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TAYLOR FUNCTIONAL CALCULUS

VLADIMIR MÜLLER

Abstract. The notion of spectrum of an operator is one of the central
concepts of operator theory. It is closely connected with the existence
of a functional calculus which provides important information about the
structure of Banach space operators.

The situation for commuting n-tuples of Banach space operators is
much more complicated. There are many possible definitions of joint
spectra. However, the joint spectrum introduced by J. L. Taylor has a
distinguished property — there exists a functional calculus for functions
analytic on a neighbourhood of this spectrum.

The present paper gives a survey of basic properties of the Taylor
spectrum and Taylor functional calculus.

1. Introduction.

The functional calculus of single operators (or more generally, single ele-
ments of a Banach algebra) is a standard and very useful tool in operator
theory. It is defined by the Cauchy formula: if A is a unital Banach algebra,
a ∈ A and f a function analytic on a neighbourhood of the spectrum σ(a),
then f(a) ∈ A is defined by

f(a) =
1

2πi

∫
Γ
f(z)(z − a)−1dz,

where Γ is a suitable contour surrounding σ(a). The mapping f 7→ f(a) is an
algebra homomorphism, it satisfies the spectral mapping property σ(f(a)) =
f(σ(a)) for all f , and it is continuous in the sense that if fn → f uniformly
on a neighbourhood of σ(a) then fn(a)→ f(a).

The functional calculus for n-tuples of commuting elements is much more
complicated. In commutative Banach algebras it was constructed by Shilov,
Arens, Calderon and Waelbroeck. The main result is: if A is a commu-
tative unital Banach algebra, a1, . . . , an ∈ A and f a function analytic on
a neighbourhood of the joint spectrum σ(a1, . . . , an) then it is possible to
define f(a1, . . . , an) ∈ A such that the functional calculus f 7→ f(a1, . . . , an)
satisfies the same properties as the functional calculus of single elements —
it is additive, multiplicative, continuous and satisfies the spectral mapping
property.
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If a1, . . . , an are mutually commuting elements in a non-commutative uni-
tal Banach algebra A, then it is possible to choose a unital commutative sub-
algebra A0 containing the elements a1, . . . , an and consider the functional
calculus in A0. However, the joint spectrum σA0(a1, . . . , an) and the func-
tional calculus depend on the choice of A0 and there is no optimal candidate
for the choice of A0.

The best functional calculus known at present was constructed by (Tay-
lor, 1979a, 1970b). He defined a joint spectrum σT (called now the Taylor
spectrum) for commuting Banach space operators A1, . . . , An and the func-
tional calculus f 7→ f(A1, . . . , An) for functions analytic on a neighbourhood
of σT (A1, . . . , An) which satisfies the expected properties as the functional
calculi above.

Although the Taylor functional calculus is defined only for n-tuples of
commuting Banach space operators and not for commuting n-tuples of el-
ements in a Banach algebra, the Taylor functional calculus implies easily
the existence of the above mentioned functional calculus in commutative
Banach algebras.

2. Taylor spectrum

Let s = (s1, . . . , sn) be a system of indeterminates. Denote by Λ[s] the
exterior algebra generated by s = (s1, . . . , sn), i.e., Λ[s] is the free complex
algebra generated by s = (s1, . . . , sn), where the multiplication operation ∧
in Λ[s] satisfies the anticommutative relations si ∧ sj = −sj ∧ si (i, j =
1, . . . , n). In particular, si ∧ si = 0 for all i.

For F ⊂ {1, . . . , n}, F = {i1, . . . , ip} with 1 ≤ i1 < i2 < · · · < ip ≤ n
write sF = si1 ∧ · · · ∧ sip . Every element of Λ[s] can be written uniquely in
the form ∑

F⊂{1,...,n}

αF sF

with complex coefficients αF . Clearly, s∅ is the unit in Λ[s].
For p = 0, 1, . . . , n let Λp[s] be the set of all elements of Λ[s] of degree p,

i.e., Λp[s,X] is the subspace generated by the elements sF with cardF = p.
Thus Λ[s] =

⊕n
p=0 Λp[s], dim Λp[s] =

(
n
p

)
and dim Λ[s] = 2n.

Let X be a vector space. Write Λ[s,X] = X ⊗ Λ[s]. So

Λ[s,X] =
{ ∑

F⊂{1,...,n}

xF sF : xF ∈ X
}

;

to simplify the notation, the symbol ” ⊗ ” is omitted. Similarly, for p =
0, . . . , n write Λp[s,X] = X ⊗ Λp; so

Λp[s,X] =
{ ∑

F⊂{1,...,n}
card F=p

xF sF : xF ∈ X
}
.
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Thus Λp[s,X] is a direct sum of
(
n
p

)
copies of X and Λ[s,X] is a direct sum

of 2n copies of X.
In the following X will be a fixed complex Banach space. Then Λ[s,X] can

be considered to be also a Banach space. For the following considerations
it is not essential which norm one takes on Λ[s,X]; one can assume it to be

‖
∑
xF sF ‖ =

(∑
‖xF ‖2

)1/2
. This norm has an advantage that if X is a

Hilbert space then so is Λ[s,X].
For j = 1, . . . , n let Sj : Λ[s,X]→ Λ[s,X] be the operators of left multi-

plication by sj ,

Sj

(∑
F

xF sF

)
=

∑
F

xF sj ∧ sF =
∑

F⊂{1,...,n}
j /∈F

(−1)card {i∈F :i<j}xF sF∪{j}.

Clearly, SjSi = −SiSj (i, j = 1, . . . , n). In particular, S2
i = 0 for all i.

For an operator T ∈ B(X) denote by the same symbol the operator
T : Λ[s,X]→ Λ[s,X] defined by

T
(∑

F

xF sF

)
=

∑
F

(TxF )sF .

Obviously, TSj = SjT for all j.
Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators

on X. Denote by δA the operator δA : Λ[s,X]→ Λ[s,X] defined by

δA =
n∑

i=1

AiSi.

Clearly,(
δA

)2 =
n∑

i=1

n∑
j=1

AiSiAjSj =
∑

1≤i<j≤n

AiAj(SiSj + SjSi) = 0,

and so Im δA ⊂ ker δA (note that the commutativity of the operators Ai has
been used).

Definition 2.1. An n-tuple A = (A1, . . . , An) of mutually commuting op-
erators on a Banach space X is called Taylor regular if ker δA = Im δA.

The Taylor spectrum σT (A) is the set of all λ = (λ1, . . . , λn) ∈ Cn such
that the n-tuple A− λ = (A1 − λ1, . . . , An − λn) is not Taylor regular.

Since δAΛp[s,X] ⊂ Λp+1[s,X] (p = 0, 1, . . . , n−1), it is possible to define
operators δp

A : Λp[s,X] → Λp+1[s,X] as the restrictions of δA to Λp[s,X].
Thus δA defines the following sequence of operators

(1) 0→ Λ0[s,X]
δ0
A−→Λ1[s,X]

δ1
A−→ · · ·

δn−1
A−→Λn[s,X]→ 0,

where δp+1δp = 0 for each p.
The sequence (1) is called the Koszul complex of A. It is easy to see

that A is Taylor regular if and only if the Koszul complex is exact, i.e., if
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Im δp
A = ker δp+1

A for all p, where one sets formally δp
A to be the zero operators

for p < 0 or p ≥ n.

Remark 2.2. (i) Let n = 1. It is possible to identify Λ0[s,X] and Λ1[s,X]
with X, and so the Koszul complex of a single operator A1 ∈ B(X) becomes

0→ X
A1−→X → 0.

This complex is exact if and only if A1 is invertible. Thus for single operators
the Taylor spectrum coincides with the ordinary spectrum.

(ii) Let n = 2 and let A = (A1, A2) be a commuting pair of operators
on X. Then the Koszul complex of A becomes

0→ X
δ0
A−→X ⊕X

δ1
A−→X → 0,

where δ0A and δ1A are defined by δ0Ax = A1x⊕A2x (x ∈ X) and δ1A(x⊕y) =
−A2x+A1y (x, y ∈ X).

(iii) The most important parts of the Koszul complex of an n-tuple A =
(A1, . . . , An) are its ends. The first mapping δ0A can be interpreted as δ0A :
X → Xn defined by δ0Ax =

⊕n
i=1Aix (x ∈ X). Thus the Koszul complex

of A is exact at Λ0[s,X] if and only if
⋂n

i=1 kerAi = {0}. Similarly, δn−1
A :

Xn → X is defined by δn−1
A (x1 ⊕ · · · ⊕ xn) =

∑n
i=1(−1)i−1Aixi, and so the

exactness at Λn[s,X] means that ImA1 + · · ·+ ImAn = X.

Proposition 2.3. Let A1, . . . , An, B1, . . . , Bn be mutually commuting oper-
ators on a Banach space X satisfying

∑n
i=1AiBi = I. Then the n-tuple

A = (A1, . . . , An) is Taylor regular.

Proof. For j = 1, . . . , n let Hj : Λ[s,X] → Λ[s,X] be the operators defined
by

(2) Hj

( ∑
F⊂{1,...,n}

xF sF

)
=

∑
F⊂{1,...,n}

j∈F

(−1)card {i∈F :i<j}xF sF\{j}.

It is easy to verify thatHjSj+SjHj = I (j = 1, . . . , n) andHiSj+SjHi = 0
for i 6= j.

Suppose that
∑n

i=1AiBi = I. As above, denote by the same symbols Bi

the operators acting on Λ[s,X]. Let εB : Λ[s,X]→ Λ[s,X] be the operator
defined by εB =

∑n
j=1HjBj . Then

εBδA + δAεB =
n∑

i=1

n∑
j=1

(HjBjSiAi + SiAiHjBj)

=
n∑

i=1

(HiSiBiAi + SiHiAiBi) +
∑
i6=j

(HjSi + SiHj)BjAi

=
n∑

i=1

BiAi = IΛ[s,X].



