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TAYLOR FUNCTIONAL CALCULUS

VLADIMIR MULLER

ABSTRACT. The notion of spectrum of an operator is one of the central
concepts of operator theory. It is closely connected with the existence
of a functional calculus which provides important information about the
structure of Banach space operators.

The situation for commuting n-tuples of Banach space operators is
much more complicated. There are many possible definitions of joint
spectra. However, the joint spectrum introduced by J. L. Taylor has a
distinguished property — there exists a functional calculus for functions
analytic on a neighbourhood of this spectrum.

The present paper gives a survey of basic properties of the Taylor
spectrum and Taylor functional calculus.

1. INTRODUCTION.

The functional calculus of single operators (or more generally, single ele-
ments of a Banach algebra) is a standard and very useful tool in operator
theory. It is defined by the Cauchy formula: if A is a unital Banach algebra,
a € A and f a function analytic on a neighbourhood of the spectrum o(a),
then f(a) € A is defined by

o) = 5 [ £}z =) a,

where T' is a suitable contour surrounding o(a). The mapping f +— f(a) is an
algebra homomorphism, it satisfies the spectral mapping property o(f(a)) =
f(o(a)) for all f, and it is continuous in the sense that if f,, — f uniformly
on a neighbourhood of o(a) then f,(a) — f(a).

The functional calculus for n-tuples of commuting elements is much more
complicated. In commutative Banach algebras it was constructed by Shilov,
Arens, Calderon and Waelbroeck. The main result is: if A is a commu-
tative unital Banach algebra, aq,...,a, € A and f a function analytic on
a neighbourhood of the joint spectrum o(aq,...,a,) then it is possible to
define f(ai,...,a,) € Asuch that the functional calculus f +— f(aq,...,a,)
satisfies the same properties as the functional calculus of single elements —
it is additive, multiplicative, continuous and satisfies the spectral mapping

property.
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2 VLADIMIR MULLER

If aq,...,a, are mutually commuting elements in a non-commutative uni-
tal Banach algebra A, then it is possible to choose a unital commutative sub-
algebra Ay containing the elements aq,...,a, and consider the functional
calculus in Ag. However, the joint spectrum o4 (a1, ..., a,) and the func-
tional calculus depend on the choice of Ay and there is no optimal candidate
for the choice of Aj.

The best functional calculus known at present was constructed by (Tay-
lor, 1979a, 1970b). He defined a joint spectrum o (called now the Taylor
spectrum) for commuting Banach space operators Ay, ..., A, and the func-
tional calculus f +— f(Aj,..., Ay) for functions analytic on a neighbourhood
of op(Ai,...,A,) which satisfies the expected properties as the functional
calculi above.

Although the Taylor functional calculus is defined only for n-tuples of
commuting Banach space operators and not for commuting n-tuples of el-
ements in a Banach algebra, the Taylor functional calculus implies easily
the existence of the above mentioned functional calculus in commutative
Banach algebras.

2. TAYLOR SPECTRUM

Let s = (s1,...,5n) be a system of indeterminates. Denote by A[s]| the
exterior algebra generated by s = (s1,...,sy), i.e., A[s] is the free complex
algebra generated by s = (s1,..., s,), where the multiplication operation A
in A[s] satisfies the anticommutative relations s; A sj = —s; A's; (i,5 =
1,...,n). In particular, s; A s; = 0 for all 7.

For F C {1,...,n}, F = {iy,...,ip} with 1 < i1 <ip < --- <i, <n
write sp = s;; A--- A si,. Every element of Afs] can be written uniquely in

the form
S arse
Fc{1,..n}

with complex coefficients ap. Clearly, sy is the unit in Als].

For p=0,1,...,n let AP[s] be the set of all elements of A[s] of degree p,
i.e., AP[s, X] is the subspace generated by the elements sp with card F' = p.
Thus Afs] = @), A[s], dim AP[s] = (;L) and dim A[s] = 2.

Let X be a vector space. Write Als, X] = X ® A[s]. So

Als, X :{ Y apspiar GX};

Fc{1,..,n}

”

to simplify the notation, the symbol 7 ®
0,...,n write AP[s, X] = X ® AP; so

AP[S,X]:{ > a:FsF::L‘FGX}.

Fc{1,..,n}
card F=p

is omitted. Similarly, for p =
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Thus AP[s, X] is a direct sum of (;L) copies of X and A[s, X] is a direct sum
of 2™ copies of X.

In the following X will be a fixed complex Banach space. Then A[s, X| can
be considered to be also a Banach space. For the following considerations
it is not essential which norm one takes on A[s, X|; one can assume it to be

1/2
I>>xpsr| = <Z HxFH2> . This norm has an advantage that if X is a
Hilbert space then so is A[s, X].
For j =1,...,nlet S; : Als, X] — A[s, X| be the operators of left multi-
plication by s;,

S; (Z $F5F> = ZCL’FS]' ASp = Z (—1)Card{iEF:Kj}szFU{j}.
F F Fc{l,...,n}
JEr
Clearly, S;S; = —S;S; (i,j =1,...,n). In particular, S? = 0 for all i.
For an operator T' € B(X) denote by the same symbol the operator
T : Als,X] — Als, X] defined by

T(Z szF) = Z(Txp)sF.
F F

Obviously, T'S; = S;T for all j.
Let A = (Ay,...,Ay,) be an n-tuple of mutually commuting operators
on X. Denote by d4 the operator d4 : Afs, X] — A[s, X| defined by

04 = En:AZ-S,-.
i=1

n n

2

(64)" =D > ASiA;S; = > AA(SiS; + S;8:) =0,
i=1 j=1 1<i<j<n

and so Imd4 C kerd4 (note that the commutativity of the operators A; has

been used).

Definition 2.1. An n-tuple A = (44,...,A,) of mutually commuting op-

erators on a Banach space X is called Taylor reqular if kerd4 =Imda.
The Taylor spectrum or(A) is the set of all A = (A1,...,A,) € C" such

that the n-tuple A — X\ = (A; — A1,..., A, — Ay) is not Taylor regular.

Since §4AP[s, X] C AP*L[s, X] (p=0,1,...,n—1), it is possible to define
operators 6% : AP[s, X] — APT1[s, X] as the restrictions of d4 to AP[s, X].
Thus 04 defines the following sequence of operatolrs

50 st o
(1) 0 — A[s, X]—5A s, X]—2 - - - 25A"[s,X] — 0,
where 6?7167 = 0 for each p.

The sequence (1) is called the Koszul complex of A. It is easy to see

that A is Taylor regular if and only if the Koszul complex is exact, i.e., if
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Im 6" = ker 62“ for all p, where one sets formally ¢} to be the zero operators
forp<Oorp>n.

Remark 2.2. (i) Let n = 1. It is possible to identify A°[s, X] and A![s, X]
with X, and so the Koszul complex of a single operator Ay € B(X) becomes

0— XALx 0.

This complex is exact if and only if A; is invertible. Thus for single operators
the Taylor spectrum coincides with the ordinary spectrum.

(ii) Let n = 2 and let A = (A1, A2) be a commuting pair of operators
on X. Then the Koszul complex of A becomes

89 5
0-XSHXPpX2X -0,

where 04 and 0} are defined by 6%z = A1z ® Asz (v € X) and 04 (zdy) =
—Agx+ A1y (x,y € X).

(iii) The most important parts of the Koszul complex of an n-tuple A =
(Aq,...,Ay) are its ends. The first mapping 69 can be interpreted as & :
X — X" defined by 04z = @, Aiz (z € X). Thus the Koszul complex
of A is exact at A°[s, X] if and only if ([, ker A; = {0}. Similarly, &’ * :
X" — X is defined by 61}1_1(3:1 ®-Bay) =Y 0 (—1)"1 Az, and so the
exactness at A"[s, X] means that ImA; +--- +Im 4,, = X.

Proposition 2.3. Let Aq,...,A,, By,..., B, be mutually commuting oper-
ators on a Banach space X satisfying > iy A;B; = I. Then the n-tuple
A= (A4y,...,A,) is Taylor regular.

Proof. For j =1,...,nlet H; : Als, X] — A[s, X] be the operators defined
by

@ (> wwse)= 3 (N,
Fc{1,..,n} Fc{1,..,n}
JEF

It is easy to verify that H;S;+S;H; =1 (j=1,...,n)and H;S;+S;H; =0
for ¢ # j.

Suppose that > " | A;B; = I. As above, denote by the same symbols B;
the operators acting on A[s, X|. Let ep : A[s, X] — A[s, X] be the operator
defined by ep = > 7_; H;Bj. Then

€gda+ dacp = Z Z(HijSiAi + SZ‘AZ'H]‘B]‘)
i=1 j=1

=1 it
= Z BiAi = I[s x)-

=1
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Let ¢ € kerds. Then ¢ = (egda + 04ep)Y = daep), and so ¥ € Im .
Hence ker 64 = Im 4 and the n-tuple A is Taylor regular. O

If A is a unital commutative Banach algebra and aq,...,a, € A then the
joint spectrum is defined by

oAay, ... an) = {(f(a1),..., flan)) : f € M(A)},

where M(A) is the set of all multiplicative functionals f : A — C (i.e., the
maximal ideal space of A).

Let a = (ai,...,a,) € A" be a commuting n-tuple of elements. Denote
by (a) the smallest closed unital algebra containing ai,...,a,. Clearly (a)
is a unital commutative Banach algebra.

