pair
extension.

For 3 or more commuting contractions the above von Neumann type inequality is not
true in general. The following example was constructed by (Crabb and Davie, 1975).

Example 4.3. Let H be the 8-dimensional Hilbert space with an orthonormal basis
e, f1, f2, f3, g1, g2, g3, h. Define operators T1, T2, T3 ∈ B(H) by

Tje = fj, Tjfj = −gj, Tifj = gk (for i, j, k all different), Tjgi = δi,jh, Tjh = 0.

It is easy to verify that the operators T1, T2, T3 are mutually commuting and that they are
contractions (in fact they are partial isometries). Let p(z1, z2, z3) = z3

1 + z3
2 + z3

3 − z1z2z3.
Then

‖p(T1, T2, T3)‖ ≥ |〈p(T )e, h〉| = 4.

However, ‖p‖D3 < 4. Indeed, clearly ‖p‖D3 ≤ 4. If ‖p‖D3 = 4 then there are η1, η2, η3 ∈ ∂D
such that η3

1 = η3
2 = η3

3 = −η1η2η3. Thus (η1η2η3)
3 = −(η1η2η3)

3 and so 1 = −1, a
contradiction. Hence ‖p‖D3 < 4.

A similar example was given by (Varopoulos, 1974). He constructed 3 commuting
contractions on a 5-dimensional Hilbert space and a homogeneous polynomial of degree
2 such that the von Neumann inequality is not true.

The following central problem is still open.

Problem 4.4. Let n ≥ 3. Does there exist a constant K(n) such that

‖p(T1, . . . , Tn)‖ ≤ K(n) · ‖p‖Dn

for all n-tuples of commuting contractions T1, . . . , Tn and all polynomials p in n variables?

Let cn be the supremum of the norms ‖p(T1, . . . , Tn)‖ taken over all commuting n-
tuples (T1, . . . , Tn) of contractions and all polynomials p in n variables with ‖p‖Dn = 1.

Clearly c1 ≤ c2 ≤ · · · . The dilation theory for a single contraction gives c1 = 1. The
Ando dilation gives c2 = 1. Not much is known about the values of cn for n ≥ 3. The above
example gives c3 > 1 but it is not known even whether c3 <∞. It is known (Varopoulos,
1974) that limn→∞ cn = ∞. Moreover, by (Dixon, 1976), cn grows asymptotically faster
than any power of n. The best explicit estimate seems to be cn > 1

11

√
n for all n, see

(Dixon, 1976).
Of course, if T = (T1, . . . , Tn) ∈ B(H)n is a commuting n-tuple of operators satisfying

the Brehmer conditions, then T has a regular dilation, and so the von Neumann inequality
‖p(T )‖ ≤ ‖p‖Dn is satisfied for all polynomials p.
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5 Spherical dilations

Regular dilations considered in Section 3 are closely connected with the polydisc Dn ={
(z1, . . . , zn) ∈ Cn : |zj| < 1 (j = 1, . . . , n)

}
. This section outlines a parallel theory

connected with the unit ball Bn =
{
(z1, . . . , zn) ∈ Cn :

∑n
j=1 |zj|2 < 1

}
. For more details

see (Müller and Vasilescu, 1993).
For an operator A ∈ B(H) denote by MA : B(H) → B(H) the operator defined by

MA(X) = A∗XA (X ∈ B(H)). Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple
of operators. The Brehmer conditions can be rewritten in this notation as∏

j∈G

(
IB(H) −MTj

)
(IH) ≥ 0

for all G ⊂ {1, . . . , n}.
For spherical dilations one can consider the operator MT =

∑n
j=1MTj

: B(H) →
B(H), i.e., MT (X) =

∑n
j=1 T

∗
j XTj (X ∈ B(H)). Note that

Mm
T (X) =

∑
α∈Zn

+
|α|≤m

m!

α!
Tα∗XTα

for each m ∈ N.
A commuting n-tuple of operators T = (T1, . . . , Tn) ∈ B(H)n is called a spherical

contraction if MT (IH) ≤ IH . Equivalently, T ∗1 T1+· · ·+T ∗nTn ≤ IH , or
∑n

i=1 ‖Tix‖2 ≤ ‖x‖2

for all x ∈ H. Write ∆
(1)
T = IH −T ∗1 T1−· · ·−T ∗nTn. So T is a spherical contraction if and

only if ∆
(1)
T ≥ 0. If ∆

(1)
T = 0, i.e., if T ∗1 T1 + · · · + T ∗nTn = IH , then T is called a spherical

isometry.
More generally, it is possible to consider also conditions ∆

(m)
T ≥ 0, where

∆
(m)
T := (IB(H) −MT )m(IH) =

∑
α∈Zn

+
|α|≤m

(−1)|α|
m!

α!(m− |α|)!
Tα∗Tα.

The most interesting are the cases where m = 1 and m = n.
The role of the backward multishift for regular dilations will be played by certain

weighted backward multishifts.
As in the previous sections let `2(Zn

+, H) be the Hilbert space of all functions f : Zn
+ →

H satisfying ‖f‖2 :=
∑

α ‖f(α)‖2 < ∞. Let m ∈ N be a fixed parameter. For α ∈ Zn
+

write

ρm(α) =
(m+ |α| − 1)!

α!(m− 1)!
.

The weighted multishift S(m) = (S
(m)
1 , . . . , S

(m)
n ) acting on the space `2(Zn

+, H) is defined
by

(S
(m)
j f)(α) =

( ρm(α)

ρm(α+ ej)

)1/2

f(α+ ej).