TAYLOR FUNCTIONAL CALCULUS 5

Let ψ ∈ ker δA. Then ψ = (εBδA + δAεB)ψ = δAεBψ, and so ψ ∈ Im δA.
Hence ker δA = Im δA and the n-tuple A is Taylor regular. �

If A is a unital commutative Banach algebra and a1, . . . , an ∈ A then the
joint spectrum is defined by

σA(a1, . . . , an) =
{

(f(a1), . . . , f(an)) : f ∈M(A)
}
,

where M(A) is the set of all multiplicative functionals f : A → C (i.e., the
maximal ideal space of A).

Let a = (a1, . . . , an) ∈ An be a commuting n-tuple of elements. Denote
by 〈a〉 the smallest closed unital algebra containing a1, . . . , an. Clearly 〈a〉
is a unital commutative Banach algebra.

Proposition 2.3 implies that

(3) σT (A) ⊂ σA(A)

for any unital commutative Banach algebra A ⊂ B(X) containing the oper-
ators A1, . . . , An. In particular, σT (A) ⊂ σ〈A〉(A) for all commuting n-tuples
A ∈ B(X)n.

For the study of basic properties of the Taylor spectrum one needs the
following lemma. Its proof is elementary and various formulations of the
lemma can be found in (Taylor, 1970a, Lemma 2.1; Vasilescu, 1979a, Lemma
2.1) or (Müller, 2007, Lemma 11.3).

Lemma 2.4. Let X,Y, Z be Banach spaces, let T : X → Y and S : Y → Z
be operators satisfying ImT = kerS and let ImS be closed. Then there
exists ε > 0 such ImT ′ = kerS′ and ImS′ is closed for all pairs of operators
T ′ : X → Y and S′ : Y → Z satisfying ‖T ′ − T‖ < ε, ‖S′ − S‖ < ε and
S′T ′ = 0.

Corollary 2.5. The set of all commuting Taylor regular n-tuples is rela-
tively open in the set of all commuting n-tuples. Consequently, σT (A) is a
compact subset of Cn.

Moreover, for each n ∈ N the mapping A 7→ σT (A) defined on commuting
n-tuples A = (A1, . . . , An) ∈ B(X)n is upper semi-continuous.

Proof. Consider the sequence

Λ[s,X] δA−→Λ[s,X] δA−→Λ[s,X].

Note that ‖δA − δB‖ ≤
∑n

i=1 ‖Ai − Bi‖ for all commuting n-tuples A,B ∈
B(X)n. By the previous lemma, σT (A) is closed. By (3), it is compact.
Clearly the mapping A 7→ σT (A) is upper semicontinuous. �

A very important property of the Taylor spectrum is the projection prop-
erty — that σT (Ai1 , . . . , Aik) = PσT (A1, . . . , An) for all k ≤ n, 1 ≤ i1 <
· · · < ik ≤ n, where P : Cn → Ck is the natural projection defined by
P (z1, . . . , zn) = (zi1 , . . . , zik).
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It is well known that the analogous projection property is satisfied both
for the surjective spectrum

σsur(A1, . . . , An) =
{

(λ1, . . . , λn) ∈ Cn : (A1−λ1)X+· · ·+(An−λn)X 6= X
}

and the approximate point spectrum

σap(A1, . . . , An) =
{

(λ1, . . . , λn) ∈ Cn : inf
x∈X,‖x‖=1

n∑
i=1

‖(Ai − λi)x‖ = 0
}
,

see (S lodkowski and Żelazko, 1974). The proof of projection property for
the Taylor spectrum follows (S lodkowski, 1977).

Lemma 2.6. Let Z1, Z2 be Banach spaces, let B : Z1 → Z1, D : Z1 → Z2

and C : Z2 → Z2 be operators satisfying DB = CD. Suppose that DZ1 6=
Z2. Then there exists a complex number λ such that DZ1 +(C−λ)Z2 6= Z2.

Proof. It is possible to reduce the statement of Lemma 2.6 to the projection
property of the surjective spectrum. Consider the Banach space Z = Z2 ⊕
Z1 ⊕ Z1 ⊕ · · · (for example with the `1 norm) and operators U, V ∈ B(Z)
given in the matrix form by

U =


0 D 0 0 · · ·
0 0 I 0
0 0 0 I
...

. . .

 and V =


C 0 0 · · ·
0 B 0
0 0 B
...

. . .

 .

It is easy to check that UV = V U . Furthermore, UZ 6= Z since DZ1 6= Z2.
By the projection property for the surjective spectrum, there exists λ ∈ C
such that UZ + (V − λ)Z 6= Z. Since UZ ⊃ 0 ⊕ Z1 ⊕ Z1 ⊕ · · · , this is
equivalent to the condition DZ1 + (C − λ)Z2 6= Z2. �

To prove the projection property for the Taylor spectrum it is necessary
to investigate the exactness of the Koszul complex in more details.

For k = 0, . . . , n denote by Γ(n)
k the set of all commuting n-tuples of oper-

ators A = (A1, . . . , An) ∈ B(X)n such that the Koszul complex of A is exact
at Λk(X), i.e., Im δk−1

A = ker δk
A. In agreement with the previous convention

set formally Γ(n)
−1 to be the set of all commuting n-tuples of operators.

Proposition 2.7. Let A1, . . . , An, An+1 be commuting operators on a Ba-

nach space X, let 0 ≤ k ≤ n and (A1, . . . , An) /∈ Γ(n)
k . Then there exists

λ ∈ C such that (A1, . . . , An, An+1 − λ) /∈ Γ(n+1)
k+1 .

Proof. Write for short A = (A1, . . . , An), Aλ = (A1, . . . , An, An+1−λ) (λ ∈
C) and s = (s1, . . . , sn). Suppose that A /∈ Γ(n)

k . Clearly, An+1 ker δk
A ⊂

ker δk
A. Consider the following diagram

Λk−1[s,X]
δk−1
A−→ ker δk

AyAn+1

yAn+1

Λk−1[s,X]
δk−1
A−→ ker δk

A.
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By Lemma 2.6, there is a λ ∈ C such that Im δk−1
A + (An+1 − λ) ker δk

A 6=
ker δk

A. It is sufficient to prove that Im δk
Aλ
6= ker δk+1

Aλ
.

Let ψ ∈ ker δk
A \

(
Im δk−1

A + (An+1 − λ) ker δk
A

)
. Then

δk+1
Aλ

Sn+1ψ =
(

(An+1 − λ)Sn+1 +
n∑

i=1

AiSi

)
Sn+1ψ

=
n∑

i=1

AiSiSn+1ψ = −Sn+1δ
k
Aψ = 0.

So Sn+1ψ ∈ ker δk+1
Aλ

. It is sufficient to show that Sn+1ψ /∈ Im δk
Aλ

.
Suppose on the contrary that there is a ϕ ∈ Λk[s, sn+1, X] with δk

Aλ
ϕ =

Sn+1ψ. Write ϕ = Sn+1ϕk−1 + ϕk for ϕk−1 ∈ Λk−1[s,X], ϕk ∈ Λk[s,X].
Then Sn+1ψ = δk

Aλ
ϕ = Sn+1

(
−δk−1

A ϕk−1 + (An+1 − λ)ϕk

)
+ δk

Aϕk. Thus
ϕk ∈ ker δk

A and ψ = −δk−1
A ϕk−1+(An+1−λ)ϕk ∈ Im δk−1

A +(An+1−λ) ker δk
A,

which is a contradiction. �

Proposition 2.8. Let A1, . . . , An, An+1 be commuting operators on a Ba-

nach space X, let 0 ≤ k ≤ n. Suppose that (A1, . . . , An) ∈ Γ(n)
k−1 ∩ Γ(n)

k .

Then (A1, . . . , An, An+1) ∈ Γ(n+1)
k .

Proof. Let A = (A1, . . . , An), s = (s1, . . . , sn) and A′ = (A1, . . . , An, An+1).
Suppose that ker δk−1

A = Im δk−2
A and ker δk

A = Im δk−1
A . It is sufficient to

prove that ker δk
A′ ⊂ Im δk−1

A′ (the opposite inclusion is always true).
Let ψ ∈ ker δk

A′ . Express ψ = ηk + Sn+1ηk−1 for some ηk ∈ Λk[s,X] and
ηk−1 ∈ Λk−1[s,X]. Then

0 = δk
A′ψ =

n+1∑
i=1

AiSiηk+
n∑

i=1

AiSiSn+1ηk−1 = δk
Aηk+Sn+1(An+1ηk−δk−1

A ηk−1).

Thus δk
Aηk = 0, and so ηk = δk−1

A ξk−1 for some ξk−1 ∈ Λk−1[s,X]. Further,

0 = An+1ηk − δk−1
A ηk−1 = δk−1

A (An+1ξk−1 − ηk−1),

and so An+1ξk−1 − ηk−1 = δk−2
A ξk−2 for some ξk−2 ∈ Λk−2[s,X]. Hence

ψ = ηk + Sn+1ηk−1 = δk−1
A ξk−1 + Sn+1An+1ξk−1 − Sn+1δ

k−2
A ξk−2

= δk−1
A′ ξk−1 + δk−1

A′ Sn+1ξk−2 ∈ Im δk−1
A′ .

�

Corollary 2.9. Let A1, . . . , An+1 ∈ B(X) be commuting operators.

(i) If (A1, . . . , An) is Taylor regular then (A1, . . . , An, An+1) is also Tay-
lor regular.

(ii) If (A1, . . . , An) is Taylor singular then there exists λ ∈ C such that
(A1, . . . , An, An+1 − λ) is also Taylor singular.

(iii) Consequently, σT (A1, . . . , An) = PσT (A1, . . . , An, An+1), where P :
Cn+1 → Cn is the natural projection onto the first n coordinates.



8 VLADIMIR MÜLLER

In particular, since the Taylor spectrum of a single operator A1 ∈ B(X)
is equal to the ordinary spectrum, which is non-empty, this corollary im-
plies that σT (A1, . . . , An) is always non-empty for every commuting n-tuple
(A1, . . . , An) ∈ B(X)n.