Proposition 2.3 implies that

3) or(4) € o(4)

for any unital commutative Banach algebra A C B(X) containing the oper-

ators Ay, ..., Ay,. Inparticular, op(A) C o4 (A) for all commuting n-tuples
A e B(X)".

For the study of basic properties of the Taylor spectrum one needs the
following lemma. Its proof is elementary and various formulations of the
lemma can be found in (Taylor, 1970a, Lemma 2.1; Vasilescu, 1979a, Lemma
2.1) or (Miiller, 2007, Lemma 11.3).

Lemma 2.4. Let X,Y,Z be Banach spaces, let T : X - Y and S:Y — Z
be operators satisfying ImT" = ker S and let Im S be closed. Then there
exists € > 0 such ImT" = ker S” and Im S’ is closed for all pairs of operators
T : X - Y and S' : Y — Z satistying |T' —T|| < e, ||S" — S|| < ¢ and
S'T' = 0.

Corollary 2.5. The set of all commuting Taylor regular n-tuples is rela-
tively open in the set of all commuting n-tuples. Consequently, or(A) is a
compact subset of C™.

Moreover, for eachn € N the mapping A — o (A) defined on commuting
n-tuples A = (Ay,..., A,) € B(X)" is upper semi-continuous.

Proof. Consider the sequence
Als, X]25ALs, X]24A[s, X

Note that |[04 — 0| < >, [|[Ai — B;|| for all commuting n-tuples A, B €
B(X)™. By the previous lemma, op(A) is closed. By (3), it is compact.
Clearly the mapping A — op(A) is upper semicontinuous. O

A very important property of the Taylor spectrum is the projection prop-
erty — that UT(Ai17--~7Aik) = PO’T(Al,. . -;An) forall kK <n,1<1i <

- < i < n, where P : C* — CF is the natural projection defined by
P(z1,...,20) = (Ziy, .- -, 2y, )-
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It is well known that the analogous projection property is satisfied both
for the surjective spectrum

Usur(Ala c ,An) = {()\1,. . ,)\n) ceC": (Alf)\l)X+ . +(Anf)\n)X ?é X}

and the approximate point spectrum

Tapl Ao An) = o M) €C7:_int 1ZH i = Aal| = 0},

see (Stodkowski and Zelazko, 1974). The proof of projection property for
the Taylor spectrum follows (Stodkowski, 1977).

Lemma 2.6. Let Z1,Z5 be Banach spaces, let B : Z1 — Z1, D : Z1 — Zs
and C : Zy — Zy be operators satisfying DB = C'D. Suppose that D7, #+
Zy. Then there exists a complex number X\ such that DZy+ (C —\)Zy # Zs.

Proof. Tt is possible to reduce the statement of Lemma 2.6 to the projection
property of the surjective spectrum. Consider the Banach space Z = Z5 &
Z1®Z1 @ - (for example with the ¢! norm) and operators U,V € B(Z)
given in the matrix form by

0D 0 0 C 0 0
0 0 I 0 0 B 0
U=| 00 01 and V=1 o o B

It is easy to check that UV = VU. Furthermore, UZ # Z since DZy # Z».
By the projection property for the surjective spectrum, there exists A € C
such that UZ + (V. — \)Z # Z. Since UZ D 0® Z1 ® Z1 @ - -, this is
equivalent to the condition DZ; + (C' — \)Zy # Zo. O

To prove the projection property for the Taylor spectrum it is necessary
to investigate the exactness of the Koszul complex in more details.

For k£ =0,...,n denote by F,(Cn) the set of all commuting n-tuples of oper-
ators A = (A1,...,Ay) € B(X)" such that the Koszul complex of A is exact
at A*(X), ie., Im 6k_1 = ker 6%. In agreement with the previous convention

( )

set formally '] to be the set of all commuting n-tuples of operators.

Proposition 2.7. Let Ay,..., Ay, Ant1 be commutmg operators on a Ba-
nach space X, let 0 < k < n and (A1,...,A,) ¢ F,(Cn). Then there exists
A € C such that (Ay,..., Ay, Anr — A) ¢ {00,

Proof. Write for short A = (A1,...,Ap), Ay = (A1, ..., An, Aps1—A) (A€
C) and s = (s1,...,8,). Suppose that A ¢ Flgn). Clearly, A,41kerd¥ C

ker (552. Consider the following diagram
51@—1
AF1s, X] 2 kerdh
An+1 An+1
k—1

0
A 1s, X] == ker 8.
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By Lemma 2.6, there is a A € C such that Tm 6% + (4,41 — \) ker 6% #
ker 0%. Tt is sufficient to prove that Im 5§U = ker (51'?;1.

Let 1 € ker 6% \ (Im 0%~ " + (A,41 — A ker 6%). Then

n
61]ZJ;ISH+1¢ = ((An+1 - )\)SnJrl + Z AlSz>Sn+1dJ
=1

n
= ZAiSiSnJrN/) = —S, 41659 = 0.
=1
So Snp+19 € ker 52‘:1. It is sufficient to show that S,+1¢ ¢ Im 552).

Suppose on the contrary that there is a ¢ € A¥[s, 5,41, X] with 5ffhgo =
Spi1. Write o = Spi10k_1 + ¢r for r_1 € AF Vs, X, o1 € A¥[s, X].
Then S, 1Y = 5%@ = Sn+1(—52_1¢k71 + (Apy1 — )\)gok) + (5ffx<pk. Thus
or € ker 6% and ¢ = —68 1o 1+ (Anp1—N)gr € Tm 851 4( A, 11— \) ker 0%,
which is a contradiction. O
Proposition 2.8. Let Ay,..., A,, Apy1 be commuting operators on a Ba-
nach space X, let 0 < k < n. Suppose that (A4i,...,A,) € F;fn_)l N F,(cn).
Then (Ay, ..., Ay, Apy1) € TUTY.

Proof. Let A= (Ay,...,A,), s=(s1,...,8,) and A" = (A1,..., Ap, Ant1).
Suppose that ker 51]‘2_1 = Im 5’2—2 and ker (552 = Im 52_1. It is sufficient to
prove that ker 8%, C Im 5]2,_1 (the opposite inclusion is always true).

Let ¢ € ker 6%,. Express ¢ = n + Sp+1m,—1 for some n;, € A¥[s, X] and
nk—1 € A¥71[s, X]. Then

n+1 n
0= 4% :ZAiSink‘FZAiSiSn—i-lnkfl = SRt Sna1 (Aname—65 1),
=1 i=1

Thus 5,’277k: =0, and so n, = 55{1&_1 for some &,_; € A*1[s, X]. Further,

0= Ans1me — 05 1 = 8N (An1r1 — M),

and so Ap11&p_1 — Np_1 = 51;1—2&_2 for some &;,_» € A*2[s, X]. Hence

Y = Mg+ Sni1m—1 = 05 "1 + Snt1Ant1&k—1 — Snt10% 22
= G+ 08 S 18— € Tm 6K
O

Corollary 2.9. Let Ay,...,Ay+1 € B(X) be commuting operators.
(i) If (Ay,...,Ay) is Taylor regular then (A, ..., An, Apt1) is also Tay-
lor regular.
(ii) If (Ay,...,Ay) is Taylor singular then there exists A € C such that
(Ay,..., A, Apy1 — A) is also Taylor singular.
(iii) Consequently, op(A1,...,Ay) = Pop(Ay,..., Ay, Apt1), where P :
Cnt! — C" is the natural projection onto the first n coordinates.
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In particular, since the Taylor spectrum of a single operator A; € B(X)
is equal to the ordinary spectrum, which is non-empty, this corollary im-
plies that op(A1,. .., A,) is always non-empty for every commuting n-tuple
(Ay,...,A,) € B(X)™

Since obviously o7 (Ax(1y, - -+, Azn)) = {()\,T(l), ces Anmy) F (A An) €
or(Ay,... ,An)} for any permutation 7 : {1,...,n} — {1,...,n}, one has
the following theorem:

Theorem 2.10. (projection property of the Taylor spectrum) Let A =
(Ay,...,A,) € B(X)™ be a commuting n-tuple of operators, let 1 < k <mn
and 1 < i1 <ig <---<ir <n. Then

UT(Ailv cee 7A’Lk) — Bl,...,ikUT(Ala e 7An)a

where Py, 4, C" — CF is the projection defined by Py iAo ) =
(Nis ooy Aig)-

A consequence of the projection property is the spectral mapping property
for polynomial mappings.

Theorem 2.11. (spectral mapping property) Let A = (A1, ..., A,) € B(X)"
be a commuting n-tuple of operators, let k € N and let p = (p1,...,pk) be a
k-tuple of polynomials in n variables. Let p(A) = (p1(A),...,px(A)). Then

or(p(A)) = plor(A)).
Proof. Consider the (n+k)-tuple B = (A1,...,An,p1(A4),...,pr(A)). Then

or(B) c o"Y(B)
= {(z,p1(2),...,p(2)) : z € eN(B) € {(2,p(2)) : z € C"}.

If 2 € o7 (A) then there exists 2/ € C* such that (2, 2') € or(B). So 2’ = p(z)
and 2’ € op(p(A)) by the projection property.