Following the same way as in Section 3 it is possible to prove

Theorem 5.1. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of operators and
m ∈ N. Then the following conditions are equivalent:
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(i) ∆
(m)
T ≥ 0 and (SOT)− limk→∞Mk

T (IH) = 0;

(ii) T is unitarily equivalent to the restriction of S(m) to an invariant subspace.

It is interesting to note that ∆
(m)
T ≥ 0 and Mk

T (IH) → 0 (SOT) implies ∆
(1)
T ≥ 0.

Moreover, ∆
(1)
T ≥ 0 and ∆

(m)
T ≥ 0 implies that ∆

(s)
T ≥ 0 for all s, 1 ≤ s ≤ m, see (Müller

and Vasilescu, 1993).
Again if the condition (SOT) − limk→∞Mk

T (IH) = 0 is not satisfied it is possible to
complete the model.

Theorem 5.2. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of operators and
m ∈ N. Then the following conditions are equivalent:

(i) ∆
(1)
T ≥ 0 and ∆

(m)
T ≥ 0;

(ii) T is unitarily equivalent to the restriction of S(m) ⊕W to an invariant subspace,
where W is a spherical isometry on some Hilbert space H ′;

(iii) T is unitarily equivalent to the restriction of S(m) ⊕ N to an invariant subspace,
where N = (N1, . . . , Nn) is an n-tuple of commuting normal operators on some
Hilbert space H ′′ satisfying N∗

1N1 + · · ·+N∗
nNn = IH′′.

Implication (ii)⇒(iii) is based on the following result of (Athavale, 1990): any spherical
isometry can be extended to an n-tuple of commuting normal operators N = (N1, . . . , Nn)
satisfying N∗

1N1 + · · ·+N∗
nNn = I. Note that such an n-tuple of normal operators satisfies

σ(N) ⊂ ∂Bn.
As mentioned above, the most interesting case is the case m = n. Then the weighted

multishift S(n) has an additional property that ∆
(1)

S(n)∗ = 0, i.e., S(n)∗ is a spherical isometry.

So S(n)∗ can be extended to commuting normal operators. Thus one has

Theorem 5.3. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of operators

satisfying ∆
(1)
T ≥ 0 and ∆

(n)
T ≥ 0. Then there exist a Hilbert space K ⊃ H and commuting

normal operators N = (N1, . . . , Nn) ∈ B(K)n such that N∗
1N1 + · · ·+N∗

nNn = IK and

Tα = PHN
α|H

for all α ∈ Zn
+.

So in this case there is a complete analogy with the dilation theory of single contrac-
tions.

Corollary 5.4. Let T = (T1, . . . , Tn) ∈ B(H)n be a commuting n-tuple of operators

satisfying ∆
(1)
T ≥ 0 and ∆

(n)
T ≥ 0. Then

‖p(T )‖ ≤ ‖p‖Bn

for any polynomial p in n variables.

Let T = (T1, . . . , Tn) be a spherical contraction, i.e.,
∑n

i=1 T
∗
i Ti ≤ I. Then T satisfies

the Brehmer conditions and so it has the regular dilation. Thus the von Neumann inequal-
ity ‖p(T )‖ ≤ ‖p‖Dn is satisfied for all polynomials p. However, for spherical contractions
it is more natural to consider the ball norm ‖p‖Bn instead of the polydisc norm ‖p‖Dn .
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By Theorem 5.2, any spherical contraction T = (T1, . . . , Tn) is a restriction of S(1)⊕N
to an invariant subspace, where S(1) = (S

(1)
1 , . . . , S

(1)
n ) is the backward weighted multishift

defined above and N = (N1, . . . , Nn) is an n tuple of commuting normal operators with
σ(N) ⊂ ∂Bn. This implies the following result, see (Drury, 1978):

Theorem 5.5. Let T = (T1, . . . , Tn) ∈ B(H)n be a spherical contraction. Then

‖p(T )‖ ≤ ‖p(S(1))‖

for each polynomial p in n variables.

However, ‖p(S(1))‖ may be bigger than ‖p‖Bn . By (Varopoulos, 1974),

Theorem 5.6. For each K > 0 there exist n ∈ N and a commuting n-tuple of operators
T = (T1, . . . , Tn) satisfying

∑n
j=1 ‖Tj‖2 ≤ 1 and a polynomial p of degree 3 such that

‖p(T )‖ > K‖p‖Bn .

(Consequently, ‖p(S(1))‖ > K‖p‖Bn).

6 Analytic models

In previous sections one always started with a nice n-tuple of operators - (weighted)
backward multishifts - and found a class of operators for which this multishift served as
a model. The model multishift was closely related with some Hardy/Bergman space of
analytic functions.

Another approach is presented in this section. One starts with a nice space of analytic
functions with reproducing kernel and builds a dilation theory connected with this function
space. Only an outline of the proofs is given, for details see (Ambrozie et al. 2002).

Let D be an open domain in Cn. A Hilbert space H of functions analytic on D is
called a D-space if conditions (i) – (iii) below are satisfied:

(i) H is invariant under the operators Zi, i = 1, . . . , n of multiplication by the coordi-
nate functions,

(Zif)(z) := zif(z), f ∈ H, z = (z1, . . . , zn) ∈ D.

It follows from the next assumption and the close graph theorem that the operators
Zj are, in fact, bounded.

(ii) For each z ∈ D, the evaluation functional f 7→ f(z) is continuous on H. By the
Riesz theorem there exists a vector Cz ∈ H such that f(z) = 〈f, Cz〉 for all f ∈ H.
Let D′ = {z̄ : z ∈ D}. Define the function C(z, w) := Cw̄(z) for z ∈ D, w ∈ D′.
(The function C(z, w̄) is known as the reproducing kernel of H). It is easy to see
that C is analytic on D ×D′.