Since obviously σT (Aπ(1), . . . , Aπ(n)) =
{

(λπ(1), . . . , λπ(n)) : (λ1, . . . , λn) ∈
σT (A1, . . . , An)

}
for any permutation π : {1, . . . , n} → {1, . . . , n}, one has

the following theorem:

Theorem 2.10. (projection property of the Taylor spectrum) Let A =
(A1, . . . , An) ∈ B(X)n be a commuting n-tuple of operators, let 1 ≤ k ≤ n
and 1 ≤ i1 < i2 < · · · < ik ≤ n. Then

σT (Ai1 , . . . , Aik) = Pi1,...,ikσT (A1, . . . , An),

where Pi1,...,ik : Cn → Ck is the projection defined by Pi1,...,ik(λ1, . . . , λn) =
(λi1 , . . . , λik).

A consequence of the projection property is the spectral mapping property
for polynomial mappings.

Theorem 2.11. (spectral mapping property) Let A = (A1, . . . , An) ∈ B(X)n

be a commuting n-tuple of operators, let k ∈ N and let p = (p1, . . . , pk) be a
k-tuple of polynomials in n variables. Let p(A) = (p1(A), . . . , pk(A)). Then

σT (p(A)) = p(σT (A)).

Proof. Consider the (n+k)-tuple B = (A1, . . . , An, p1(A), . . . , pk(A)). Then

σT (B) ⊂ σ〈A〉(B)
= {(f(A1), . . . , f(Ak), f(p1(A)), . . . , f(pk(A))) : f ∈M(〈A〉)}
= {(z, p1(z), . . . , pk(z)) : z ∈ σ〈A〉(B) ⊂ {(z, p(z)) : z ∈ Cn}.

If z ∈ σT (A) then there exists z′ ∈ Ck such that (z, z′) ∈ σT (B). So z′ = p(z)
and z′ ∈ σT (p(A)) by the projection property.

Conversely, if z′ ∈ σT (p(A)) then there exists z ∈ Cn such that (z, z′) ∈
σT (B) ⊂ {(w, p(w)) : w ∈ Cn}. So z′ = p(z) and z ∈ σT (A) by the
projection property. �

Remark 2.12. Let A be a unital Banach algebra. By a spectral system we
mean a mapping σ̃ that assigns to each commuting tuple a = (a1, . . . , an) ∈
An a nonempty compact subset σ̃(a) ⊂ Cn such that σ̃(a) ⊂ σ〈a〉(a) and σ̃
satisfies the projection property, σ̃(ai1 , . . . , aik) = Pi1,...,ik σ̃(a) for all a and
i1, . . . , ik.

A spectral system σ̃ is upper semicontinuous if the mapping (a1, . . . , an) 7→
σ̃(a1, . . . , an) is upper semicontinuous for each n.

Theorem 2.10 and Proposition 2.3 imply that the Taylor spectrum is an
upper semicontinuous spectral system. Further examples of spectral sys-
tems are the surjective spectrum and approximate point spectrum. Other
examples of spectral systems will be discussed in the next section.
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As in the previous theorem, one can prove that any spectral system sat-
isfies also the spectral mapping property σ̃(p(A)) = p(σ̃(A)) for all k-tuples
p = (p1, . . . , pk) of polynomials in n variables.

The Taylor spectrum has also a nice duality property.

Theorem 2.13. Let A = (A1, . . . , An) ∈ B(X)n be a commuting n-tuple
of operators. Then A is Taylor regular if and only if A∗ = (A∗

1, . . . , A
∗
n) ∈

B(X∗)n is Taylor regular.
Consequently, σT (A) = σT (A∗).

The proof of the previous theorem is based on the following elementary
lemma. For details see (S lodkowski, 1977).

Lemma 2.14. Let X,Y, Z be Banach spaces, let T : X → Y and S : Y → Z
be operators satisfying ST = 0. The following statements are equivalent:

(i) ImT = kerS and ImS is closed;
(ii) ImS∗ = kerT ∗ and ImT ∗ is closed.

Remark 2.15. If H is a Hilbert space then it is usual to identify its dual
H∗ with H. With this convention one has rather

σT (A∗
1, . . . , A

∗
n) = {(z̄1, . . . , z̄n) : (z1, . . . , zn) ∈ σT (A1, . . . , An)}

for all commuting n-tuples (A1, . . . , An) ∈ B(H)n.

Remark 2.16. The precise name of complex (1) is the cochain Koszul com-
plex of A. It is possible to assign to a commuting n-tuple A = (A1, . . . , An) ∈
B(X)n also another ”dual” complex (called the chain Koszul complex of
A). As in the proof of Proposition 2.3, for j = 1, . . . , n define operators
Hj : Λ[s,X]→ Λ[s,X] by (2) and set εA =

∑n
j=1AjHj : Λ[s,X]→ Λ[s,X].

Equivalently, for 1 ≤ i1 < i2 < · · · < ip ≤ n one has

εAxsi1 ∧ · · · ∧ sip =
p∑

k=1

(−1)k−1Aikxsi1 ∧ · · · ∧ ŝik ∧ · · · ∧ sip ,

where the hat denotes the omitted term.
It is easy to verify that HjB = BHj for all B ∈ B(X) and HiHj =

−HjHi (1 ≤ i, j ≤ n). Thus (εA)2 = 0. Clearly, εAΛp[s,X] ⊂ Λp−1[s,X]
for all p, and so εA defines a complex

(4) 0← Λ0[s,X]
ε0
A←−Λ1[s,X]

ε1
A←− · · ·

εn−1
A←−Λn[s,X]← 0,

where εpA is the restriction of εA to Λp+1[s,X] (p = 0, . . . , n). Complex (4)
is called the chain Koszul complex of A.

The chain complex can be also used for the definition of the Taylor spec-
trum of A (in fact this was the original definition of Taylor). Fortunately,
these two definitions coincide since the chain Koszul complex of A is exact if
and only if the cochain Koszul complex is exact, see (Eschmeier and Putinar,
1996, p. 32).
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Note also that for 0 ≤ p ≤ n the exactness of one of the Koszul complexes
at Λp[s,X] is equivalent to the exactness of the other Koszul complex at
Λn−p[s,X].

3. Variants of the Taylor spectrum

S lodkowski’s spectra

Recall that the sets Γ(n)
k were defined as the sets of all commuting n-tuples

(A1, . . . , An) ∈ B(X)n such that the Koszul complex (1) is exact at the k-th
position, i.e., ker δk+1

A = Im δk
A.

For a commuting n-tuple A = (A1, . . . , An) of operators on X and k =
0, 1, . . . , n define

σδ,k(A) =
{
λ ∈ Cn : A− λ /∈

k⋂
j=0

Γ(n)
n−j

}
.

The condition in the definition of σδ,k means that the Koszul complex of
A− λ is not exact at some of the last k positions. Clearly

σsur(A) = σδ,0(A) ⊂ σδ,1(A) ⊂ · · · ⊂ σδ,n(A) = σT (A),

where σsur is the surjective spectrum defined in the previous section.
Dually one can define

σπ,k(A) =
{
λ ∈ Cn : A− λ /∈

k⋂
j=0

Γ(n)
j or Im δk

A is not closed
}
.

Evidently,

σap(A) = σπ,0(A) ⊂ σπ,1(A) ⊂ · · · ⊂ σπ,n(A) = σT (A),

where σap is the approximate point spectrum.
The S lodkowski spectra σδ,k and σπ,k satisfy the following duality prop-

erty, see (S lodkowski, 1977).

Theorem 3.1. Let A = (A1, . . . , An) be a commuting n-tuple of operators
on a Banach space X and let 0 ≤ k ≤ n. Then:

(i) σδ,k(A∗
1, . . . , A

∗
n) = σπ,k(A1, . . . , An);

(ii) σπ,k(A∗
1, . . . , A

∗
n) = σδ,k(A1, . . . , An).

Theorem 3.2. σδ,k and σπ,k are upper semicontinuous spectral systems for
each k ≥ 0.

Proof. By Propositions 2.7 and 2.8, σδ,k is a spectral system. The statements
for σπ,k follow from the duality. �

The approximate point spectrum and the surjective spectrum give an
important information about the n-tuple (A1, . . . , An); the meaning of the
middle terms in the Koszul complex is not so clear. Therefore it is useful
to know that great parts of the Taylor spectrum are in fact included in the
surjective and approximate point spectra.
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Theorem 3.3. Let A = (A1, . . . , An) ∈ B(X)n be a commuting n-tuple of
operators. Then σap(A)∩σsur(A) contains the distinguished (Shilov) bound-
ary of σT (A), i.e., if λ ∈ σT (A) satisfies that for each open neighbourhood
U of λ there exists a polynomial p in n variables such that sup

{
|p(z)| : z ∈

U ∩ σT (A)
}
> sup

{
|p(z)| : z ∈ σT (A) \ U

}
, then λ ∈ σap(A) ∩ σsur(A).

Consequently, the polynomially convex hulls of σsur(A), σap(A) and σT (A)
coincide.

Theorem 3.3 is a consequence of the spectral mapping property. Another
interesting result is true for n = 2, see (Curto, 1986; Wrobel, 1986; Chō and
Takagushi, 1981).

Theorem 3.4. Let (A1, A2) ∈ B(X)2 be a commuting pair of operators.
Then ∂σT (A1, A2) ⊂ σap(A) ∪ σsur(A), where ∂ denotes the topological
boundary.

Split spectrum

Definition 3.5. Let A = (A1, . . . , An) be an n-tuple of commuting oper-
ators on a Banach space X. We say that A is split regular if it is Taylor
regular and the mapping δA : Λ[s,X] → Λ[s,X] has a generalized inverse,
i.e., there exists an operator W : Λ[s,X]→ Λ[s,X] satisfying δAWδA = δA.

The split spectrum σS(A) is the set of all λ ∈ Cn such that the n-tuple
A− λ is not split regular.

The following result characterizes the split regular n-tuples of operators.
The proof is simple and is omitted.