Conversely, if 2/ € op(p(A)) then there exists z € C™ such that (z,2') €
or(B) C {(w,p(w)) : w € C"}. So 2/ = p(z) and z € or(A) by the

projection property. [l
Remark 2.12. Let A be a unital Banach algebra. By a spectral system we
mean a mapping ¢ that assigns to each commuting tuple a = (aq,...,a,) €
A" a nonempty compact subset &(a) C C" such that &(a) C ¢'%(a) and &
satisfies the projection property, &(a;,,...,ai,) = P, .0(a) for all @ and
ST P

A spectral system & is upper semicontinuous if the mapping (a1, ..., a,) —
a(ai,...,ay) is upper semicontinuous for each n.

Theorem 2.10 and Proposition 2.3 imply that the Taylor spectrum is an
upper semicontinuous spectral system. Further examples of spectral sys-
tems are the surjective spectrum and approximate point spectrum. Other
examples of spectral systems will be discussed in the next section.



TAYLOR FUNCTIONAL CALCULUS 9

As in the previous theorem, one can prove that any spectral system sat-
isfies also the spectral mapping property 6(p(A)) = p(6(A)) for all k-tuples
p = (p1,...,px) of polynomials in n variables.

The Taylor spectrum has also a nice duality property.

Theorem 2.13. Let A = (A1,...,A,) € B(X)" be a commuting n-tuple
of operators. Then A is Taylor reqular if and only if A* = (A},...,A}) €
B(X™*)" is Taylor regular.

Consequently, or(A) = or(A*).

The proof of the previous theorem is based on the following elementary
lemma. For details see (Stodkowski, 1977).

Lemma 2.14. Let X,Y, Z be Banach spaces, letT : X —Y and S:Y — Z
be operators satisfying ST = 0. The following statements are equivalent:

(i) ImT = ker S and Im S is closed;
(ii) Im S* = ker T* and ImT™* is closed.

Remark 2.15. If H is a Hilbert space then it is usual to identify its dual
H* with H. With this convention one has rather

or(Al, ... AY) ={(z1,...,2Zn) : (z1,...,2n) € o7(A1,..., An)}
for all commuting n-tuples (Ay,...,A,) € B(H)".

Remark 2.16. The precise name of complex (1) is the cochain Koszul com-
plex of A. It is possible to assign to a commuting n-tuple A = (A4;,...,4,) €
B(X)™ also another "dual” complex (called the chain Koszul complez of
A). As in the proof of Proposition 2.3, for j = 1,...,n define operators
Hj: Als, X] — Als, X] by (2) and set eq = > A;jH; : Als, X] — Als, X].
Equivalently, for 1 <i; <2 < --- <4, < n one has
p
eAxsy; N+ NS, = Z(—l)kilAikwsil N NS N N si,
k=1

where the hat denotes the omitted term.

It is easy to verify that H;B = BH; for all B € B(X) and H;H; =
—H;jH; (1<i,j<mn). Thus (c4)? = 0. Clearly, eaAP[s, X] C AP"![s, X]
for all p, and so €4 defines a complex

0 1 n—1
(4) 0 — A%s, X]<AAls, X2 - - - Ao A5, X] < 0,
where €’} is the restriction of e4 to AP™1[s, X] (p=0,...,n). Complex (4)

is called the chain Koszul complex of A.

The chain complex can be also used for the definition of the Taylor spec-
trum of A (in fact this was the original definition of Taylor). Fortunately,
these two definitions coincide since the chain Koszul complex of A is exact if
and only if the cochain Koszul complex is exact, see (Eschmeier and Putinar,
1996, p. 32).
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Note also that for 0 < p < n the exactness of one of the Koszul complexes
at AP[s, X] is equivalent to the exactness of the other Koszul complex at
A" P[s, X].

3. VARIANTS OF THE TAYLOR SPECTRUM

Stodkowski’s spectra

Recall that the sets F,E;n) were defined as the sets of all commuting n-tuples
(Ai,...,Ay) € B(X)" such that the Koszul complex (1) is exact at the k-th
position, i.e., ker 51’?1 =Im (51131.

For a commuting n-tuple A = (Ay,..., A,) of operators on X and k =
0,1,...,n define

k
o5.1(A) = {)\ ect:A-r¢ () F,‘f_)j}.
j=0
The condition in the definition of o5; means that the Koszul complex of
A — )\ is not exact at some of the last k positions. Clearly

Osur(A) = 050(A) Co51(A) C -+ Cosp(A) =o0r(A),

where o, is the surjective spectrum defined in the previous section.
Dually one can define

k
ori(A) = {)\ eCl:A-\¢ ﬂ an) or Imé¥ is not ClOSGd}.
j=0
Evidently,
Oap(A) = 070(A) Cor1(A) C -+ Corn(A) =0r(A),

where o4, is the approximate point spectrum.
The Stodkowski spectra o5 and o satisfy the following duality prop-
erty, see (Stodkowski, 1977).

Theorem 3.1. Let A = (Ay,...,A,) be a commuting n-tuple of operators
on a Banach space X and let 0 < k <n. Then:

(i) Ué,k(ATv s 7A:L) = Uﬂ,k(Ah <. 7An);'
(11) O'ﬂ-’k(AT, ey A;’;) = 0’57]{(141, oo 7An>

Theorem 3.2. 05, and o are upper semicontinuous spectral systems for
each k > 0.

Proof. By Propositions 2.7 and 2.8, 05, is a spectral system. The statements
for o ), follow from the duality. O

The approximate point spectrum and the surjective spectrum give an
important information about the n-tuple (41,..., A4,); the meaning of the
middle terms in the Koszul complex is not so clear. Therefore it is useful
to know that great parts of the Taylor spectrum are in fact included in the
surjective and approximate point spectra.
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Theorem 3.3. Let A = (Ay,...,4,) € B(X)" be a commuting n-tuple of
operators. Then oqp(A) Nosur(A) contains the distinguished (Shilov) bound-
ary of op(A), i.e., if X € op(A) satisfies that for each open neighbourhood
U of X there exists a polynomial p in n variables such that sup{|p(z)| 1z €
Unor(A)} >sup{|p(2)| : z € op(A) \ U}, then X € 04p(A) N ogur(A).

Consequently, the polynomially convex hulls of osur(A), 0ap(A) and or(A)
coincide.

Theorem 3.3 is a consequence of the spectral mapping property. Another
interesting result is true for n = 2, see (Curto, 1986; Wrobel, 1986; Cho and
Takagushi, 1981).

Theorem 3.4. Let (A1, As) € B(X)? be a commuting pair of operators.
Then Oor(Ai,A2) C 04p(A) U osur(A), where O denotes the topological
boundary.

Split spectrum

Definition 3.5. Let A = (Ay,...,A,) be an n-tuple of commuting oper-
ators on a Banach space X. We say that A is split reqular if it is Taylor
regular and the mapping d4 : A[s, X] — A[s, X] has a generalized inverse,
i.e., there exists an operator W : Als, X] — A[s, X]| satisfying 64Wd4 = d4.

The split spectrum og(A) is the set of all A € C™ such that the n-tuple
A — X is not split regular.

The following result characterizes the split regular n-tuples of operators.
The proof is simple and is omitted.

Proposition 3.6. Let A = (Ay, ..., A,) be an n-tuple of mutually commut-
ing operators on a Banach space X. The following conditions are equivalent:
(i) A is split regular;

(ii) A is Taylor regular and ker 6", is a complemented subspace of AP[s, X |
foreachp=0,...,n—1;

(iii) there exist operators W1, Wy : Als, X| — A[s, X] such that W04 +
daWs = Ip[s x7;

(iv) there exists an operator V : Als, X] — Als, X] such that Vi +
54V =1, V? =0 and VAP[s,X] C AP ![s,X] (p =0,...,n).
Equivalently, there are operators V,, : AP™1[s, X] — AP[s, X] (see the
diagram below) such that V,_1V,, = 0 and Vpdi—l—di_l‘/})_l = Ipnv[s,x]
for every p (for p =0 and p = n this reduces to VO(S% = Ipo[s,x) and
52_1‘/”_1 = Ian(s,x], Tespectively).

59 B ot
0— A[s, X] == Al[s, X]=— - - - == A"[5,X] — 0
0 Vi V-1

Remark 3.7. For single operators on a Banach space the split spectrum
coincides with the Taylor spectrum (and with the ordinary spectrum).
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By Proposition 3.6 (ii), the split spectrum coincides with the Taylor spec-
trum also for n-tuples of commuting operators on a Hilbert space. For
general Banach spaces the split spectrum may be bigger than the Taylor
spectrum, see (Miiller, 1997).

For T € B(X) define the operators Ly, Ry : B(X) — B(X) by LtA =
TA and RrA = AT (A € B(X)). For an n-tuple A = (4;1,...,4,) €
B(X)n write L4 = (LAU .. 7LAn) and Ry = (RAI, o ,RAn).

It is possible to show that the Taylor spectra of A, L4 and R4 are re-
lated in the following way, see (Curto, 1991; Eschmeier and Putinar, 1996,
Corollary 2.6.11) or (Miiller, 2007, Theorem 26.7).

Theorem 3.8. Let A = (Ay,...,A,) € B(X)" be a commuting n-tuple of
operators. Then

0s(A) =op(La) =0s5(La) =0r(Ra) =0s(Ra).

Corollary 3.9. The split spectrum og is an upper semicontinuous spectral
system.

Essential Taylor spectrum

Definition 3.10. Let A = (44,...,4,) be a commuting n-tuple of opera-
tors on an infinite-dimensional Banach space X. We say that A is essentially
Taylor regular if dimkerds/Imds < oo. The essential Taylor spectrum
ore(A) is the set of all A € C" such that A — A is not essentially Taylor
regular.