(iii) C(z, w) 6= 0 for all z ∈ D, w ∈ D′.

LetH be aD-space andH an abstract Hilbert space. Denote byH⊗H the (completed)
Hilbertian tensor product. Elements of H⊗H can be viewed upon as H-valued functions
analytic on D.
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Consider the multiplication operators Mzj
on H⊗H defined by Mzj

= Zj ⊗ IH (j =
1, . . . , n) and write Mz = (Mz1 , . . . ,Mzn).

Let us study commuting n-tuples T = (T1, . . . , Tn) ∈ B(H)n for which M∗
z serves as

a model. The first step is to consider the n-tuples T having the joint Taylor spectrum
σ(T ) contained in D′. Then one deals, under slightly stronger assumptions on H, with
n-tuples whose spectrum lies only in D′.

The basic prototype of a D-space is the Hardy space H2 on the open unit disc D ⊂ C.
In this case C(z, w) = (1− zw)−1 and M∗

z is the backward shift.

Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on an abstract Hilbert
space H with the Taylor joint spectrum σ(T ) ⊂ D′. Consider the (2n)-tuple (LT ∗ , RT ) =
(LT ∗

1
, . . . , LT ∗

n
, RT1 , . . . , RTn) of operators acting on B(H) defined by LT ∗

j
(X) = T ∗j X,

RTj
(X) = XTj (X ∈ B(H), j = 1, . . . , n). It is easy to see that (L∗T , RT ) is a commuting

(2n)-tuple. Moreover, it is possible to show that the joint Taylor spectrum of this (2n)-
tuple satisfies

σ(L∗T , RT ) ⊂ σ(L∗T )× σ(RT ) = σ(T ∗)× σ(T ) ⊂ D ×D′.

The hereditary functional calculus f 7→ f(T ∗, T ) defined for functions analytic on a
neighborhood of σ(L∗T , RT ) by f(T ∗, T ) = f(L∗T , RT )(IH) is a generalization of the Taylor
functional calculus, see (Agler, 1988). Note that if p(x, y) =

∑
α,β∈Zn

+
cα,βx

αyβ is a poly-

nomial (or a power series) then p(T ∗, T ) =
∑

α,β∈Zn
+
cα,βT

∗αT β, where x = (x1, . . . , xn)

and y = (y1, . . . , yn) are commuting n-tuples, but the variables xi and yj do not commute.
In the situation considered above, one can define 1

C
(T ∗, T ) = 1

C
(L∗T , RT )(IH). Assume

that 1
C
(T ∗, T ) ≥ 0 and let the defect operator of T be defined by

DT =
( 1

C
(T ∗, T )

)1/2

.

Note that in the basic example H = H2 the positivity condition 1
C

(T ∗, T ) ≥ 0 reduces
to I − T ∗T ≥ 0, i.e., T is a contraction, and this notation agrees with the classical one,
DT = (I − T ∗T )1/2.

Also, define below a bounded linear operator CT ∗ : H → H⊗H. To this aim, let ku(w)
denote the Martinelli kernel in n variables (Kordula and Müller, 1995; Vasilescu, 1978),
that is a differential form of degree n − 1 in dw1, . . . , dwn and degree n in dw1, . . . , dwn.
The definition of CT ∗ is motivated by the reproducing kernel property of the Martinelli
kernel, for use in the proof of (8) below. That is, for every analytic function f and point
u in its domain one has f(u) =

∫
∂∆
f(w)ku(w) where ∆ is a bounded open domain with

smooth boundary, such that ∆ is included in the domain of f . For ∆ ⊂ D′ and σ(T ) ⊂ ∆,
set

CT ∗h :=

∫
∂∆

Cw ⊗ kT (w)h, (h ∈ H)

where kT is the operator version of the Martinelli kernel, with coefficients in B(H), the ex-
act form of which can be found in (Kordula and Müller, 1995), for Hilbert space operators
see (Vasilescu, 1978). Following the lines of the formal identities f(T ∗) =

∫
∂∆
f(w)kT (w)

and

CT ∗(z) = C(z, T ) =

∫
∂∆

C(z, w)kT (w) =

∫
∂∆

Cw(z)kT (w),
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after some computation using also the reproducing kernel property f(w) = 〈f, Cw〉 of C,
one can obtain the equality

〈CT ∗h, f ⊗ h′〉 = 〈h, f(T ∗)h′〉 (8)

for all h, h′ ∈ H and f ∈ H. This shows in particular that CT ∗ does not depend on the
choice of ∆. Moreover, CT ∗ is a bounded operator.

Define a mapping V : H → H⊗H by the formula

V = (IH ⊗DT )CT ∗ . (9)

Within this context it is possible to prove the following result.

Theorem 6.1. Let H be a D-space and T a commuting n-tuple of operators on a Hilbert
space H such that σ(T ) ⊂ D′ and 1

C
(T ∗, T ) ≥ 0. Then the mapping V : H → H ⊗ H

defined by (9) is an isometry and

V Tj = M∗
zj
V (j = 1, . . . , n).

Hence T is unitarily equivalent to the restriction of M∗
z to an invariant subspace, namely

Tj
u∼M∗

zj
|V H (j = 1, . . . , n).