Proposition 3.6. Let A = (A1, . . . , An) be an n-tuple of mutually commut-
ing operators on a Banach space X. The following conditions are equivalent:

(i) A is split regular;
(ii) A is Taylor regular and ker δp

A is a complemented subspace of Λp[s,X]
for each p = 0, . . . , n− 1;

(iii) there exist operators W1,W2 : Λ[s,X] → Λ[s,X] such that W1δA +
δAW2 = IΛ[s,X];

(iv) there exists an operator V : Λ[s,X] → Λ[s,X] such that V δA +
δAV = I, V 2 = 0 and V Λp[s,X] ⊂ Λp−1[s,X] (p = 0, . . . , n).
Equivalently, there are operators Vp : Λp+1[s,X]→ Λp[s,X] (see the

diagram below) such that Vp−1Vp = 0 and Vpδ
p
A+δp−1

A Vp−1 = IΛp[s,X]

for every p (for p = 0 and p = n this reduces to V0δ
0
A = IΛ0[s,X] and

δn−1
A Vn−1 = IΛn[s,X], respectively).

0→ Λ0[s,X]
δ0
A−→←−
V0

Λ1[s,X]
δ1
A−→←−
V1

· · ·
δn−1
A−→←−
Vn−1

Λn[s,X]→ 0

Remark 3.7. For single operators on a Banach space the split spectrum
coincides with the Taylor spectrum (and with the ordinary spectrum).
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By Proposition 3.6 (ii), the split spectrum coincides with the Taylor spec-
trum also for n-tuples of commuting operators on a Hilbert space. For
general Banach spaces the split spectrum may be bigger than the Taylor
spectrum, see (Müller, 1997).

For T ∈ B(X) define the operators LT , RT : B(X) → B(X) by LTA =
TA and RTA = AT (A ∈ B(X)). For an n-tuple A = (A1, . . . , An) ∈
B(X)n write LA = (LA1 , . . . , LAn) and RA = (RA1 , . . . , RAn).

It is possible to show that the Taylor spectra of A,LA and RA are re-
lated in the following way, see (Curto, 1991; Eschmeier and Putinar, 1996,
Corollary 2.6.11) or (Müller, 2007, Theorem 26.7).

Theorem 3.8. Let A = (A1, . . . , An) ∈ B(X)n be a commuting n-tuple of
operators. Then

σS(A) = σT (LA) = σS(LA) = σT (RA) = σS(RA).

Corollary 3.9. The split spectrum σS is an upper semicontinuous spectral
system.

Essential Taylor spectrum

Definition 3.10. Let A = (A1, . . . , An) be a commuting n-tuple of opera-
tors on an infinite-dimensional Banach space X. We say that A is essentially
Taylor regular if dim ker δA/Im δA < ∞. The essential Taylor spectrum
σTe(A) is the set of all λ ∈ Cn such that A − λ is not essentially Taylor
regular.

The essentially Taylor regular n-tuples are an analogy of the Fredholm
operators. The following result is easy to see.

Proposition 3.11. Let A = (A1, . . . , An) be an essentially Taylor regular
n-tuple of operators. Then Im δA is closed.

If n = 1 then (A1) is essentially Taylor regular if and only if A1 is Fred-
holm.

It is possible to show that the essential Taylor spectrum is also an upper
semicontinuous spectral system.

For essentially Taylor regular n-tuples one can define the index which has
similar perturbation properties as the index of Fredholm operators.

Definition 3.12. Let A = (A1, . . . , An) ∈ B(X)n be an essentially Taylor
regular n-tuple of operators. For 0 ≤ k ≤ n let αk(A) = dim ker δk

A/Im δk−1
A .

Let

indA =
n∑

i=0

(−1)iαi(A).

Theorem 3.13. Let A = (A1, . . . , An) ∈ B(X)n be an essentially Taylor
regular n-tuple of operators. Then:
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(i) there exists ε > 0 such that αk(B) ≤ αk(A) for all k, 0 ≤ k ≤ n
and every commuting n-tuple B = (B1, . . . , Bn) ∈ B(X)n satisfying
max{‖Ai −Bi‖ : 0 ≤ i ≤ n} < ε;

(ii) there exists ε > 0 such that B is essentially Taylor regular and
indB = indA for every commuting n-tuple B = (B1, . . . , Bn) ∈
B(X)n satisfying max{‖Ai −Bi‖ : 0 ≤ i ≤ n} < ε;

(iii) let B = (B1, . . . , Bn) ∈ B(X)n be a commuting n-tuple such that
Bi − Ai is compact for all i. Then B is essentially Taylor regular
and indB = indA.

For the proof of (i) and (ii) see (Vasilescu, 1979a). For (iii) see (Ambrozie,
1996).

4. Taylor functional calculus for the split spectrum

The most important property of the Taylor spectrum is the existence
of the functional calculus for functions analytic on a neighbourhood of the
Taylor spectrum.

As the construction of the Taylor functional calculus is rather technical,
in this section a simpler version for functions analytic on a neighbourhood
of the split spectrum is presented. Since the split spectrum contains the
Taylor spectrum, this split Taylor functional calculus is less rich. However,
the construction of the calculus is much simpler.

Note that for Hilbert space operators the split spectrum coincides with the
Taylor spectrum and so the corresponding functional calculi also coincide.
The split functional calculus is also sufficient for the construction of the
functional calculus in commutative Banach algebras.

Theorem 4.1. Let A = (A1, . . . , An) be an n-tuple of mutually commuting
operators on a Banach spaceX. Suppose that A is split regular, i.e., ker δA =
Im δA and δA has a generalized inverse. Then there exists a neighbourhood
U of 0 in Cn and an analytic function V : U → B(Λ[s,X]) such that
V (z)δA−z + δA−zV (λ) = IΛ[s,X] for every z ∈ U .

Moreover, one can assume that V (z)2 = 0 (z ∈ U) and

V (z)Λp[s,X] ⊂ Λp−1[s,X] (z ∈ U, p = 0, . . . , n).

Proof. By Proposition 3.6, there exists an operator V : Λ[s,X] → Λ[s,X]
such that V 2 = 0, δAV + V δA = IΛ[s,X], and V Λp[s,X] ⊂ Λp−1[s,X] for
every p.

For z ∈ Cn write Hz = δA−z − δA. Let U be the set of all z ∈ Cn

such that ‖Hz‖ < ‖V ‖−1. Clearly, U is a neighbourhood of 0 in Cn and,
for z ∈ U , the operators I + HzV and I + V Hz are invertible. One has
V (I + HzV ) = (I + V Hz)V , and so (I + V Hz)−1V = V (I + HzV )−1. For
z ∈ U set V (z) = (I + V Hz)−1V . Then

δA−zV (z) + V (z)δA−z

= (δA +Hz)V (I +HzV )−1 + (I + V Hz)−1V (δA +Hz)
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= (I + V Hz)−1
(
(I + V Hz)(δA +Hz)V

+V (δA +Hz)(I +HzV )
)
(I +HzV )−1.

The expression in the middle is equal to

δAV +HzV + V HzδAV + V H2
zV + V δA + V Hz + V δAHzV + V H2

zV
= (I + V Hz)(I +HzV )+V (HzδA + δAHz +H2

z )V
= (I + V Hz)(I +HzV )+V

(
(δA +Hz)2−(δA)2

)
V =(I + V Hz)(I +HzV )

since (δA)2 = 0 and (δA +Hz)2 = (δA−z)2 = 0. Thus

δA−zV (z) + V (z)δA−z = IΛ[s,X] (z ∈ U).

Further,
V (z)2 = (I + V Hz)−1V · V (I +HzV )−1 = 0.

Finally, V (z) =
∑∞

i=0(−1)i(V Hz)iV where

(V Hz)Λp[s,X] ⊂ Λp[s,X] (p = 0, . . . , n),

and so
V (z)Λp[s,X] ⊂ Λp−1[s,X] (z ∈ U, p = 0, . . . , n).

�

Corollary 4.2. Let A = (A1, . . . , An) be an n-tuple of mutually commuting
operators on a Banach space X. Let G = Cn \ σS(A). Then there exists
an operator-valued C∞-function V : G→ B(Λ[s,X]) such that δA−zV (z) +
V (z)δA−z = IΛ[s,X] and

V (z)Λp[s,X] ⊂ Λp−1[s,X] (z ∈ G, p = 0, . . . , n).

Proof. For every w ∈ G there exists a neighbourhood Uw of w and an ana-
lytic operator-valued function Vw : Uw → B(Λ[s,X]) such that Vw(z)δA−z +
δA−zVw(z) = IΛ[s,X] and

Vw(z)Λp[s,X] ⊂ Λp−1[s,X] (z ∈ Uw, p = 0, . . . , n).

Let {ψi}∞i=1 be a C∞-partition of unity subordinated to the cover {Uw, w ∈
G} of G, i.e., ψi are C∞-functions, 0 ≤ ψi ≤ 1, suppψi ⊂ Uwi for some
wi ∈ G, for each z ∈ G there exists a neighbourhood U of z such that all
but finitely many of the functions ψi are 0 on U and

∑∞
i=1 ψi(z) = 1 for

each z ∈ G.
For z ∈ G set V (z) =

∑∞
i=1 ψi(z)Vwi(z). Then

δA−zV (z) + V (z)δA−z =
∞∑
i=1

(
δA−zVwi(z) + Vwi(z)δA−z

)
ψi(z) = IΛ[s,X]

and
V (z)Λp[s,X] ⊂ Λp−1[s,X]

for all z ∈ G and p = 0, 1, . . . , n. �



TAYLOR FUNCTIONAL CALCULUS 15

Remark 4.3. It is possible to require also that V (z)δA−zV (z) = V (z) and
V (z)2 = 0 for all z ∈ G. These additional properties of the generalized
inverse V , however, are not essential and are not used in the sequel.

In the following fix a commuting n-tuple A = (A1, . . . , An) of bounded
linear operators on a Banach space X, the set G = Cn \ σS(A) and a C∞-
function V : G→ B(Λ[s,X]) with the properties of Corollary 4.2.

Consider the space C∞(G,Λ[s,X]). Clearly, this space can be identified
with the set Λ[s, C∞(G,X)].

The function V : G→ B(Λ[s,X]) induces naturally the operator (denoted
by the same symbol) V : C∞(G,Λ[s,X])→ C∞(G,Λ[s,X]) by

(V y)(z) = V (z)y(z)
(
z ∈ G, y ∈ C∞(G,Λ[s,X])

)
.