The essentially Taylor regular n-tuples are an analogy of the Fredholm
operators. The following result is easy to see.

Proposition 3.11. Let A = (Ay,...,A,) be an essentially Taylor regular
n-tuple of operators. Then Im{d4 is closed.

If n =1 then (Ay) is essentially Taylor reqular if and only if Ay is Fred-
holm.

It is possible to show that the essential Taylor spectrum is also an upper
semicontinuous spectral system.

For essentially Taylor regular n-tuples one can define the index which has
similar perturbation properties as the index of Fredholm operators.

Definition 3.12. Let A = (44,...,A,) € B(X)" be an essentially Taylor
regular n-tuple of operators. For 0 < k < n let ay(A) = dim ker §% /Im 5271.
Let

ind A= (~1)a;(A).
=0

Theorem 3.13. Let A = (A1,...,A,) € B(X)" be an essentially Taylor
reqular n-tuple of operators. Then:
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(i) there exists € > 0 such that ap(B) < ag(A) for all k,0 < k < n
and every commuting n-tuple B = (B1,...,By) € B(X)™ satisfying
max{||4; — Bl : 0 <i <n} <eg;

(ii) there exists € > 0 such that B is essentially Taylor regular and
ind B = ind A for every commuting n-tuple B = (By,...,By) €
B(X)™ satisfying max{||4; — B;|]| : 0 <i <n} <e¢g;

(iii) let B = (Bi,...,Byn) € B(X)" be a commuting n-tuple such that
B; — A; is compact for all i. Then B is essentially Taylor regqular
and ind B = ind A.

For the proof of (i) and (ii) see (Vasilescu, 1979a). For (iii) see (Ambrozie,
1996).

4. TAYLOR FUNCTIONAL CALCULUS FOR THE SPLIT SPECTRUM

The most important property of the Taylor spectrum is the existence
of the functional calculus for functions analytic on a neighbourhood of the
Taylor spectrum.

As the construction of the Taylor functional calculus is rather technical,
in this section a simpler version for functions analytic on a neighbourhood
of the split spectrum is presented. Since the split spectrum contains the
Taylor spectrum, this split Taylor functional calculus is less rich. However,
the construction of the calculus is much simpler.

Note that for Hilbert space operators the split spectrum coincides with the
Taylor spectrum and so the corresponding functional calculi also coincide.
The split functional calculus is also sufficient for the construction of the
functional calculus in commutative Banach algebras.

Theorem 4.1. Let A = (Ay,...,Ay) be an n-tuple of mutually commuting
operators on a Banach space X . Suppose that A is split regular, i.e., ker § 4 =
Imd4 and 4 has a generalized inverse. Then there exists a neighbourhood
U of 0 in C" and an analytic function V' : U — B(Als, X|) such that
V(2)6a—z + 64—V (N) = Iy x) for every z € U.

Moreover, one can assume that V(2)2 =0 (z € U) and

V(2)AP[s, X] C AP71[s, X] (zeU,p=0,...,n).

Proof. By Proposition 3.6, there exists an operator V' : Afs, X| — Als, X]
such that V? = 0, 64V + Véa = Ipjs x], and VAP[s, X] € AP 1[s, X] for
every p.

For z € C™ write H, = da_, — 64. Let U be the set of all z € C"
such that ||H,|| < ||[V]|~!. Clearly, U is a neighbourhood of 0 in C" and,
for z € U, the operators I + H,V and I + VH, are invertible. One has
V(II+H,V)=(I+VH,)V,and so (I + VH,)"'V = V(I + H.,V)~!. For
z€Uset V(z) = (I +VH,) V. Then

04—V (2)+V(2)d4_.
= (A+H)WVI+HV) ' +(I+VH,) 'V +H.)
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= (I+VH) Y (I +VH,)(0a+H)V
+V (64 + H.) (I + H.V))(I+H, V)™

The expression in the middle is equal to

AV +H,V +VH, 0,V +VH>V +Vés+VH, + VS,H.V + VH?V
= (I +VH)I+HV)+V(H, 04+ 04H, + H2)V
= (I+VH)I+HV)+V((6a+ H.)*—(64)*)V=(I +VH,)(I+H,)V)

since (64)2 =0 and (64 + H.)?> = (64_.)%> = 0. Thus

5A,ZV(Z) + V(Z)(sA,Z = IA[S,X] (Z S U).
Further,

V)2 =I+VH)'WV.- VI+HV) =0
Finally, V(2) = Y52 (—1)%(V H,)'V where

(VH)A[s, X] C A5, X]  (p=0,...,m)
and so

V(2)AP[s, X] C AP 1[5, X] (z€Up=0,...,n).
O

Corollary 4.2. Let A = (Ay,...,A,) be an n-tuple of mutually commuting
operators on a Banach space X. Let G = C" \ 0g(A). Then there exists
an operator-valued C*°-function V : G — B(Als, X]) such that 64—,V (z) +
V(Z)(sA,Z = IA[S,X} and

V(2)AP[s, X] € AP7![s, X] (zeG,p=0,...,n).

Proof. For every w € G there exists a neighbourhood U, of w and an ana-
lytic operator-valued function Vi, : U, — B(A[s, X]) such that V,,(2)da—, +
6A—2Vw(2) = IA[S,X} and

Vi(2)AP[s, X] C AP s, X] (2 €Uy,p=0,...,n).

Let {9;}32, be a C*°-partition of unity subordinated to the cover {U,,, w €
G} of G, i.e., ¢; are C*°-functions, 0 < ¢; < 1, suppv; C U,, for some
w; € G, for each z € G there exists a neighbourhood U of z such that all
but finitely many of the functions ¢; are 0 on U and > 2, ¥;(z) = 1 for
each z € G.

For z € G set V(2) =3 72, %i(2) Vi, (). Then

0a-2V(2) + V(2)0a-- = Z(éA*ZVwi(Z) + Vwi(z)(sA*Z)wi(Z) = Ip[s,x]

i=1
and
V(2)AP[s, X] C AP7[s, X]

forall ze Gand p=0,1,...,n. O
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Remark 4.3. It is possible to require also that V(2)d4—,V (z) = V(2) and
V(2)2 = 0 for all z € G. These additional properties of the generalized
inverse V', however, are not essential and are not used in the sequel.

In the following fix a commuting n-tuple A = (Ay,..., A,) of bounded
linear operators on a Banach space X, the set G = C" \ 0g(A) and a C*°-
function V : G — B(A[s, X]) with the properties of Corollary 4.2.

Consider the space C*°(G, Afs, X]). Clearly, this space can be identified
with the set A[s, C*(G, X)].

The function V' : G — B(A[s, X]) induces naturally the operator (denoted
by the same symbol) V : C*°(G, Als, X]) — C*(G, Als, X]) by

(Vy)(z) = V(2)y(2) (z € G,y € C=(G,Als, X])).
Similarly, define the operator d4_, (or ¢ for short if no ambiguity can arise)
acting in C*°(G, A[s, X]) by
(0y)(2) = da—zy(z) (z eG,ye COO(G,A[S,X])).
Clearly, 62 =0, V6 + 6V = Is,c(a,x) and both V' and § are ”"graded”,
ie.,
VAP[s,C®(G, X)] € AP 1[s,C®(G,X)] and
SAP[s,C™®(G, X)] C APTl[s, (@, X)].

Consider now another set of indeterminates dz = (dz,...,dz,) and the
space Afs,dz,C*°(G, X)]. Let 0 : Als,dz,C>®(G, X)] — Als,dz, C°(G, X)]
be the linear mapping defined by

_ "9
6fsz~1A' NS /\d,?jl/\‘ . -/\dij = Z 4d2kASil VARERVAY:Y /\dijl/\' . ‘/\d,?j .
P q P aZk P q
Obviously, 92 = 0.
The operators V' and § can be lifted to A[s,dz, C*®°(G, X)] in the natural

way. Clearly, the properties of V' and § are plresielrved:_é2 =0,Vo+oV =1
and both V and § are graded. Note also that §0 = —36 and (9 + 6)? = 0.

Let W : Als,dz, C*(G, X)] — Als,dz,C*°(G, X)] be the mapping defined
in the following way: if ¢ € A[s,dz, C*(G, X)], ¥ = o + -+ + ¢y, where
1; is the part of v of degree j in dz, then set W = ng + - - - + 1, where

n = Vo,
m = V(¥1— ),
(5) ;
" = V(wn - 57771—1)-
Note that 7; is the part of W1 of degree j in dz.
Lemma 4.4. Let W : Als,dz,C>®(G,X)] — A[s,dz,C®(G,X)] be the
mapping defined by (5). Then:

(i) supp W C suppp for all ¢;
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(ii) if G' is an open subset of G and ¢ € Als,dz,C*(G, X)]| satisfies
(0+0)¢ =0 on G, then (0+ )W) =1 on G';
(iii) (04 )W (O +0) =0+34.

Proof. (i) Clear.

(ii) Let 1 = o + -+ + ¥, where 1; is the part of ¥ of degree j in dz.
The condition (0 + d§)1) = 0 on G’ can be rewritten as

_ oo = 0,
0o + o1 = 0,
(6) .