In many interesting cases D is bounded and H is isometrically embedded into a space
L2(m), where m is a finite nonnegative Borel measure on D. Then Z = (Z1, . . . , Zn) is a
subnormal n-tuple. More precisely, it extends to the (bounded and normal) n-tuple M of
multiplications by the coordinate functions on L2(m). Note that σ(M) = suppm ⊂ D.

Corollary 6.2. Let H be a D-space, T a commuting n-tuple of operators on a Hilbert
space H such that σ(T ) ⊂ D′ and 1

C
(T ∗, T ) ≥ 0. Suppose that H ⊂ L2(m) isometrically,

where m ≥ 0 is a finite Borel measure with support suppm ⊂ D.
Then T ∗ has a normal dilation N with spectrum σ(N) ⊂ suppm.

Proof. Indeed, Tj
u∼ M∗

zj
|V H , j = 1, . . . , n, whence Tα u∼ M∗α

z |V H , and so T ∗α
u∼

PV HM
α
z |V H for any multiindex α, where all the operators Mzj

considered in the space
L2(m)⊗H are normal.

Corollary 6.3. Let H be a D-space and T a commuting n-tuple of operators on a Hilbert
space H such that σ(T ) ⊂ D′ and 1

C
(T ∗, T ) ≥ 0. Suppose that H ⊂ L2(m) isometrically,

where m ≥ 0 is a finite Borel measure with suppm ⊂ D. Then von Neumann’s inequality

‖p(T )‖ ≤ sup
z∈D′

|p(z)|

holds for all polynomials p in n variables.

Consider now n-tuples T such that σ(T ) ⊂ D′. To this aim, assume the following
additional hypotheses:

(iv) The polynomials are dense in H, and the function 1
C

is a polynomial.
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Arrange the monomials zα ∈ H, α ∈ Zn
+ in some order. By the Gram-Schmidt

orthogonalization one can find an orthonormal sequence of polynomials (ψk(z))k≥1. Define
the polynomial functions

fm(z, u) = 1−
m−1∑
k=1

ψk(z)
1

C
(z, u)ψk(u).

Note that in the case where n = 1 and H is the Hardy space H2(D) on the unit disc, then
fm(z, u) = zmum.

Let T = (T1, . . . , Tn) be a commuting n-tuple of operators such that 1
C
(T ∗, T ) ≥ 0 and

supm≥1 fm(T ∗, T ) <∞. Define now V : H → H⊗H by

V h =
∑
k≥1

ψk ⊗DTψk(T
∗)∗h. (10)

Then V turns out to be well-defined, bounded and moreover this definition agrees with
the previous definition (9) of V , as is shown by the following proposition.

Proposition 6.4. Let D, H and T be as above. Let V be given by (10) and h ∈ H. Then
I = f0(T

∗, T ) ≥ f1(T
∗, T ) ≥ f2(T

∗, T ) ≥ · · · and

‖V h‖2 = ‖h‖2 − lim
m→∞

〈fm(T ∗, T )h, h〉.

Moreover, for any g ∈ H and polynomial f ∈ H,

V ∗(f ⊗ g) = f(T ∗)DTg.

Hence definitions (9) and (10) agree.

Proof. For any k ≥ 1 one has〈
ψk(T

∗)
1

C
(T ∗, T )ψk(T

∗)∗h, h
〉

=
〈 1

C
(T ∗, T )ψk(T

∗)∗h, ψk(T
∗)∗h

〉
≥ 0,

and so fm(T ∗, T ) ≥ fm+1(T
∗, T ) for every m. Then the limit limm→∞〈fm(T ∗, T )h, h〉

exists. Moreover for any j, m, with j < m,∥∥∥m−1∑
k=j

ψk ⊗DTψk(T
∗)∗h

∥∥∥2

=
m−1∑
k=j

‖DTψk(T
∗)∗h‖2

=
m−1∑
k=j

〈
ψk(T

∗)
1

C
(T ∗, T )ψk(T

∗)∗h, h
〉

= 〈(fj − fm)(T ∗, T )h, h〉,

and hence the partial sums of the right hand side of (10) form a Cauchy sequence, and so
convergent, sequence. Thus V given by (10) is well-defined. Letting j = 0 and m → ∞
above one obtains, since f0(T

∗, T ) = I, that

‖V h‖2 = lim
m
〈(f0 − fm)(T ∗, T )h, h〉 = ‖h‖2 − lim

m
〈fm(T ∗, T )h, h〉.

Since the functions ψj were obtained by Gram-Schmidt orthogonalization, any poly-
nomial is a linear combination of such functions, and so it is sufficient to verify the second
equality for f = ψj and then use (8) to check that (9) and (10) agree. For any h ∈ H,

〈h, V ∗(ψj ⊗ g)〉 = 〈V h, ψj ⊗ g〉 =
〈∑

k

ψk ⊗DTψk(T
∗)∗h, ψj ⊗ g

〉
= 〈DTψj(T

∗)∗h, g〉 = 〈h, ψj(T
∗)DTg〉

(8)
= 〈CT ∗h, ψj ⊗DTg〉 = 〈(IH ⊗DT )CT ∗h, ψj ⊗ g〉.
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Hence definitions (9) and (10) agree.

Following these lines, the following results can be obtained.

Theorem 6.5. Let H be a D-space such that the polynomials are dense and 1
C

is a
polynomial. Let T be a tuple of commuting operators on a Hilbert space H. The following
statements are equivalent:

(i) T is unitarily equivalent to the restriction of M∗
z to an invariant subspace;

(ii) 1
C
(T ∗, T ) ≥ 0 and limm→∞ fm(T ∗, T )h = 0 for each h ∈ H.