Similarly, define the operator δA−z (or δ for short if no ambiguity can arise)
acting in C∞(G,Λ[s,X]) by

(δy)(z) = δA−z y(z)
(
z ∈ G, y ∈ C∞(G,Λ[s,X])

)
.

Clearly, δ2 = 0, V δ + δV = IΛ[s,C∞(G,X)] and both V and δ are ”graded”,
i.e.,

V Λp[s, C∞(G,X)] ⊂ Λp−1[s, C∞(G,X)] and
δΛp[s, C∞(G,X)] ⊂ Λp+1[s, C∞(G,X)].

Consider now another set of indeterminates dz̄ = (dz̄1, . . . ,dz̄n) and the
space Λ[s,dz̄, C∞(G,X)]. Let ∂̄ : Λ[s,dz̄, C∞(G,X)]→ Λ[s,dz̄, C∞(G,X)]
be the linear mapping defined by

∂̄fsi1∧· · ·∧sip∧dz̄j1∧· · ·∧dz̄jq =
n∑

k=1

∂f

∂z̄k
dz̄k∧si1∧· · ·∧sip∧dz̄j1∧· · ·∧dz̄jq .

Obviously, ∂̄2 = 0.
The operators V and δ can be lifted to Λ[s,dz̄, C∞(G,X)] in the natural

way. Clearly, the properties of V and δ are preserved: δ2 = 0, V δ + δV = I
and both V and δ are graded. Note also that δ∂̄ = −∂̄δ and (∂̄ + δ)2 = 0.

LetW : Λ[s,dz̄, C∞(G,X)]→ Λ[s,dz̄, C∞(G,X)] be the mapping defined
in the following way: if ψ ∈ Λ[s,dz̄, C∞(G,X)], ψ = ψ0 + · · · + ψn, where
ψj is the part of ψ of degree j in dz̄, then set Wψ = η0 + · · ·+ ηn, where

η0 = V ψ0,
η1 = V (ψ1 − ∂̄η0),

...
ηn = V (ψn − ∂̄ηn−1).

(5)

Note that ηj is the part of Wψ of degree j in dz̄.

Lemma 4.4. Let W : Λ[s,dz̄, C∞(G,X)] → Λ[s,dz̄, C∞(G,X)] be the
mapping defined by (5). Then:

(i) suppWψ ⊂ suppψ for all ψ;
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(ii) if G′ is an open subset of G and ψ ∈ Λ[s,dz̄, C∞(G,X)] satisfies
(∂̄ + δ)ψ = 0 on G′, then (∂̄ + δ)Wψ = ψ on G′;

(iii) (∂̄ + δ)W (∂̄ + δ) = ∂̄ + δ.

Proof. (i) Clear.
(ii) Let ψ = ψ0 + · · · + ψn, where ψj is the part of ψ of degree j in dz̄.

The condition (∂̄ + δ)ψ = 0 on G′ can be rewritten as

δψ0 = 0,
∂̄ψ0 + δψ1 = 0,

...
∂̄ψn−1 + δψn = 0

(6)

(the condition ∂̄ψn = 0 is satisfied automatically).
Let Wψ = η0 + · · · + ηn, where ηj are defined by (5). The required

condition (∂̄ + δ)Wψ = ψ becomes

δη0 = ψ0,
∂̄η0 + δη1 = ψ1,

...
∂̄ηn−1 + δηn = ψn

(7)

on G′ (again, ∂̄ηn = 0 automatically).
By (5) and (6), one has δη0 = δV ψ0 = (δV +V δ)ψ0 = ψ0 and ∂̄η0 +δη1 =

∂̄η0 + δV (ψ1 − ∂̄η0) = ∂̄η0 + (I − V δ)(ψ1 − ∂̄η0) = ψ1 − V δ(ψ1 − ∂̄η0) = ψ1,
since δ(ψ1 − ∂̄η0) = δψ1 + ∂̄δη0 = δψ1 + ∂̄ψ0 = 0.

It is possible to prove (7) by induction. Suppose that ∂̄ηj−1 + δηj = ψj

for some j ≥ 1. Then δ(ψj+1 − ∂̄ηj) = δψj+1 + ∂̄δηj = δψj+1 + ∂̄ψj = 0
and, by the induction assumption, ∂̄ηj + δηj+1 = ∂̄ηj + δV (ψj+1 − ∂̄ηj) =
∂̄ηj + (I − V δ)(ψj+1 − ∂̄ηj) = ψj+1.

(iii) Since (∂̄ + δ)2 = 0, the statement follows from (ii). �

The differential form

(8) (2i)−ndz̄1 ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn

will be interpreted as the Lebesgue measure in Cn = R2n.
Let P be the natural projection P :Λ[s,dz̄, C∞(G,X)]→Λ[dz̄, C∞(G,X)]

that annihilates all terms containing at least one of the indeterminates
s1, . . . , sn and leaves invariant all the remaining terms.

Let U be a neighbourhood of σS(A). Let f be a function analytic in U .
It is possible to find a compact neigbourhood ∆ of σS(A) such that ∆ ⊂ U
and the boundary ∂∆ is a smooth surface. Define f(A) : X → X by

(9) f(A)x =
−1

(2πi)n

∫
∂∆

Pf(z)Wxs ∧ dz (x ∈ X),
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where dz stands for dz1 ∧ · · · ∧ dzn and s = s1 ∧ · · · ∧ sn. By the Stokes
formula,

f(A)x =
−1

(2πi)n

∫
∆
∂̄ϕPf(z)Wxs ∧ dz,

where ϕ is a C∞-function equal to 0 on a neighbourhood of σS(A) and to 1
on a neighbourhood of Cn \∆.

On Cn \∆ one has

∂̄ϕPfWxs = Pf(∂̄ + δ)Wxs = Pfxs = 0.

Thus it is possible to write

(10) f(A)x =
−1

(2πi)n

∫
Cn

∂̄ϕPf(z)Wxs ∧ dz.

It is clear from the Stokes theorem that the definition of f(A)x does not
depend on the choice of the function ϕ and, by (10), it is independent of ∆.

Moreover, f(A) does not depend on the choice of the mapping W .
Suppose that W1,W2 are two operators satisfying

(∂̄ + δ)Wixs = xs (i = 1, 2).

For those z where ϕ ≡ 1 one has

(∂̄ + δ)ϕf(z)(W1 −W2)xs = 0,

and so the form η = (∂̄+ δ)ϕf(z)(W1−W2)xs has a compact support. One
has ∫

Cn

∂̄ϕPf(z)W1xs ∧ dz −
∫

Cn

∂̄ϕPf(z)W2xs ∧ dz

=
∫

Cn

P ∂̄ϕf(z)(W1 −W2)xs ∧ dz =
∫

Cn

P (∂̄ + δ)ϕf(z)(W1 −W2)xs ∧ dz

=
∫

Cn

Pη ∧ dz =
∫

Cn

P (∂̄ + δ)W1η ∧ dz =
∫

Cn

∂̄PW1η ∧ dz = 0

by the Stokes theorem.
In fact, in the same way it is possible to show that

(11) f(A)x =
−1

(2πi)n

∫
Cn

∂̄ϕfPψ ∧ dz

for any form ψ satisfying (∂̄ + δ)ψ = xs on Cn \ σS(A).
It is possible to express the mapping PW that appears in the definition

of the functional calculus more explicitly. By the definition of W , one has

PWxs = (−1)n−1V (∂̄V )n−1xs = (−1)n−1V0∂̄V1∂̄ · · · ∂̄Vn−1xs.

Note that it is possible to write formulas (9) and (10) also globally:

f(A) = −1
(2πi)n

∫
∂∆

Pf(z)WIs ∧ dz = −1
(2πi)n

∫
Cn

∂̄ϕPf(z)WIs ∧ dz

= (−1)n

(2πi)n

∫
Cn

∂̄ϕfV (∂̄V )n−1Is ∧ dz,
(12)
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where I = IX is the identity operator on X. The coefficients of forms in
(12) are B(X)-valued C∞-functions. Therefore f(A) ∈ B(X).

Proposition 4.5. For n = 1, the functional calculus defined by (12) coin-
cides with the classical functional calculus given by the Cauchy formula.

Proof. Let A ∈ B(X) and let f be a function analytic on a neighbourhood
of σ(A). Then Wxs = V xs = (A − z)−1x. Thus, for a suitable contour Σ
surrounding σ(A), one has

f(A) =
−1
2πi

∫
Σ
PfWIs ∧ dz =

1
2πi

∫
Σ
f(z)(z −A)−1dz,

which is the Cauchy formula. �

The proof of basic properties of this functional calculus is postponed to
the next section where they will be proved more generally, for functions
analytic on a neighbourhood of the Taylor spectrum.

It is worth to note that this simpler split functional calculus is sufficient for
introducing the functional calculus for n-tuples of elements in commutative
Banach algebras. Indeed, let A be a commutative Banach algebra and a =
(a1, . . . , an) ∈ An. Consider the n-tuple La = (La1 , . . . , Lan) ∈ B(A)n.
Then σS(La) = σA(a) and for any function f analytic on a neighbourhood
of σA(a) one can define f(La) ∈ B(A). Then the functional calculus for a
may be defined by f(a) = f(La)(1A). The details are postponed to the next
section.

Remark 4.6. If A = (A1, . . . , An) is a commuting tuple of Hilbert space
operators then it is possible to choose V (z) = (δA−z +δ∗A−z)−1 (this mapping
does not satisfy that V (z)Λp[s,X] ⊂ Λp−1[s,X] but this property is not
essential for the construction). Formula (12) is then quite explicit.

The split functional calculus for Hilbert space operators was constructed
by (Vasilescu, 1979b). For Banach space operators this was generalized in
(Kordula and Müller, 1995).

5. Taylor functional calculus

The most important property of the Taylor spectrum is the existence of
the analytic functional calculus. The calculus was constructed in (Taylor,
1970b). For simplified versions of the calculus see (Levi, 1982; Helemskii,
1981; 1989; Albrecht, 1993; Eschmeier and Putinar, 1996) and (Andersson,
1997). The construction below follows (Müller, 2007) which is based on
(Vasilescu, 1979b).

Let A = (A1, . . . , An) be an n-tuple of commuting operators on a Banach
space X. Let G = Cn \ σT (A).