éwn71+6¢n =0

(the condition 9v,, = 0 is satisfied automatically).
Let Wt = no + -++ + n,, where 7; are defined by (5). The required
condition (0 + §)W1 = 1 becomes

B 6770 - 77507
Ono+oém = P,
(7) .

gnn71+6nn = Q;Z)n

on G/ (again, On, = 0 automatically).

By (5) and (6), one has dng = 6Vpg = (8V +V )by = 1o and o+ dny =
Ono + 0V (1 — Ino) = Ono + (I = V6)(¥1 — Ino) = 1 — V(¢1 — 9mo) = ¢u,
since (5(1#1 — 6770) = §1 4+ Odng = 61 + Yy = 0. -

It is possible to prove (7) by induction. Suppose that Onj_1 + dn; = 1;
for some j > 1. Then 6(1j41 — Onj) = 041 + On; = dbjs1 + Oh; = 0
and, by the induction assumption, dn; + dnj+1 = Onj + SV (41 — On;) =
Onj + (I = Vo) (i1 — Inj) = ¥jqa.

(iii) Since (0 + §)% = 0, the statement follows from (ii). O
The differential form
(8) (20)"dz A - Adz, Adzp A--- Adzy,

will be interpreted as the Lebesgue measure in C* = R?".

Let P be the natural projection P:A[s,dz, C** (G, X)]— A[dz, C*(G, X))
that annihilates all terms containing at least one of the indeterminates
$1,...,8n and leaves invariant all the remaining terms.

Let U be a neighbourhood of og(A). Let f be a function analytic in U.
It is possible to find a compact neighourhood A of og(A) such that A C U
and the boundary OA is a smooth surface. Define f(A): X — X by

1

(9) f(A)z = (2;71)” /aA Pf(z)Wzs Adz (z € X),
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where dz stands for dzy A --- Adz, and s = sy A --- A s,. By the Stokes
formula,

f(A)z = (27:7;1)71 /Aécpr(z)Wxs Adz,

where ¢ is a C*°-function equal to 0 on a neighbourhood of og(A) and to 1
on a neighbourhood of C™ \ A.
On C™ \ A one has

OpPfWxs = Pf(0+6)Wxs= Pfrs=0.

Thus it is possible to write
(10) f(A)zx = : / OpPf(2)Wxzs Adz.
(27T2)n (Cn

It is clear from the Stokes theorem that the definition of f(A)z does not

depend on the choice of the function ¢ and, by (10), it is independent of A.
Moreover, f(A) does not depend on the choice of the mapping W.
Suppose that Wi, Wy are two operators satisfying

(0 +0)Wizs = xs (i=1,2).

For those z where ¢ = 1 one has

(0 +0)pf (2) (W1 — Wa)as = 0,

and so the form n = (0 +9)pf(2)(W- Wg) xs has a compact support. One
has

dpPf(2)Wizs Adz — dpPf(2)Wozs A dz
Cn Ccn
Popf(z)(W Wg):vs/\dz—/ PO+ 8)pf(2) (W) — Wa)ws Adz
Cn Cnr
:/ PypnAdz = P(5+6)W177/\dz:/ OPWinAdz=0
n Cn Cn

by the Stokes theorem.
In fact, in the same way it is possible to show that

(11) f(A)zx = / Opf Py Adz

for any form 1 satisfying (0 + 6)1) = xs on C" \ og(A).
It is possible to express the mapping PW that appears in the definition
of the functional calculus more explicitly. By the definition of W, one has

PWazs = (=1)""V(0V)" lzs = (=1)""1VdV10 - - - OV, _1xs.
Note that it is possible to write formulas (9 ) and (10) also globally:
f(4) = 1n | Pf(z)WIsAdz = Qm)n f@gpr 2)Wis Adz

aA

277@

(12)

(2772

f dpfV(OV)"1Is A dz,
(C?’L
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where I = Ix is the identity operator on X. The coefficients of forms in
(12) are B(X)-valued C*°-functions. Therefore f(A) € B(X).

Proposition 4.5. For n = 1, the functional calculus defined by (12) coin-
cides with the classical functional calculus given by the Cauchy formula.

Proof. Let A € B(X) and let f be a function analytic on a neighbourhood
of 0(A). Then Was = Vas = (A — z)~lz. Thus, for a suitable contour ¥
surrounding o(A), one has

-1 1
f(A) = — /PfWIs ANdz=— [ f(2)(z — A)7dz,
21 » 211 »
which is the Cauchy formula. ([l

The proof of basic properties of this functional calculus is postponed to
the next section where they will be proved more generally, for functions
analytic on a neighbourhood of the Taylor spectrum.

It is worth to note that this simpler split functional calculus is sufficient for
introducing the functional calculus for n-tuples of elements in commutative
Banach algebras. Indeed, let A be a commutative Banach algebra and a =
(a1,...,a,) € A™ Consider the n-tuple L, = (Lg,...,Lq,) € B(A)™.
Then o5(L,) = 0**(a) and for any function f analytic on a neighbourhood
of 0 (a) one can define f(L,) € B(A). Then the functional calculus for a
may be defined by f(a) = f(Ls)(14). The details are postponed to the next
section.

Remark 4.6. If A = (A4,...,A,) is a commuting tuple of Hilbert space
operators then it is possible to choose V (z) = (§4—,+6%_,)~! (this mapping
does not satisfy that V(z)AP[s, X] C AP~![s, X] but this property is not
essential for the construction). Formula (12) is then quite explicit.

The split functional calculus for Hilbert space operators was constructed
by (Vasilescu, 1979b). For Banach space operators this was generalized in
(Kordula and Miiller, 1995).

5. TAYLOR FUNCTIONAL CALCULUS

The most important property of the Taylor spectrum is the existence of
the analytic functional calculus. The calculus was constructed in (Taylor,
1970b). For simplified versions of the calculus see (Levi, 1982; Helemskii,
1981; 1989; Albrecht, 1993; Eschmeier and Putinar, 1996) and (Andersson,
1997). The construction below follows (Miiller, 2007) which is based on
(Vasilescu, 1979b).

Let A= (A4,...,A,) be an n-tuple of commuting operators on a Banach
space X. Let G =C"\ or(A4).

The key fact is the following theorem.

Theorem 5.1. Let G' C G be an open subset. Let n € Als,dz,C=(G’, X)]
satisfy (0 + 0)n = 0. Then there exists ¢ € A[s,dz, C*(G", X)] such that
(0+8)) =,
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Moreover, it is possible to find v such that its support is contained in any
given neighbourhood of supp 7.

For each A € C" \ or(A) one can find first a neighbourhood U of A and
a local solution ¥y € A[s,dz, C®(U, X)] satisfying (0 + §)yy = n on U.
The problem is to glue the local solutions and find a global solution on the
whole set G’. The details are omitted here; for a proof see (Vasilescu, 1979b,
Theorem 8.1) or (Miiller, 2007, Theorem 29.9), see also (Frunza, 1975).

Corollary 5.2. Let x € X. Then there exists 1, € A[s,dz, C*(G, X)] such
that (0 + 0)yy = xs.

Let f be a function analytic on a neighbourhood of o7 (A). As in (11),
the form v, can be used to define the vector f(A)r € X. However, this
definition of f(A) is local, defined for each € X separately, and it is not
clear at the first glance that f(A) defined in this way is continuous and
linear.

For functions f analytic on a neighbourhood of og(A) it was possible to
find a mapping W acting on A[s,dz, C*°(C" \ 05(A), B(X)] such that Wzs
served as v,. Thus all the considerations were done in the Banach space
B(X).

For functions f analytic on a neighbourhood of or(A) this is no longer
possible. To simplify the situation, it is possible to consider the Banach
space H(X) of all bounded homogeneous mappings ¢ : X — X, i.e., the
mappings satisfying p(Ax) = Az (A € C,z € X) and ||¢|| := sup{||¢(z)] :
z € X, |z|| <1} < oo (no additivity is assumed).

Fori=1,...,nlet L'y : H(X) — H(X) be defined by L'y ¢ = Aip (p €
H(X)). Let L)y = (Ly,,..., L, ). Clearly L) is a commuting n-tuple of
bounded linear operators acting on the Banach space H(X).

Moreover, it is possible to show that or(L'y) = or(A). Thus one has

Corollary 5.3. There is a form W4 € A" 1[s,dz, C®(G, H(X))] such that
(040, JWa(A) = Is, where I is the identity operator on X.

The form W4 can be also considered to be a mapping W4 : X —
A" 1[s,dz, C>®(G, X)]. Then (0 + 64_x)Wa(\)x = xs for all z € X.

The definition of the Taylor functional calculus is analogous to the defin-
ition of the split functional calculus.

Recall that P is the projection P : A[s,dz, C*°(G, X)] — A[dz, C>*(G, X))
that annihilates all terms containing at least one of the indeterminates
$1,...,S, and leaves invariant all the remaining terms.

Let U be a neighbourhood of op(A) and let f be a function analytic on U.
It is possible to find a compact neighbourhood A of o7 (A) such that A C U
and the boundary OA is a smooth surface. Define f(A): X — X by

1

(13) f(A) = (2;—1)” " PfWu A dz.
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By the Stokes formula,
-1
A) =
f(4) (2mi)™

where ¢ is a C*°-function equal to 0 on a neighbourhood of o7(A) and to 1
on a neighbourhood of C™ \ A.

On C" \ A one has dpPfWa = Pf(0 + 6)Wa = PfIs = 0. Thus it is
possible to write

(14) f(A) = @i /Cn OpPfWa Adz.