Corollary 6.6. Let T and H satisfy the previous hypotheses and condition (ii) from
Theorem 6.5. Suppose moreover that H ⊂ L2(m) where m ≥ 0 is a finite Borel measure
with suppm ⊂ D. Then the tuple Mz = (Mz1 , . . . ,Mzn) of multiplications by coordinate
functions on L2(m,H) is a normal dilation for T ∗ and

‖p(T )‖ ≤ sup
z∈D′

|p(z)|

for any polynomial p.

7 Further examples

This section lists several cases (1 - 8) of analytic models for commuting tuples of Hilbert
space operators, providing the existence of normal dilations and von Neumann’s inequality.

1. The basic example is that of contractions T : H → H, ‖T‖ ≤ 1 (Sz.-Nagy
and Foiaş, 1970; S.-Nagy et al., 2010), the model for which is the multiplication by the
variable on the Hardy space H2(D). In this case CT ∗h =

∑
j z

jT jh (h ∈ H), and

V : H → H2(D)⊗H is given by

V h =
∑
j≥0

zj(I − T ∗T )1/2T jh.

Then it is possible to recover the well-known fact that V is an isometry if and only if
Tmh→ 0 for all h ∈ H, in which case T

u∼M∗
z |V H , cf. Section 2.

2. Another example is the case when H is the Bergman space on the unit disc D.
This space consists of those analytic functions that are square-integrable with respect to
the planar Lebesgue measure, and its reproducing kernel is C(z, w) = (1− zw)−2. Then
1
C
(T ∗, T ) = I − 2T ∗T + T ∗2T 2 and fm(T ∗, T ) = (m + 1)T ∗mTm − mT ∗m+1Tm+1. The

condition fm(T ∗, T ) → 0 (SOT) turns out to be equivalent to Tm → 0 (SOT). Hence
if I − 2T ∗T + T ∗2T 2 ≥ 0 and Tm → 0 (SOT), then T is equivalent to the restriction
of M∗

z to an invariant subspace, where Mz is the shift on the Bergman space, see (Agler,
1985).

More generally, let H be the k-Bergman space, in which case the reproducing kernel
is C(z, w) = (1− zw)−k. Models for operators T satisfying the positivity condition

1

C
(T ∗, T ) =

k∑
j=0

(−1)j

(
k

j

)
T ∗jT j ≥ 0 (11)
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were introduced in (Agler, 1985). Contractions satisfying (11) are called k-hypercontractions.

3. If D := Bn is the Euclidean unit ball in Cn and H its Hardy space, then
C(z, w) = (1 − z1w1 − · · · − znwn)−n and H ⊂ L2(∂D,m) isometrically, where m is the
rotation invariant probability measure on the unit sphere ∂D.

More generally, let H be the k-Bergman space, where k > n and m is the Lebesgue
measure on D. In this case the k-Bergman space is isometrically contained in L2((1 −
|z|2)k−n+1m), C(z, w) = (1 − z1w1 − · · · − znwn)−k and the results in Sections 5 and 6
apply.

If 1 ≤ k < n then the k-Bergman space is also a D-space and the results of Section 6
apply. Thus one obtains a model for n-tuples T satisfying the corresponding positivity
condition, see also Section 5. However, in this case the k-Bergman space is not of L2-type,
so it is not possible to obtain the von Neumann inequality.

4. Also, if D := Dn is the unit polydisc and H its Hardy space, then C(z, w) =∏n
i=1(1− ziwi)

−1 and H ⊂ L2(∂0D,m) isometrically; here m is the normalized Lebesgue
measure on the Shilov boundary ∂0D = {z = (z1, . . . , zn) : |z1| = · · · = |zn| = 1} of D.
Note that the existence of a regular dilation of an n-tuple T is equivalent to Brehmer’s
conditions ∑

0≤α≤β

(−1)|α|T ∗αTα ≥ 0

for all β ≤ (1, . . . , 1), and the inequality 1
C

(T ∗, T ) ≥ 0 is Brehmer’s condition of maximal
degree for T , see Section 3.

A more general notion of γ-contractions for γ ∈ Zn
+ was studied in (Curto and

Vasilescu, 1993; 1995).

5. One can similarly consider also more general models, over certain domains D
given by inequalities of the form

D =
{

(z1, . . . , zn) ∈ Cn :
∑

j

ci,j|zj|2 < 1, i = 1, . . . , l
}
,

where all ci,j ≥ 0 (Vasilescu, 1995), or of the form p(|z1|2, . . . , |zn|2) < 1 where p is a
polynomial with nonnegative coefficients (Pott, 1999).

6. Another interesting case is when D is a Cartan domain, and H a generalized
Bergman space. For the definitions and general properties of such spaces see (Hua, 1979;
Upmeier, 1996). The unit disc in C and unit ball in Cn are particular cases of such
domains. Other examples are provided by the operator matrix balls Dp,q consisting of all
p × q (p ≤ q) complex matrices z = (zi,j)1≤i≤p,1≤j≤q : Cq → Cp of supremum operator
norm ‖z‖ = suph∈Cq ,‖h‖<1 ‖z · h‖ < 1, endowed with suitable Hilbert spaces H of analytic

functions. For instance if D = D2,2 =

{
z = (z1, z2, z3, z4) ∈ C4 :

∥∥∥∥(
z1 z2

z3 z4

) ∥∥∥∥ < 1

}
, its

Hardy space H2 has the reproducing kernel

C(z, w) = det

(
I2 −

(
z1 z2

z3 z4

)
·
(
w1 w3

w2 w4

))−2

,
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see (Hua, 1979; Upmeier, 1996). This can provide models (Ambrozie et al., 2002) for

certain commuting 4-tuples T = (Ti,j)
2
i,j=1 such that the operator matrix

(
T11 T12

T21 T22

)
is

contractive on H ⊕H.
In the more general case of D = Dp,q, for any λ ≥ q the λ-Bergman space H2

λ(Dp,q) is
a D-space with reproducing kernel

C(z, w) = det (1p − zw∗)−λ.