The key fact is the following theorem.

Theorem 5.1. Let G′ ⊂ G be an open subset. Let η ∈ Λ[s,dz̄, C∞(G′, X)]
satisfy (∂̄ + δ)η = 0. Then there exists ψ ∈ Λ[s,dz̄, C∞(G′, X)] such that
(∂̄ + δ)ψ = η.
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Moreover, it is possible to find ψ such that its support is contained in any
given neighbourhood of supp η.

For each λ ∈ Cn \ σT (A) one can find first a neighbourhood U of λ and
a local solution ψU ∈ Λ[s,dz̄, C∞(U,X)] satisfying (∂̄ + δ)ψU = η on U .
The problem is to glue the local solutions and find a global solution on the
whole set G′. The details are omitted here; for a proof see (Vasilescu, 1979b,
Theorem 8.1) or (Müller, 2007, Theorem 29.9), see also (Frunza, 1975).

Corollary 5.2. Let x ∈ X. Then there exists ψx ∈ Λ[s,dz̄, C∞(G,X)] such
that (∂̄ + δ)ψx = xs.

Let f be a function analytic on a neighbourhood of σT (A). As in (11),
the form ψx can be used to define the vector f(A)x ∈ X. However, this
definition of f(A) is local, defined for each x ∈ X separately, and it is not
clear at the first glance that f(A) defined in this way is continuous and
linear.

For functions f analytic on a neighbourhood of σS(A) it was possible to
find a mapping W acting on Λ[s,dz̄, C∞(Cn \ σS(A), B(X)] such that Wxs
served as ψx. Thus all the considerations were done in the Banach space
B(X).

For functions f analytic on a neighbourhood of σT (A) this is no longer
possible. To simplify the situation, it is possible to consider the Banach
space H(X) of all bounded homogeneous mappings ϕ : X → X, i.e., the
mappings satisfying ϕ(λx) = λx (λ ∈ C, x ∈ X) and ‖ϕ‖ := sup{‖ϕ(x)‖ :
x ∈ X, ‖x‖ ≤ 1} <∞ (no additivity is assumed).

For i = 1, . . . , n let L′Ai
: H(X)→ H(X) be defined by L′Ai

ϕ = Aiϕ (ϕ ∈
H(X)). Let L′A = (L′A1

, . . . , L′An
). Clearly L′A is a commuting n-tuple of

bounded linear operators acting on the Banach space H(X).
Moreover, it is possible to show that σT (L′A) = σT (A). Thus one has

Corollary 5.3. There is a form WA ∈ Λn−1[s,dz̄, C∞(G,H(X))] such that
(∂̄ + δL′A−λ

)WA(λ) = Is, where I is the identity operator on X.

The form WA can be also considered to be a mapping WA : X →
Λn−1[s,dz̄, C∞(G,X)]. Then (∂̄ + δA−λ)WA(λ)x = xs for all x ∈ X.

The definition of the Taylor functional calculus is analogous to the defin-
ition of the split functional calculus.

Recall that P is the projection P : Λ[s,dz̄, C∞(G,X)]→ Λ[dz̄, C∞(G,X)]
that annihilates all terms containing at least one of the indeterminates
s1, . . . , sn and leaves invariant all the remaining terms.

Let U be a neighbourhood of σT (A) and let f be a function analytic on U .
It is possible to find a compact neighbourhood ∆ of σT (A) such that ∆ ⊂ U
and the boundary ∂∆ is a smooth surface. Define f(A) : X → X by

(13) f(A) =
−1

(2πi)n

∫
∂∆

PfWA ∧ dz.



20 VLADIMIR MÜLLER

By the Stokes formula,

f(A) =
−1

(2πi)n

∫
∆
∂̄ϕPfWA ∧ dz,

where ϕ is a C∞-function equal to 0 on a neighbourhood of σT (A) and to 1
on a neighbourhood of Cn \∆.

On Cn \ ∆ one has ∂̄ϕPfWA = Pf(∂̄ + δ)WA = PfIs = 0. Thus it is
possible to write

(14) f(A) =
−1

(2πi)n

∫
Cn

∂̄ϕPfWA ∧ dz.

It is clear from the Stokes theorem that the definition of f(A) does not
depend on the choice of the function ϕ and, by (14), it is independent of ∆.

It is possible to show that f(A) does not depend on the choice of the form
WA.

The following simple lemma will be used frequently.

Proposition 5.4. Let η ∈ Λ[s, dz̄, C∞(G,X)] be a differential form with
compact support disjoint with σT (A) such that (∂̄ + δ)η = 0. Then∫

Cn

Pη ∧ dz = 0.

Proof. By Theorem 5.1, there exists ψ ∈ Λ[s,dz̄, C∞(G,X)] with a compact
support disjoint with σT (A) such that (δ + ∂̄)ψ = η. Then

Pη = P (∂̄ + δ)ψ = P ∂̄ψ.

By the Stokes theorem,∫
Cn

Pη ∧ dz =
∫

Cn

∂̄Pψ ∧ dz = 0.

�

Let x ∈ X and let ψ1, ψ2 ∈ Λ[s,dz̄, C∞(G,X)] satisfy (δ + ∂̄)ψ1 = xs =
(δ+ ∂̄)ψ2. Let ϕ be a C∞-function equal to 0 on a neighbourhood of σT (A)
and to 1 on a neighbourhood of Cn \ U . Then∫

∂̄ϕPfψ1 ∧ dz −
∫
∂̄ϕPfψ2 ∧ dz =

∫
P (δ + ∂̄)ϕf(ψ1 − ψ2) ∧ dz.

On Cn\∆ one has ϕ ≡ 1, and so (δ+ ∂̄)ϕf(ψ1−ψ2) = f(δ+ ∂̄)(ψ1−ψ2) = 0.
Thus the form (δ+∂̄)ϕf(ψ1−ψ2) has a compact support disjoint with σT (A).
By Proposition 5.4,

∫
P (δ + ∂̄)ϕf(ψ1 − ψ2) ∧ dz = 0.

In particular, the definition of f(A) does not depend on the choice of WA.
Note that for the definition of f(A)x one can use any form ψ satisfying

(∂̄+ δA−z)ψ = xs on a neighbourhood of suppϕ. This implies that for func-
tions analytic on a neighbourhood of σS(A) the Taylor functional calculus
coincides with the split functional calculus introduced in the previous sec-
tion. By Proposition 4.5, for n = 1 the Taylor functional calculus coincides
with the usual functional calculus for single operators.
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Lemma 5.5. f(A) ∈ B(X).

Proof. Clearly f(A) ∈ H(X), so it is sufficient to show the additivity of
f(A).

Let x, y ∈ X. Then (δ+ ∂̄)(WAx+WAy) = (x+y)s, and so f(A)(x+y) =∫
Cn ∂̄ϕPf(WAx+WAy) ∧ dz = f(A)x+ f(A)y. �

The following result is the first step to show the multiplicativity of the
Taylor functional calculus.

Proposition 5.6. Let f be a function analytic on a neighbourhood of
σT (A), 1 ≤ j ≤ n and g(z) = zjf(z). Then g(A) = Ajf(A).

Proof. The statement is well-known for n = 1. Suppose that n ≥ 2. Then

−(2πi)n
(
Ajf(A)− g(A)

)
= Aj

∫
Cn

∂̄ϕPfWA ∧ dz −
∫

Cn

∂̄ϕPgzjWA ∧ dz

=
∫

Cn

∂̄ϕf · (Aj − zj)PWA ∧ dz.

Express WA ∈ Λn−1
[
s,dz̄, C∞(G,H(X))

]
as

WA =
∑

F⊂{1,...,n}

sF ∧ ξF ,

where ξF contains no variable from s1, . . . , sn. Since (∂̄ + δA−z)WA = Is,
for each F 6= {1, . . . , n} one has

∂̄ξF +
∑
k∈F

(−1)card {k′∈F :k′<k}(Ak − zk)ξF\{k} = 0.

In particular, for F = {j} one has

∂̄ξ{j} = −(Aj − zj)ξ∅ = −(Aj − zj)PWA.

Thus ∫
Cn

∂̄ϕf · (Aj − zj)PWA ∧ dz =−
∫

Cn

∂̄ϕf∂̄ξ{j} ∧ dz

= −
∫

Cn

∂̄
(
ϕ∂̄fξ{j} − ∂̄ϕfξ{j}

)
∧ dz = 0

by the Stokes theorem. Hence g(A) = Ajf(A). �

Proposition 5.6 implies that the definition of the Taylor functional calculus
for polynomials coincides with the usual definition.

Proposition 5.7. Let A = (A1, . . . , An) ∈ B(X)n, B = (B1, . . . , Bm) ∈
B(X)m. Suppose that (A,B) = (A1, . . . , An, B1, . . . , Bm) is a commuting
(n+m)-tuple and let f and g be functions analytic on a neighbourhood of
σT (A) and σT (B), respectively. Let h be defined by h(z, w) = f(z) · g(w).
Then h(A,B) = g(B)f(A).
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Proof. Write z = (z1, . . . , zn) and w = (w1, . . . , wm). Denote by ∂̄z, ∂̄w and
∂̄z,w the ∂̄ mapping corresponding to z, w and (z, w), respectively. Associate
with B another system t = (t1, . . . , tm) of exterior indeterminates when
defining the operator δB−w.

Choose forms WA,WB and WA,B corresponding to the tuples A,B and
(A,B). Let ∆′ and ∆′′ be compact neighbourhoods of σT (A) and σT (B)
contained in the domains of definition of f and g, respectively. Let ϕ,ψ and χ
be C∞-functions equal to 0 on a neighbourhood of σT (A)

(
σT (B), σT (A,B)

)
and to 1 on a neighbourhood of Cn \ ∆′ (

Cm \ ∆′′ and Cn+m \ ∆′ × ∆′′,
respectively

)
.

Denote by Ps and Pt the projections which annihilate all terms containing
at least one of the variables s1, . . . , sn (t1, . . . , tm, respectively) and leave
invariant the remaining terms. Set P = PsPt.