It is clear from the Stokes theorem that the definition of f(A) does not
depend on the choice of the function ¢ and, by (14), it is independent of A.

It is possible to show that f(A) does not depend on the choice of the form
Wa.

The following simple lemma will be used frequently.

/ 5g0PfWA Adz,
A

Proposition 5.4. Let n € Als,dz,C*°(G, X)| be a differential form with
compact support disjoint with op(A) such that (0 + 0)n = 0. Then

/ PnAdz=0.

Proof. By Theorem 5.1, there exists ¢ € A[s,dz, C*°(G, X)] with a compact
support disjoint with op(A) such that (§ + 9)y = n. Then

Pn = P(d+ )y = Pop.
By the Stokes theorem,

Pnnadz = 0Py Adz = 0.
Cn Cn
O

Let 2 € X and let ¢y, € A[s,dz, C®(G, X)] satisfy (6 + 9)¢1 = x5 =
(0 + 0)1ha. Let ¢ be a C*°-function equal to 0 on a neighbourhood of or(A)
and to 1 on a neighbourhood of C" \ U. Then

/ Do P fi A dz — / DpP fipy A dz — / P+ 8)pf (tn — 2) A d=.

On C™\ A one has ¢ = 1, and so (0+09)pf(¢1—12) = f(d+0) (1 —1p2) = 0.
Thus the form (6+09)@ f (1)1 —1)2) has a compact support disjoint with op(A).
By Proposition 5.4, [ P(§ + )¢ f(11 — o) Adz = 0.

In particular, the definition of f(A) does not depend on the choice of Wy.

Note that for the definition of f(A)z one can use any form v satisfying
(0+64_.)Y = s on a neighbourhood of supp ¢. This implies that for func-
tions analytic on a neighbourhood of og(A) the Taylor functional calculus
coincides with the split functional calculus introduced in the previous sec-
tion. By Proposition 4.5, for n = 1 the Taylor functional calculus coincides
with the usual functional calculus for single operators.
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Lemma 5.5. f(A) € B(X).

Proof. Clearly f(A) € H(X), so it is sufficient to show the additivity of
F(A). )

Let z,y € X. Then (6+0)(Waz+Way) = (z+y)s, and so f(A)(z+y) =
Jon OpPf(Waz +Way) Adz = f(A)z + f(A)y. O

The following result is the first step to show the multiplicativity of the
Taylor functional calculus.

Proposition 5.6. Let f be a function analytic on a neighbourhood of
or(A), 1 <j<nandg(z) =zjf(z). Then g(A) = A;f(A).

Proof. The statement is well-known for n = 1. Suppose that n > 2. Then
—(27ri)”(Ajf(A) — g(A)) = Aj/ OpPfW 4 ANdz — / DpPgzjWa A dz
cn Cn

= / 5g0f . (A] — Zj)PWA Adz.

(Cn
Express Wy € A" ![s,dz, C>(G, H(X))] as

Wa= Y srA&p,

Fc{1,..,n}
where {F contains no variable from si,...,s,. Since (0 + da_,)W4 = Is,
for each F' # {1,...,n} one has

0bp + (1) FEER KN (A — 20)Ep g1y = 0.
keF

In particular, for F = {j} one has
Oy = —(Aj — 2)& = —(Aj — 2)) PWa.

Thus
Opf - (Aj — 2))PW4 N dz :—/ 590f5§{j} Adz
cn cn
= _/«: 0(0f sy — Opféyy) Ndz =0
by the Stokes theorem. Hence g(A) = A; f(A). O

Proposition 5.6 implies that the definition of the Taylor functional calculus
for polynomials coincides with the usual definition.

Proposition 5.7. Let A = (A4,...,A,) € B(X)", B = (B1,...,Bn) €
B(X)™. Suppose that (A,B) = (Ai,...,An, B1,...,By,) is a commuting
(n + m)-tuple and let f and g be functions analytic on a neighbourhood of
or(A) and op(B), respectively. Let h be defined by h(z,w) = f(2) - g(w).
Then h(A, B) = g(B)f(A).
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Proof. Write z = (21,...,2,) and w = (w1, ..., wy). Denote by 9., 9, and
5Z7w the 0 mapping corresponding to z,w and (z,w), respectively. Associate
with B another system ¢ = (t1,...,ty) of exterior indeterminates when
defining the operator dp_,,.

Choose forms W4, Wp and W4 g corresponding to the tuples A, B and
(A,B). Let A’ and A” be compact neighbourhoods of or(A) and op(B)
contained in the domains of definition of f and g, respectively. Let ¢, 1 and x
be C*°-functions equal to 0 on a neighbourhood of o7 (A) (o7(B), or(4, B))
and to 1 on a neighbourhood of C™\ A’ (C™\ A” and C"*™ \ A’ x A",

respectively) .
Denote by Ps and P; the projections which annihilate all terms containing
at least one of the variables s1,...,s, (t1,...,tn, respectively) and leave

invariant the remaining terms. Set P = P, P;.
Let x € X. Then

—1 _ -1
f(A)z = W /n 0,pPs fWax Ndz = i /n Pt Ndz,

where & = (0, + 64_.)pfWax — fos. If ¢ =1, then £ = 0. Thus supp¢ is
compact, supp & C Int A’. Further,
1

(15) g(B)f (A = o /(Cm Py(Oop+05_0)0gWi (/(C PsgAdz)Adw.

On the other hand, —(2mi)™*"h(A, B)x = [ Pm A dz A dw, where

N = (@,w +04—2,B-w)XhWa Bz — hxs At.

Clearly, suppn; C A" x A", )
One has (0, + 04—z B—w)E Nt = (0. +04—,)§ Nt =0. By Theorem 5.1,

there exists a € Als,t,dz,dw, C®°(C"™™ \ op(A, B), X)] such that (9., +
dA—z B—w)x = { At. Moreover, one can assume that suppa C A’ x C™. Let

= (gz,w + 5A—z,B—w)¢ga - gf At

Then (0,4 +04—2 B—w)(m —n2) = 0. Clearly, suppnz C A’ x C™. Moreover,
if v = 1, then ny = 0, and so supp s is compact. On a neighbourhood of
or(A,B) one has 9 = —gé ANt = fgzs ANt = —n1. By Proposition 5.4,
J P(m +mn2) ANdz Adw = 0, and so

(27i)" " h(A, B)x = / Pno Adz A dw

(Cn+m

= (_1)mn/m(/npt(8z7w+53w)lbgPSoz/\dz) A dw

by the Fubini theorem (the factor (—1)™" is caused by convention (8) defin-
ing the Lebesgue measures in C", C™ and C™"", respectively). By the
Stokes theorem, one has

(27mi)™ " h(A, B)x = (—1)’””/

Py(0w 4+ 05-w)g (/ Y Psa A dz) A dw.

m n
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Consider the form

N3 = (=1)"" (0w + 65-w)g /«:n YPsa Ndz — (O +0p—w)gWn . P& Adz.
Clearly, (O + 05_w)n3 = 0. If 9p = 1, then, by the Stokes theorem,
3= (=1)""g CnPs(éz,w +0a—zp-w)a Adz — (=1)""g /Wézpsa Adz
—g/cnPszdzAt: (—1)m”g/(cnPs§/\t/\dz—g/@f%{/\dz/\tzO.

Thus suppns is compact and disjoint with o7 (B). Hence [ Pz A dw = 0
and

(270)" (A, By = / Pi(Bu + 05u)gWs / Pyt Adz A duw
m (Cn
= (2mi)"""g(B) f(A)z
by (15). Hence h(A, B) = g(B)f(A). O
The following simple lemma will be used later:

Lemma 5.8. Let K be a compact subset of C" and let f be a function
analytic on an open neighbourhood of K. Then there are functions h; (j =
1,...,n) analytic on a neighbourhood of the set D = {(z,2) : z € K} such
that

n

f(2) = flw) = (25 = w)) - hj(z,w).

=1

Proof. For j =1,...,n define g; by

9i (%1, Zn, W1, . .., Wy)
= f(zl, N ,Zj,wj+1, . ,wn) — f(Zl, . ,zj_l,wj, N ,wn).
It is easy to see that g; is analytic on a neighbourhood of D.
Let hj(z,w) = % Clearly, hj is analytic at each point (z,w) with

zj # wj. By the Weierstrass division theorem, see (Gunning and Rossi,
1965, p. 70), h; can be defined and is analytic also on a neighbourhood of
each point (z,w) with z; = w;. Thus h; is analytic on a neighbourhood of
D. Hence

(25 —wy) - hy(z,w) = Y gj(z,w) = f(2) = f(w).
= j:l

7j=1

O
Denote by Hg the algebra of all functions analytic on a neighbourhood of

a compact set K C C" (more precisely, the algebra of all germs of functions
analytic on a neighbourhood of K).

Theorem 5.9. Let A = (Ay,...,Ay) be an n-tuple of mutually commuting
operators on X. Then:
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(i) the mapping f — f(A) is linear and multiplicative, i.e., the Taylor
functional calculus is a homomorphism from H,, 4y to B(X);
(ii) if p is a polynomial, p(z) = ZO‘EZi caz®, then p(A) = Zani ca A%
(iii) if fn, — f uniformly on a compact neighbourhood of or(A), then
fn(A) — f(A) in the norm topology;
(iv) f(A) € (A)" for each f € Hg,(a), where (A)" denotes the bicommu-
tant of the set {Aj,..., Ap}.