Moreover, there exists a probability measure ν = νλ on Dp,q such that Hλ(Dp,q) ⊂ L2(ν)
isometrically, and the pq-tuple Mz = (Mzi,j

)i,j is subnormal, see (Bagchi and Misra, 1996;
Hua, 1979; Upmeier, 1995). Subsequent developments of such models over general Cartan
domains are given in (Arazy and Englǐs, 2003), where the generalized Bergman spaces
H = Hλ are considered for the parameter λ in the continuous Wallach set, and moreover
the multiplication Mz is replaced by Mz ⊕ W , W being a certain generalization of a
unitary tuple. This provides a multivariable generalization of the well-known result by
Sz.-Nagy and Foiaş stating that T is a contraction if and only if T is unitarily equivalent
to the restriction to an invariant subspace of the direct sum S⊕W of a backward shift S
of infinite multiplicity and a unitary operator W , see Theorem 2.2.

7. If H is a regular coanalytic model of (Agler, 1982), then it is a D-space in the
present sense, where D is the unit disc in C. Thus the model described in Section 6
generalizes the results in (Agler, 1982).

8. A model for commuting row contractions T :
∑n

i=1 TiT
∗
i ≤ I was given by (Arveson,

1998), by means of the Hilbert space H := H2(Bn) of analytic functions on the unit ball
Bn the reproducing kernel of which is C(z, w) = (1 −

∑n
i=1 ziwi)

−1 (z, w ∈ Bn). Let
T ⊂ B(H) denote the Toeplitz C∗-algebra generated by operators Mz1 , . . . ,Mzn of the
multishift Mz = (Mz1 , . . . ,Mzn) and A ⊂ T be the subalgebra of T generated by Mz.
Then by (Arveson, 1998, Theorem 6.2) for every such T on a Hilbert space H there exists
a unique completely positive unital map φ : T → B(H) such that φ(Mzi

) = Ti for all
i = 1, . . . , n and φ(AX) = φ(A)φ(X) for all A ∈ A and X ∈ T . A map φ : T → B(H)
on a C∗-algebra T is m-positive if Im ⊗ φ : Mm ⊗ T → Mm ⊗ B(H) is positive, namely
(Im ⊗ φ)x ≥ 0 for every x ≥ 0, where Mm is the set of all complex m×m matrices. φ is
completely positive if it is m-positive for all m ≥ 1. Then (Arveson, 1998, Theorem 8.1)
for every polynomial p in n variables one has von Neumann’s inequality ‖p(T )‖ ≤ ‖p‖M
where ‖ · ‖M denotes the multiplier operator norm on H.

This case can be recovered by the model described in Example 3 in this section. The
map φ is given by φ(X) = V ∗XV for X ∈ T , where V is the isometry provided by
Theorem 6.1 (for T ∗). For another approach see Section 5. Note also (Arveson, 1998)
that ‖p‖M = ‖p(S)‖, where S is the n-tuple of symmetric left creation operators on the
symmetric Fock space. Similar results appeared in (Müller and Vasilescu, 1993), and a
result for the tuples rT with 0 < r < 1 has been established by (Drury, 1978). This
approach is related to the matrix-valued von Neumann inequality, namely, by the general
dilation theorem of Arveson, an n-tuple T of commuting contractions on a Hilbert space
H has a unitary dilation if and only if for any k ≥ 1 and matrix-valued polynomial
p =

∑
α∈Zn

+
cαz

α with cα ∈ Mk one has ‖p(T )‖ ≤ supz∈Dn ‖p(z)‖, where p(T ) =
∑

α cα ⊗
Tα ∈Mk ⊗B(H) ≡ B(Hk), see also (Kalyuzhnyi, 1998).

The results for commuting row contractions can also be recovered from the non-
commuting setting by ”letting the variables commute”, see (Popescu, 1989b).
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8 Concluding remarks

1. There are other directions of generalizing Sz. Nagy-Foiaş’ dilation theory to systems
of linear operators. One of them is Agler’s approach to model theory (Agler, 1988), see
also (Athavale, 1987), providing models by means of liftings to algebra representations.
The general idea is that two classes B ⊂ F of bounded linear operators on Hilbert spaces
are given, where the set B is closed with respect to direct sums and unital representations.
As an example, take the case when F consists of all contractions while B is the set of all
coisometries. A typical conclusion of a lifting theorem has the following form: if T ∈ F ,
then there exist an operator S ∈ B, S ∈ B(H) and a closed linear subspace L of H,
invariant under S, such that T

u∼ S|L. In interesting cases, there exists a universal
element a in a unital C∗–algebra A such that B ∈ B∩B(H) if and only if there is a unital
representation π : A→ B(H) with π(a) = B.