Let x ∈ X. Then

f(A)x =
−1

(2πi)n

∫
Cn

∂̄zϕPsfWAx ∧ dz =
−1

(2πi)n

∫
Cn

Psξ ∧ dz,

where ξ = (∂̄z + δA−z)ϕfWAx − fxs. If ϕ ≡ 1, then ξ ≡ 0. Thus supp ξ is
compact, supp ξ ⊂ Int ∆′. Further,

(15) g(B)f(A)x =
1

(2πi)n+m

∫
Cm

Pt(∂̄w+δB−w)ψgWB

(∫
Cn

Psξ∧dz
)
∧dw.

On the other hand, −(2πi)m+nh(A,B)x =
∫
Pη1 ∧ dz ∧ dw, where

η1 = (∂̄z,w + δA−z,B−w)χhWA,Bx− hxs ∧ t.

Clearly, supp η1 ⊂ ∆′ ×∆′′.
One has (∂̄z,w + δA−z,B−w)ξ ∧ t = (∂̄z + δA−z)ξ ∧ t = 0. By Theorem 5.1,

there exists α ∈ Λ[s, t,dz̄,dw̄, C∞(Cn+m \ σT (A,B), X)] such that (∂̄z,w +
δA−z,B−w)α = ξ ∧ t. Moreover, one can assume that suppα ⊂ ∆′×Cm. Let

η2 = (∂̄z,w + δA−z,B−w)ψgα− gξ ∧ t.

Then (∂̄z,w +δA−z,B−w)(η1−η2) = 0. Clearly, supp η2 ⊂ ∆′×Cm. Moreover,
if ψ ≡ 1, then η2 ≡ 0, and so supp η2 is compact. On a neighbourhood of
σT (A,B) one has η2 = −gξ ∧ t = fgxs ∧ t = −η1. By Proposition 5.4,∫
P (η1 + η2) ∧ dz ∧ dw = 0, and so

(2πi)m+nh(A,B)x =
∫

Cn+m

Pη2 ∧ dz ∧ dw

= (−1)mn

∫
Cm

(∫
Cn

Pt(∂̄z,w + δB−w)ψgPsα ∧ dz
)
∧ dw

by the Fubini theorem (the factor (−1)mn is caused by convention (8) defin-
ing the Lebesgue measures in Cn, Cm and Cm+n, respectively). By the
Stokes theorem, one has

(2πi)m+nh(A,B)x = (−1)mn

∫
Cm

Pt(∂̄w + δB−w)g
(∫

Cn

ψPsα ∧ dz
)
∧ dw.
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Consider the form

η3 = (−1)mn(∂̄w + δB−w)g
∫

Cn

ψPsα∧ dz− (∂̄w + δB−w)ψgWB

∫
Cn

Psξ ∧ dz.

Clearly, (∂̄w + δB−w)η3 = 0. If ψ ≡ 1, then, by the Stokes theorem,

η3 = (−1)mng

∫
Cn

Ps(∂̄z,w + δA−z,B−w)α ∧ dz − (−1)mng

∫
Cn

∂̄zPsα ∧ dz

−g
∫

Cn

Psξ ∧ dz ∧ t = (−1)mng

∫
Cn

Psξ ∧ t ∧ dz − g
∫

Cn

Psξ ∧ dz ∧ t = 0.

Thus supp η3 is compact and disjoint with σT (B). Hence
∫
Ptη3 ∧ dw = 0

and

(2πi)n+mh(A,B)x =
∫

Cm

Pt(∂̄w + δB−w)ψgWB

∫
Cn

Psξ ∧ dz ∧ dw

= (2πi)m+ng(B)f(A)x

by (15). Hence h(A,B) = g(B)f(A). �

The following simple lemma will be used later:

Lemma 5.8. Let K be a compact subset of Cn and let f be a function
analytic on an open neighbourhood of K. Then there are functions hj (j =
1, . . . , n) analytic on a neighbourhood of the set D = {(z, z) : z ∈ K} such
that

f(z)− f(w) =
n∑

j=1

(zj − wj) · hj(z, w).

Proof. For j = 1, . . . , n define gj by

gj(z1, . . . , zn, w1, . . . , wn)
= f(z1, . . . , zj , wj+1, . . . , wn)− f(z1, . . . , zj−1, wj , . . . , wn).

It is easy to see that gj is analytic on a neighbourhood of D.
Let hj(z, w) = gj(z,w)

zj−wj
. Clearly, hj is analytic at each point (z, w) with

zj 6= wj . By the Weierstrass division theorem, see (Gunning and Rossi,
1965, p. 70), hj can be defined and is analytic also on a neighbourhood of
each point (z, w) with zj = wj . Thus hj is analytic on a neighbourhood of
D. Hence

n∑
j=1

(zj − wj) · hj(z, w) =
n∑

j=1

gj(z, w) = f(z)− f(w).

�

Denote by HK the algebra of all functions analytic on a neighbourhood of
a compact set K ⊂ Cn (more precisely, the algebra of all germs of functions
analytic on a neighbourhood of K).

Theorem 5.9. Let A = (A1, . . . , An) be an n-tuple of mutually commuting
operators on X. Then:
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(i) the mapping f 7→ f(A) is linear and multiplicative, i.e., the Taylor
functional calculus is a homomorphism from HσT (A) to B(X);

(ii) if p is a polynomial, p(z) =
∑

α∈Zn
+
cαz

α, then p(A) =
∑

α∈Zn
+
cαA

α;

(iii) if fn → f uniformly on a compact neighbourhood of σT (A), then
fn(A)→ f(A) in the norm topology;

(iv) f(A) ∈ (A)′′ for each f ∈ HσT (A), where (A)′′ denotes the bicommu-
tant of the set {A1, . . . , An}.

Proof. (i) The linearity of the mapping f 7→ f(A) is clear. Let f and g be
functions analytic on a neighbourhood of σT (A). Consider the (2n)-tuple
(A,A). It is easy to see that σT (A,A) = {(z, z) : z ∈ σT (A)}. Define
functions h1(z, w) = f(z)g(w) and h2(z, w) = f(z)g(z). By Lemma 5.8, it
is possible to write g(z)− g(w) =

∑n
i=1(zi − wi)qi(z, w) for some functions

q1, . . . , qn analytic on a neighbourhood of σT (A,A). By Proposition 5.7, one
has h1(A,A) = f(A)g(A) and h2(A,A) = (fg)(A). Thus, by Proposition
5.6,

(fg)(A)− f(A)g(A) = h2(A,A)− h1(A,A) =
n∑

i=1

(Ai −Ai)(fqi)(A,A) = 0.

Hence (fg)(A) = f(A)g(A).
(ii) The statement follows from Proposition 5.6.
(iii) Follows from the definition.
(iv) Let S ∈ B(X) be an operator commuting with A1, . . . , An. By Propo-

sition 5.7, it is possible to consider f(A) to be a function of the (n+1)-tuple
(A1, . . . , An, S). Therefore f(A) commutes with its argument S. Hence
f(A) ∈ (A)′′. �

It follows from the general theory that the Taylor spectrum satisfies the
spectral mapping property for all polynomials (and consequently, for all
functions that can be approximated by polynomials uniformly on a neigh-
bourhood of the Taylor spectrum). In fact, the spectral mapping property
is true for all analytic functions.

The next lemma shows that each operator Aj behaves as the zero on the
quotient ker δA/Im δa.

Lemma 5.10. Let A = (A1, . . . , An) be a commuting n-tuple of operators
acting on a Banach space X. Let j ∈ {1, . . . , n}. Then Aj ker δA ⊂ Im δA.

Proof. Let ψ ∈ ker δA. Write ψ = sj∧ψ1 +ψ2, where ψ2 does not contain sj .
Then

0 = δAψ = sj ∧Ajψ2 +
∑
i6=j

si ∧ sj ∧Aiψ1 +
∑
i6=j

si ∧Aiψ2.

In particular, Ajψ2 −
∑

i6=j si ∧Aiψ1 = 0. Thus

δAψ1 = sjAjψ1 +
∑
i6=j

si ∧Aiψ1 = sj ∧Ajψ1 +Ajψ2 = Ajψ.
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�

It is natural to expect that f(A) behaves as f(0) on the quotient space
ker δA/Im δA. However, there is a technical difficulty because in general
Im δA is not closed, and so the quotient ker δA/Im δA is not a Banach space.
Therefore the proof is a little bit more complicated.

Lemma 5.11. Let A = (A1, . . . , An) be a commuting n-tuple of operators
on X, let c = (c1, . . . , cn) ∈ σT (A) and let f be a function analytic on a
neighbourhood of σT (A). Consider exterior indeterminates t = (t1, . . . , tn)
and the operator δA−c,t : Λ[t,X]→ Λ[t,X] defined by δA−c,tψ =

∑n
j=1(Aj−

cj)tj ∧ ψ for all ψ ∈ Λ[t,X]. Let η ∈ ker δA−c,t. Then (f(A) − f(c))η ∈
δA−c,tΛ[t,X].

Proof. To define f(A), consider exterior indeterminates s = (s1, . . . , sn), the
mapping δA−z acting on Λ[s,dz̄, C∞(Cn \σT (A), X)] defined by the formula
δA−zψ =

∑n
j=1(Aj − zj)sj ∧ ψ, and the mapping WA corresponding to A.

Note that δA−z and WA are connected with variables s; the mapping δA−c,t

is related to variables t.
Without loss of generality one can assume that η is homogeneous of degree

p, 0 ≤ p ≤ n.
Since η ∈ Λp[t,X] and Λ[t,X] is a direct sum of

(
n
p

)
copies of X, it is pos-

sible to define the form ξ0 := WAη ∈ Λ[s, t,dz̄, C∞(G,X)] coordinatewise.
Then (∂̄+δA−z)ξ0 = s∧η and (∂̄+δA−z)δA−c,tξ0 = −δA−c,t(∂̄+δA−z)ξ0 = 0.
Thus there exists ξ1 ∈ Λ[s, t,dz̄, C∞(G,X)] such that (∂̄ + δA−z)ξ1 =
δA−c,tξ0.

Similarly one can construct forms ξ1, . . . , ξn−p ∈ Λ[s, t,dz̄, C∞(G,X)]
such that (∂̄ + δA−z)ξk+1 = δA−c,tξk. Clearly the degree of ξk in t is p+ k.