Proof. (i) The linearity of the mapping f +— f(A) is clear. Let f and g be
functions analytic on a neighbourhood of o7 (A). Consider the (2n)-tuple
(A, A). Tt is easy to see that op(A,A) = {(2,2) : z € op(A)}. Define
functions hi(z,w) = f(z)g(w) and ha(z,w) = f(z)g(z). By Lemma 5.8, it
is possible to write g(z) — g(w) = Y1 (2 — w;)¢i(z, w) for some functions
q1,---,qn analytic on a neighbourhood of o7 (A, A). By Proposition 5.7, one
has h1(A,A) = f(A)g(A) and ha(A, A) = (fg)(A). Thus, by Proposition
5.6,
(F9)(A) = F(A)g(A) = ha(A, A) = hi(A, A) = 3 (A = Ai)(fa:)(4, 4) = 0.
i=1

Hence (fg)(4) = f(A)g(A).

(ii) The statement follows from Proposition 5.6.

(iii) Follows from the definition.

(iv) Let S € B(X) be an operator commuting with Ay, ..., A,. By Propo-
sition 5.7, it is possible to consider f(A) to be a function of the (n+1)-tuple
(A1,..., A, S). Therefore f(A) commutes with its argument S. Hence
f(A) € (4)". O

It follows from the general theory that the Taylor spectrum satisfies the
spectral mapping property for all polynomials (and consequently, for all
functions that can be approximated by polynomials uniformly on a neigh-
bourhood of the Taylor spectrum). In fact, the spectral mapping property
is true for all analytic functions.

The next lemma shows that each operator A; behaves as the zero on the
quotient ker d4/Im 4.

Lemma 5.10. Let A = (Ay,...,A;) be a commuting n-tuple of operators
acting on a Banach space X. Let j € {1,...,n}. Then Ajkerds C Imdy.

Proof. Let 1 € ker 4. Write ¢ = s; A1 +12, where 12 does not contain s;.
Then
0= = S; /\Ajl/)g +Zsi/\3j A A +ZS¢/\A¢¢2.
i#] 1#]
In particular, Ay — Zi# s; N Aty = 0. Thus

5A7,Z)1 = SjAjl/)l + Z EAN Aﬂ[)l = 38; A\ Ajwl + Aj’QZJQ = AJI/J
i#]
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O

It is natural to expect that f(A) behaves as f(0) on the quotient space
kerds/Imds. However, there is a technical difficulty because in general
Imd 4 is not closed, and so the quotient ker § 4 /Im d 4 is not a Banach space.
Therefore the proof is a little bit more complicated.

Lemma 5.11. Let A = (Ay,...,Ay) be a commuting n-tuple of operators
on X, let ¢ = (c1,...,¢,) € op(A) and let f be a function analytic on a
neighbourhood of or(A). Consider exterior indeterminates t = (t1,...,t,)
and the operator 04— : Alt, X] — Alt, X| defined by da—ctp = > (Aj —
cj)t; N for all v € Aft,X]. Let n € kerda_cy. Then (f(A) — f(c))n €
5A—c,tA[t7 X] :

Proof. To define f(A), consider exterior indeterminates s = (s1,. .., S,), the
mapping 04—, acting on A[s,dz, C>®°(C"\ o7 (A), X)] defined by the formula
oA = Z?Zl(Aj — zj)s; A, and the mapping W4 corresponding to A.
Note that 04—, and W4 are connected with variables s; the mapping d4—c
is related to variables t.

Without loss of generality one can assume that 7 is homogeneous of degree
p, 0<p<n.

Since n € AP[t, X] and A[t, X] is a direct sum of (Z) copies of X, it is pos-
sible to define the form &y := Wan € Als,t,dz, C*°(G, X)] coordinatewise.
Then (0+6d4—2)&0 = sAn and (0+04—;)0a—c &0 = —5A—c,t(Q+5A—z)§o =0.
Thus there exists & € Als,t,dz,C>®(G, X)] such that (0 + 04_.)&1 =
5A—c,t£0‘

Similarly one can construct forms &i,...,&,—p € Als,t,dz, C™(G, X)]
such that (9 +d4—»)&k+1 = da—cs&k. Clearly the degree of & in t is p + k.

Set & = > 7P (—1)k¢, Then

n—p n—p
(@4 04—z +0a-c)€ =D (~DF 0+ 0a-2)6 + Y _(—-1)fdac&r =sAn,
k=0 k=0

since d4—¢ t§n—p = 0.

Let A be a compact neighbourhood of o7 (A) contained in the domain of
definition of f. Let ¢ be a C°°-function equal to 0 on a neighbourhood of
or(A) and to 1 on a neighbourhood of C™ \ A. Let Ps be the projection
annihilating all terms that contain at least one of the variables si,..., s,
and leaving invariant all other terms.

Consider the integral

n—p
/ (94 0aus) Popt A dz = / (0+064-ct)Pap 3 (~1)héx A d
k=0
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Since & has degree p+k in t and n—k —1 in (s,dz), the only relevant term
in the integral above is &;. Thus

/ (94 84es) Pugpt Adz = / (94 6_os) Puplio A dz

/5PschA77 ANdz = —2mi)" f(A)n.

Consider now the n-tuple B = (¢11,...,¢c,1) € B(X)™. Since f can be
approximated by polynomials uniformly on a neighbourhood of ¢, one has
F(B) = f(0) - 1.

As above, consider the mappings ép_, and Wp connected with variables s.
Let &, = Wpn and inductively define & € Als,t,dz, C®(G, X)] satisfying
(8 + 5B z)gllﬁ_l = (5A Cté‘;{;

Let & = Y 7 _F(—1)k¢,. As above, one has (0 + 6p—. + 6a—c1)& = sAn
and

/(8 + 8a—ct)Pspl Ndz = /((9 +04—ct)PsoWpn Adz

/8Ps<pWBT] Ndz = —27i)" f(B)n = —(27i)" f(c)n.
To show that (f(A) — f(c))n € da—cAlt, X], consider the linear mapping U
acting on Afs,t,dz, C®°(C" \ or(A), X)] defined by
U<ti1 N N, /\’lﬁ) = (til _Sil)/\"'/\(tim —Sim)/\w

for all i1, ..., iy, and ¢ € Als,dz, C°(C"\ op(A), X)]. Then P,U = P, and,
for each ¢ € A[s,t,dz, C°(C" \ or(A), X)],

(5+5A z +5A ct)w
= QU+ > (Aj—2)s; NUY+ > (Aj —¢;)(t; — 5;) AUY
(6 + 5B—z + 5A—c,t)U¢-
One has
—(2m)" f(A)n :/(8 +04—ct)Psp€ Ndz :/Ps(a + 04—z +0a—ct)pE Ndz

= /PSU(a + 04—z +0a—ct)pE Ndz = /Ps(a +6p—z+6a—ct)pUE Ndz.
Thus
—(2mi) (F(A)— () = / Py(0405s40a_or)p(UE—E)Adz = / P.oAdz,

where 0 = (0 + 6p—» + 0a—ct)p(UE — &'). If ¢ = 1, then 0 is equal to
(0+6B—2+04—c)UE—sA = U(0+04—s+04—ct)é—sAn = U(sAn)—sAn = 0;

so supp # C Int A. Furthermore, § can be written as 6 = (5+5B,z+6,4,c,t)¢
for some form ¢ € Als,t,dz,C°>°(C", X )] with compact support. Indeed,
by Theorem 5.1, there exists a form ¢ € A[s,¢,dz, dw, C®(C?*", X)] with
supp ¥ C A x C™ such that (5z,w +0p—z+0a—ct)V =6.
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Set ¥(z) = Yo(z,c), where ¥y is the part of ¥ containing none of the
variables dw;. Then suppty C A and (0, 4+ 6p—» + da—ct)y) = 6. By the
Stokes theorem,

/PSG/\dz = /Ps(ﬁz +0p—z+6a—ct) Ndz
= /8ZP51/1 Adz +/P85Ac,t1/) ANdz = 6Ac,t/Ps¢ ANdz S (5A,c,tA[t,X}.

O

Proposition 5.12. Let A = (Ay,...,A,) be a commuting n-tuple of oper-
ators on X, ¢ = (c1,...,¢,) € or(A) and let f be a function analytic on a
neighbourhood of o (A). Then the (n+1)-tuple (A —c1,..., Ap—cn, f(A))
is Taylor regular if and only if f(c) # 0.

Proof. Relate exterior variables si,. .., Sy+1 to the (n+1)-tuple (A—c, f(A)).
Write for short s = (s1,...,8,). Let da—c : Als, X] — Als, X] be defined
by da—ct) = > (Aj —¢j)sj A (¢ € Als,X]). One has Als, sp41, X] =
Als, X]®sny1AA[s, X]. The operator 64, r(a) corresponding to the (n+1)-
tuple (A —¢, f(A)) can be written in this decomposition in the matrix form

5 (bae O
A—c,f(A) — f(A) _5A—c .

Consider the following two cases:

(a) f(c) = 0.

Since ¢ € orp(A), there is a ¢ € A[s, X] such that d4_.¢p = 0 and ¢ ¢
da—cAls, X]. By the preceding lemma, there is an 7 € Als, X| such that
f(A)) = da-cn. Then 04 pa) (P + spp1 An) = 0 and (Y + spy1 A1) ¢
Sa—c,f(A)A[s, snt1, X] since ¥ ¢ 0a—Als, X].