Denote by P the set of all hereditary polynomials p =
∑

α,β cα,βy
αxβ with complex

coefficients cα,β, where α, β ∈ Zn
+ are multiindices α = (α1, . . . , αn), β = (β1, . . . , βn)

and x = (x1, . . . , xn), y = (y1, . . . , yn) are n-tuples, each of them commuting but not
commuting to each other. Note for later use that for any integer k ≥ 1, one may consider
as well the set Mk ⊗ P of all k × k matrix-valued hereditary polynomials p = (ps,t)

k
s,t=1

where each ps,t ∈ P . Set also p(T ) =
∑

α,β cα,βT
∗αT β for T = (T1, . . . , Tn). Similarly, this

makes sense as well for matrix-valued hereditary polynomials p = (ps,t)
k
s,t=1, by setting

p(T ) = (ps,t(T ))k
s,t=1 (k ≥ 1). Then results of the following form can be proved (for

simplicity we state below Theorem 1.1 of (Agler, 1988), concerning the case n = 1).

Theorem 8.1. Let T ∈ B(H), let A be a unital C∗-algebra and a ∈ A. The following
statements are equivalent:

(i) T is unitarily equivalent to π(a)|L, where π : A → B(K) is a unital representation
on some Hilbert space K and L ⊂ K is invariant under π(a);

(ii) p(T ) ≥ 0 for every matrix-valued hereditary polynomial p ∈
⋃∞

k=1Mk ⊗P such that
p(a) ≥ 0.

In order to make better use of such a statement, note, for instance, that given a
hereditary homomorphism φ : {p(a)}p∈P → L(H), namely a linear map φ such that
(φ(p(a)) = p(φ(a)) for all p ∈ P , if φ(a) is n-cyclic, then the complete positivity of φ is
equivalent to its n-positivity (Agler, 1988, Theorem 1.20). In this case φ stands for the
hereditary homomorphism given (and uniquely determined) by φ(a) := T , and (ii) from
above is indeed a complete positivity condition. The definitions and various applications
of such lifting theorems can be found in (Agler, 1988).

2. An important result in the dilation theory of single contractions is the commutant
lifting theorem, see (Sz.-Nagy and Foiaş, 1970) and for more details (Foiaş and Frazho,
1990):

Theorem 8.2. Let T ∈ B(H) be a contraction, V ∈ B(K) its minimal isometric dilation,
let X ∈ B(H) such that TX = XT . Then there exists Y ∈ B(K) such that Y V = V Y ,
‖Y ‖ = ‖X‖ and X = PHY |H .

A similar result for n-tuples of contractions is not true even for n-tuples having a
regular unitary dilation, see (Müller, 1994).
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Nevertheless, there is a multivariable version of this result, called the functional com-
mutant lifting theorem. Let L be a Hilbert space, H2(D, L) the Hardy space, Mz the
operator of multiplication by the variable acting on this space, let H ⊂ H2(D, L) be a
subspace invariant for M∗

z and let T = PHMz|H (by Theorem 2.2, such a representation is
possible if and only if T ∗k → 0 (SOT)). The commutant lifting theorem in this partic-
ular situation states that if X ∈ B(H), XT = TX then there exists a bounded analytic
function f : D → B(L) such that ‖f‖D = ‖X‖ and X = PHMf |H , where Mf if the
operator of multiplication by f .

The situation is more complicated for n arbitrary, as is shown below. Note that
for n ≥ 3 it is necessary to replace the usual norm ‖f‖Dn of f by the (Agler-)Schur
norm ‖f‖S := supZ ‖f(Z)‖, where the supremum is taken over all commuting n-tuples
Z = (Z1, . . . , Zn) of strict contractions (i.e., ‖Zj‖ < 1). The result also provides the
characterization of the functions f from the unit ball ‖f‖S ≤ 1 as transfer functions of
linear systems with the unitary connection matrix (Ball et al., 1999).

Theorem 8.3. Let E be a Hilbert space and H ⊂ H2(Dn) ⊗ E be a M∗
z -invariant

closed linear subspace. For j = 1, . . . , n, set Tj = PHMzj
|H and let T = (T1, . . . , Tn). Let

X ∈ B(H) satisfy XTj = TjX for all j = 1, . . . , n. The following two statements are
equivalent:

(i) There exists an analytic function f : Dn → B(E) such that X = PHMf |H and
‖f‖S ≤ 1;

(ii) There exist positive semidefinite operators Gi ∈ B(H) such that I−XX∗ =
∑n

j=1Gj

and
∏

j 6=i(IB(H) −MT ∗
j
) (Gi ) ≥ 0 for each i = 1, . . . , n.

In this case, there exist a Hilbert space K and a unitary operator

(
a b
c d

)
:
Kn

⊕
E

→
Kn

⊕
E

such that f(z) = d + c (I − z̃ a)−1 z̃ b where z̃ : Kn → Kn is the diagonal operator
z̃ = diag (z1, . . . , zn) of multiplications by the coordinate functions.

For n = 2 this reduces to G1 − T2G1T
∗
2 ≥ 0 and G2 − T1G2T

∗
1 ≥ 0, and ‖f‖S = ‖f‖∞.

For further generalizations of the commutant lifting theorem see for instance (Ball et
al., 1997; Davidson and Le, 2010; Ambrozie and Eschmeier, 2005).

We mention the following version of the commutant lifting theorem for spherical con-
tractions (Davidson and Le, 2010), see also the previous work (Ball et al., 1997) concerned
only with the case of the weighted multishift (when N = 0):

Theorem 8.4. Let T = (T1, . . . , Tn) ∈ B(H)n be a (commuting) spherical contraction,
X ∈ B(H), XTj = TjX for all j. Let S(1) ⊕ N be the extension described in Section 5
(i.e., S(1) is the weighted multishift described there and N = (N1, . . . , Nn) is an n-tuple
of commuting normal operators with σ(N) ⊂ ∂Bn). Then there exists a dilation Y of X

commuting with S
(1)
j ⊕Nj for all j such that ‖Y ‖ = ‖X‖.