Thus the (n 4+ 1)-tuple (A — ¢, f(A)) is Taylor singular.

(b) f(c) # 0. Without loss of generality one can assume that f(c) = 1.

Let ©,& € Als, X], 0a—c pa)(¥ + snr1 A§) = 0. Then 64-p = 0 and
f(A)Y — d4-.& = 0. By the preceding lemma, f(A)Y — ¢ € da_.A[s, X].
Since f(A)Y € da—.Als, X], one has ¢ = d4_.n for some n € Afs, X].

Further, da_c(f(A)n—E) = f(A)Yp—da_c{ = 0. Thus thereisaf € Als, X]
with f(A)(f(A)n — &) = (f(A)n — &) = da—cb. Set 0 =n— (f(A)n - &).
Then 8a-cif = da-cn = v and F(A) — 648 = F(A)n — F(A)(F(Ayy -
§) +da-ctl = f(A)n — (f(A)n — &) =& Hence d4_c 1) (0" — sn+1 A 0) =
(¥ + spy1 AE) and the (n+ 1)-tuple (A — ¢, f(A)) is Taylor regular. O

Lemma 5.13. Let A = (Ay,...,Ay,) be a commuting n-tuple of operators
on X, let f be a function analytic on a neighbourhood of op(A). Denote by
A the commutative Banach algebra generated by Ay, ..., A, and f(A). Let
¢ be a multiplicative functional on A such that ¢(B) € or(B) for all tuples
B = (By,...,Bp) of operators in A. Then ¢(f(A)) = f(¢(A)).
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Proof. Consider the (n + 1)-tuple (A1 — @(A1),..., Ay — @(Ay), f(A) —
o(f (A))) By assumption, this (n + 1)-tuple is Taylor singular. By the
previous proposition, one has f(¢(A)) — ¢(f(A4)) = 0. O

Corollary 5.14. (spectral mapping property) Let 6 be a spectral system on
B(X) which is contained in the Taylor spectrum. Let A = (Ay,...,A,) be

a commuting n-tuple of operators on X and let f = (f1,..., fm) be an m-
tuple of functions analytic on a neighbourhood of op(A). Then 6(f(A)) =
f(a(A)).

In particular, or(f(A)) = f(or(A)). Similarly, o.(f(A)) = f(oxk(4))
and os;(f(A)) = f(osk(A)) for all k =0,...,n

Proof. Consider the commutative Banach algebra A generated by Ay, ..., A,
and f1(A),..., fm(A). Since the restriction of & to A is again a spectral sys-
tem, there is a compact subset K C M(A) such that 6(B) = {p(B) : ¢ €
K} for each tuple B = (By,...,By) C A, see (Zelazko, 1979) or (Miiller,
2007, Theorem 7.12).

Then

5(f(A)):{( (fl( )+ p(fm(A))) ¢ € K}
= {(Rlp(A)). - Fu(@(A) s 0 € K} = {(c) : ¢ € 5(A)} = F(5(4)).

O

Corollary 5.15. Let A = (Ay, ..., Ay) be a commuting n-tuple of operators
on X. Suppose that op(A) C Uy U Us, where Uy, Us are open disjoint sets.
Then there exists closed subspaces X1, Xo C X invariant for Ay, ..., Ay, such
that X = X1 & X2 and O'T(A1|Xj, . ,An|Xj) C Uj fO?“j = 1, 2.

Proof. Consider the function f =1 on U; and f =0 on U,. It is easy to see
that f(A) is a projection, Set X; = f(A)X and Xo = (1 — f)(4)X. O

The following theorem was proved by (Putinar, 1982).

Theorem 5.16. (superposition principle) Let A = (A, ..., Ay) be a com-
muting n-tuple of operators on X, let f = (f1,..., fm) be an m-tuple of func-
tion analytic on a neighbourhood of op(A), let B = f(A), let g be a function
analytic on a neighbourhood of or(B) and let h(z) = g(fi1(2),..., fm(2)).
Then h(A) = g(B).

Proof. By Lemma 5.8, g(v) — g(w) = > (vj — w;)rj(v, w) for some func-

tions r1, ..., ry, analytic on a neighbourhood of the set {(v,v) : v € or(B )}

So g(f(2)) —g(w) = 3252, (f5(2) —w;)rj(z, w), where ri(z,w) = r;(f(2), w

are functions analytlc on certain neighbourhood of the set aT(A f (A))
B) =

{(2,f(2) : 2 € o1(A)}. Thus h(A)—g(B) = 371 (f;(A)—B;)r(4,
Hence h(A) = g(B). D

)

As a corollary of the Taylor functional calculus it is possible to obtain the
properties of the functional calculus in commutative Banach algebras.
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Theorem 5.17. Let A be a commutative Banach algebra. To each finite
family a = (ay,...,an) of elements of A and each function f € H,(, it is
possible to assign an element f(a) € A such that the following conditions
are satisfied:
(i) if f(z1,...,2n) = Zani Cazyt -+ 28" is a polynomial in n indeter-
minates, then f(aj,...,a,) = Zani cqayt - adn;
(ii) the mapping f — f(ai,...,ay) is an algebra homomorphism from
the algebra Hy (4, ... qa,) to A;
(iii) if U is a neighbourhood of o(x1,...,xn), f, fr (k € N) are analytic
in U and f;, converge to f uniformly on U, then

frlar,...;an) = flai,...,an);

(iv) if o € M(A) and f € Hy(q,,... a,), then

o(flat,...,an)) = f(elar), ..., o(an));

(v) &(f(al, .. )) = f( (a1, .. .,an)) for each compact-valued spec-
tral system in A;

(vi) ifar,...,am € A,n <m, f € Hy(q,...q,) and fe Hy(ay,....am) satisfy
f(zl,...,zm) = f(z1,...,2n) for all z,...,z, in a neighbourhood
ofo(ay,...,an), then

f(al,...,am) = f(ai,...,an);

(Vii) if fi,...,fm € Ha(a), b, = fi(a), g € Ho(bl,...,bm) and h € Ha(a) is
defined by h(z) = g(fi(2),..., fm(2), then h(a) = g(b).

Proof. For an n-tuple a = (aq,...,a,) € A" consider the left multiplication
operators Lo, € B(A) defined by L,z = a;x (z € Aji =1,...,n). Then
Lo = (Lgy, ..., Lg,) is a commuting n-tuple of operators. It is easy to show
that o(a) = op(Lg).

For a function f analytic on a neighbourhood of o(a) set f(a) = f(Lqy)1 4.

Since f(Ly) € (Lg)”, for each b € A one has f(L,)(b ) f(La)Lp(14) =
Lyf(La)(1a) =b- f(a) = Lf(a)(b)' Thus f(La) = Lf( )

Properties (i), (ii), (iil), (vi) and (vii) follow from the corresponding prop-
erties of the Taylor functional calculus; the multiplicativity follows from the
observation that

(f9)(a) = (f9)(La)(1a) = f(La)9(La)(14) = Ly)9(a) = f(a)g(a).
Property (iv) follows from Lemma 5.13; this implies also (v). O

It is possible to show that properties (i), (ii), (iii) and (vi) determine the
functional calculus uniquely, see (Zame, 1979). For the unicity of the Taylor
functional calculus see (Putinar, 1983).
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6. CONCLUDING REMARKS

The Taylor spectrum and the corresponding functional calculus are de-
fined for n-tuples of commuting Banach space operators. It is a natural
question whether it is possible to define something similar for commuting
n-tuples of elements of a Banach algebra.

Let A be a unital Banach algebra and aq,...,a, € A mutually commut-
ing elements. The first idea is of course to define the Taylor spectrum of
(a1,...,a,) as the Taylor spectrum of the n-tuple (Lq,,..., Lq,) € B(A)™.
However, if A = B(X) for some Banach space X and A;,..., 4, € B(X)
commuting operators, then op(La,,..., L4, ) is equal to the split spectrum
os(Ai,...,A,), and not to the Taylor spectrum op(A4i,...,A4,). So this
natural definition of the Taylor spectrum in Banach algebras is not proper.

Problem 6.1. Does there exist a reasonable definition of the Taylor spec-
trum and corresponding functional calculus for commuting n-tuples of Ba-
nach algebra elements?

Further problems concern relations between the Taylor functional calculus
and other types of spectra.

It was mentioned above that the split spectrum is in general bigger than
the Taylor spectrum. However, it is not clear whether the Taylor functional
calculus is really richer than the split functional calculus.

Problem 6.2. Let A = (A;,...,A,) € B(X)" be a commuting n-tuple of
operators. Let f be a function analytic on a neighbourhood of op(A). Is it
possible to extend f analytically to a neighbourhood of og(A)?

Note that for each polynomial p one has

p(os(A)) = a5(p(A)) = a(p(4)) = or(p(4)) = p(or(A)).
So o7 (A) can be smaller than og(A) but not "much smaller”.

The following problem is similar. Note that the Taylor spectrum is not
the smallest set for which there exists an analytic functional calculus. For
example, for n = 2, one has 04,(A) U 05ur(A) D dor(A). So any function
analytic on a connected neighbourhood of 04,(A) U0, (A) can be extended
analytically to a neighbourhood of o (A).

Problem 6.3. Is it possible to find a reasonable subset of the Taylor spec-
trum such that each function analytic on its neighbourhood can be extended
analytically to a neighbourhood of the Taylor spectrum?
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