3. The multivariate functional commutant lifting has applications toH∞-type interpo-
lation for various problems of Nevanlinna-Pick and Carathéodory-Fejér type on domains
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in Cn, see (Sarason, 1967) (n = 1) and, for instance, (Ball et al., 1999) (n ≥ 1), as well
as its various subsequent developments.

4. Let T = (T1, . . . , Tn) be an n-tuple of commuting contractions. If T satisfies the
Brehmer conditions then it has a (regular) unitary dilation and therefore it satisfies the
von Neumann inequality ‖p(T )‖ ≤ ‖p‖Dn for all polynomials p in n variables.

In (Grinshpan et al., 2009) Brehmer’s conditions were relaxed. If ‖Tj‖ < 1 for all
j and there are two subsets M1,M2 ⊂ {1, . . . , n} with |M1| = |M2| = n − 1 such that∑

F⊂Mj
(−1)|F |T ∗FTF ≥ 0 (j = 1, 2), then T has a (in general non-regular) unitary dila-

tion, and so T satisfies the von Neumann inequality. So this result is a generalization of
the Ando dilation theorem.

5. Another related direction is the study of joint subnormality for commuting n-tuples
of operators on Hilbert spaces, starting from the Bram-Halmos criterion for n = 1, see
for instance (Itô, 1958).

6. The characteristic function, an important tool for studying completely nonunitary
contractions on Hilbert spaces (Sz.-Nagy and Foiaş, 1970; Sz.-Nagy et al., 2010), was
also generalized to the case of completely non-coisometric row contractions of commuting
operators on a Hilbert space (Bhattacharyya et al., 2006). For generalization to the
non-completely non-coisometric case see (Ball and Bolotnikov, 2012).

The characteristic function for non-commuting row contractions was studied in (Popescu,
1989a).

7. Some of the results of dilation theory can be generalized also to infinite families
of commuting operators, see e.g. (Sz.-Nagy and Foiaş, 1970) and construction of regular
dilations.

8. Several other directions exist in the theory of the multivariable dilations, like
for instance Agler’s multipliers (Agler, 1982), Arveson’s curvature invariant (Arveson,
2000), Douglas’ Hilbert modules (Douglas et al., 2012), Popescu’s non-commutative the-
ory (Popescu, 1998), and so on.

For these interesting topics, that are beyond the aim of the present survey concerned
with commutative dilation theory on Hilbert spaces, see the cited papers.
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[19] S. Brehmer (1961), Über vertauschbare Kontraktionen des Hilbertschen Räumes,
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[32] T. Itô (1958), On the commutative family of subnormal operators, J. Fac. Sci.
Hokkaido Univ. Ser. I 14, 1–15.

[33] D.S. Kalyuzhnyi (1998), The von Neumann inequality for linear matrix functions
of several variables. (Russian), Mat. Zametki 64 (1998), no. 2, 218–223; translation
in Math. Notes 64 (1998), no. 1–2, 186–189 (1999).

[34] V. Kordula, V. Müller (1995), Vasilescu-Martinelli formula for operators in
Banach spaces, Studia Math. 113, 127–139.

[35] J.E. McCarthy, O.M. Shalit (2013), Unitary N -dilations for tuples of com-
muting matrices, Proc. Amer. Math. Soc. 141, no. 2, 563–571.

[36] W. Mlak (1977), A note on general dilation theorems. Spectral theory (Warsaw,
1977), 347–352, Banach Center Publ., 8, PWN, Warsaw, 1982.

[37] V. Müller (1994), Commutant lifting theorem for n-tuples of contractions, Acta
Sci. Math. (Szeged) 59, 465–474.

26



[38] V. Müller, F.-H. Vasilescu (1993), Standard models for some commuting
multishifts, Proc. Amer. Math. Soc. 117, 979–989.

[39] S. Parrott (1970), Unitary dilations for commuting contractions, Pacific J.
Math. 34, 481–490.

[40] , G. Popescu (1989a), Characteristic functions for infinite sequences of noncom-
muting operators, J. Operator Theory 22, 51–71.

[41] G. Popescu(1989b), Isometric dilations for infinite sequences of noncommuting
operators. Trans. Amer. Math. Soc. 316, 523–536.

[42] G. Popescu (1998), Noncommutative joint dilations and free product operator
algebras, Pacific J. Math. 186, 111–140.

[43] S. Pott (1999), Standard models under polynomial positivity conditions, J. Oper-
ator Theory 41, 365–389.

[44] M. Ptak (1985), Unitary dilations of multiparameter semigroups of operators,
Ann. Polon. Math. 45, 237–243.

[45] D. Sarason (1967), Generelized interpolation in H∞, Trans. Amer. Math. Soc.
127, 179–203.

[46] J. Stochel, F.H. Szafraniec (1999), Unitary dilation of several contractions.
Recent advances in operator theory and related topics (Szeged, 1999), 585–598,
Oper. Theory Adv. Appl., 127, Birkhäuser, Basel, 2001.
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[51] N. Th. Varopoulos (1974), On an inequality of von Neumann and an application
of the metric theory of tensor products to operator theory, J. Funct. Anal. 16, 83–100.

[52] F.-H. Vasilescu (1978), A Martinelli type formula for the analytic functional
calculus, Rev. Roumaine Math. Pures Appl. 23, 1587–1605.

[53] F.-H. Vasilescu (1995), Positivity conditions and standard models for commuting
multioperators, Contemp. Math. vol. 185, Amer. Math. Soc., Providence, RI, pp.
347–365.

Institute of Mathematics – AV ČR
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