Set ξ =
∑n−p

k=0(−1)kξk Then

(∂̄ + δA−z + δA−c,t)ξ =
n−p∑
k=0

(−1)k(∂̄ + δA−z)ξk +
n−p∑
k=0

(−1)kδA−c,tξk = s ∧ η,

since δA−c,tξn−p = 0.
Let ∆ be a compact neighbourhood of σT (A) contained in the domain of

definition of f . Let ϕ be a C∞-function equal to 0 on a neighbourhood of
σT (A) and to 1 on a neighbourhood of Cn \ ∆. Let Ps be the projection
annihilating all terms that contain at least one of the variables s1, . . . , sn

and leaving invariant all other terms.
Consider the integral

∫
(∂̄ + δA−c,t)Psϕξ ∧ dz =

∫
(∂̄ + δA−c,t)Psϕ

n−p∑
k=0

(−1)kξk ∧ dz.
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Since ξk has degree p+k in t and n−k−1 in (s,dz̄), the only relevant term
in the integral above is ξ0. Thus∫

(∂̄ + δA−c,t)Psϕξ ∧ dz =
∫

(∂̄ + δA−c,t)Psϕξ0 ∧ dz

=
∫
∂̄PsϕWAη ∧ dz = −(2πi)nf(A)η.

Consider now the n-tuple B = (c1I, . . . , cnI) ∈ B(X)n. Since f can be
approximated by polynomials uniformly on a neighbourhood of c, one has
f(B) = f(c) · I.

As above, consider the mappings δB−z andWB connected with variables s.
Let ξ′0 = WBη and inductively define ξ′k ∈ Λ[s, t,dz̄, C∞(G,X)] satisfying
(∂̄ + δB−z)ξ′k+1 = δA−c,tξ

′
k.

Let ξ′ =
∑n−p

k=0(−1)kξ′k. As above, one has (∂̄ + δB−z + δA−c,t)ξ′ = s ∧ η
and ∫

(∂̄ + δA−c,t)Psϕξ
′ ∧ dz =

∫
(∂̄ + δA−c,t)PsϕWBη ∧ dz

=
∫
∂̄PsϕWBη ∧ dz = −(2πi)nf(B)η = −(2πi)nf(c)η.

To show that (f(A)− f(c))η ∈ δA−c,tΛ[t,X], consider the linear mapping U
acting on Λ[s, t,dz̄, C∞(Cn \ σT (A), X)] defined by

U
(
ti1 ∧ · · · ∧ tim ∧ ψ

)
= (ti1 − si1) ∧ · · · ∧ (tim − sim) ∧ ψ

for all i1, . . . , im and ψ ∈ Λ[s,dz̄, C∞(Cn \σT (A), X)]. Then PsU = Ps and,
for each ψ ∈ Λ[s, t,dz̄, C∞(Cn \ σT (A), X)],

U(∂̄ + δA−z + δA−c,t)ψ
= ∂̄Uψ +

∑
(Aj − zj)sj ∧ Uψ +

∑
(Aj − cj)(tj − sj) ∧ Uψ

= (∂̄ + δB−z + δA−c,t)Uψ.

One has

−(2πi)nf(A)η =
∫

(∂̄ + δA−c,t)Psϕξ ∧ dz =
∫
Ps(∂̄ + δA−z + δA−c,t)ϕξ ∧ dz

=
∫
PsU(∂̄ + δA−z + δA−c,t)ϕξ ∧ dz =

∫
Ps(∂̄ + δB−z + δA−c,t)ϕUξ ∧ dz.

Thus

−(2πi)n
(
f(A)−f(c)

)
η =

∫
Ps(∂̄+δB−z+δA−c,t)ϕ(Uξ−ξ′)∧dz =

∫
Psθ∧dz,

where θ = (∂̄ + δB−z + δA−c,t)ϕ(Uξ − ξ′). If ϕ ≡ 1, then θ is equal to

(∂̄+δB−z+δA−c,t)Uξ−s∧η = U(∂̄+δA−z+δA−c,t)ξ−s∧η = U(s∧η)−s∧η = 0;

so supp θ ⊂ Int ∆. Furthermore, θ can be written as θ = (∂̄+δB−z +δA−c,t)ψ
for some form ψ ∈ Λ[s, t,dz̄, C∞(Cn, X)] with compact support. Indeed,
by Theorem 5.1, there exists a form ϑ ∈ Λ[s, t,dz̄,dw̄, C∞(C2n, X)] with
suppϑ ⊂ ∆× Cn such that (∂̄z,w + δB−z + δA−c,t)ϑ = θ.
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Set ψ(z) = ϑ0(z, c), where ϑ0 is the part of ϑ containing none of the
variables dw̄j . Then suppψ ⊂ ∆ and (∂̄z + δB−z + δA−c,t)ψ = θ. By the
Stokes theorem,∫

Psθ ∧ dz =
∫
Ps(∂̄z + δB−z + δA−c,t)ψ ∧ dz

=
∫
∂̄zPsψ ∧ dz +

∫
PsδA−c,tψ ∧ dz = δA−c,t

∫
Psψ ∧ dz ∈ δA−c,tΛ[t,X].

�

Proposition 5.12. Let A = (A1, . . . , An) be a commuting n-tuple of oper-
ators on X, c = (c1, . . . , cn) ∈ σT (A) and let f be a function analytic on a
neighbourhood of σT (A). Then the (n+1)-tuple

(
A1−c1, . . . , An−cn, f(A)

)
is Taylor regular if and only if f(c) 6= 0.

Proof. Relate exterior variables s1, . . . , sn+1 to the (n+1)-tuple (A−c,f(A)).
Write for short s = (s1, . . . , sn). Let δA−c : Λ[s,X] → Λ[s,X] be defined
by δA−cψ =

∑
(Aj − cj)sj ∧ ψ (ψ ∈ Λ[s,X]). One has Λ[s, sn+1, X] =

Λ[s,X]⊕sn+1∧Λ[s,X]. The operator δA−c,f(A) corresponding to the (n+1)-
tuple (A− c, f(A)) can be written in this decomposition in the matrix form

δA−c,f(A) =
(
δA−c 0
f(A) −δA−c

)
.

Consider the following two cases:
(a) f(c) = 0.
Since c ∈ σT (A), there is a ψ ∈ Λ[s,X] such that δA−cψ = 0 and ψ /∈

δA−cΛ[s,X]. By the preceding lemma, there is an η ∈ Λ[s,X] such that
f(A)ψ = δA−cη. Then δA−c,f(A)(ψ + sn+1 ∧ η) = 0 and (ψ + sn+1 ∧ η) /∈
δA−c,f(A)Λ[s, sn+1, X] since ψ /∈ δA−cΛ[s,X].

Thus the (n+ 1)-tuple (A− c, f(A)) is Taylor singular.

(b) f(c) 6= 0. Without loss of generality one can assume that f(c) = 1.
Let ψ, ξ ∈ Λ[s,X], δA−c,f(A)(ψ + sn+1 ∧ ξ) = 0. Then δA−cψ = 0 and

f(A)ψ − δA−cξ = 0. By the preceding lemma, f(A)ψ − ψ ∈ δA−cΛ[s,X].
Since f(A)ψ ∈ δA−cΛ[s,X], one has ψ = δA−cη for some η ∈ Λ[s,X].

Further, δA−c(f(A)η−ξ) = f(A)ψ−δA−cξ = 0. Thus there is a θ ∈ Λ[s,X]
with f(A)(f(A)η − ξ) − (f(A)η − ξ) = δA−cθ. Set η′ = η − (f(A)η − ξ).
Then δA−cη

′ = δA−cη = ψ and f(A)η′ − δA−cθ = f(A)η − f(A)(f(A)η −
ξ) + δA−cθ = f(A)η − (f(A)η − ξ) = ξ. Hence δA−c,f(A)(η′ − sn+1 ∧ θ) =
(ψ + sn+1 ∧ ξ) and the (n+ 1)-tuple (A− c, f(A)) is Taylor regular. �

Lemma 5.13. Let A = (A1, . . . , An) be a commuting n-tuple of operators
on X, let f be a function analytic on a neighbourhood of σT (A). Denote by
A the commutative Banach algebra generated by A1, . . . , An and f(A). Let
ϕ be a multiplicative functional on A such that ϕ(B) ∈ σT (B) for all tuples
B = (B1, . . . , Bm) of operators in A. Then ϕ(f(A)) = f(ϕ(A)).
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Proof. Consider the (n + 1)-tuple
(
A1 − ϕ(A1), . . . , An − ϕ(An), f(A) −

ϕ(f(A))
)
. By assumption, this (n + 1)-tuple is Taylor singular. By the

previous proposition, one has f(ϕ(A))− ϕ(f(A)) = 0. �

Corollary 5.14. (spectral mapping property) Let σ̃ be a spectral system on
B(X) which is contained in the Taylor spectrum. Let A = (A1, . . . , An) be
a commuting n-tuple of operators on X and let f = (f1, . . . , fm) be an m-
tuple of functions analytic on a neighbourhood of σT (A). Then σ̃(f(A)) =
f(σ̃(A)).

In particular, σT (f(A)) = f(σT (A)). Similarly, σπk(f(A)) = f(σπk(A))
and σδk(f(A)) = f(σδk(A)) for all k = 0, . . . , n.

Proof. Consider the commutative Banach algebraA generated byA1, . . . , An

and f1(A), . . . , fm(A). Since the restriction of σ̃ to A is again a spectral sys-
tem, there is a compact subset K ⊂ M(A) such that σ̃(B) = {ϕ(B) : ϕ ∈
K} for each tuple B = (B1, . . . , Bk) ⊂ A, see (Żelazko, 1979) or (Müller,
2007, Theorem 7.12).

Then

σ̃(f(A)) = {(ϕ(f1(A), . . . ϕ(fm(A))) : ϕ ∈ K}
= {(f1(ϕ(A)), . . . , fm(ϕ(A))) : ϕ ∈ K} = {f(c) : c ∈ σ̃(A)} = f(σ̃(A)).

�

Corollary 5.15. Let A = (A1, . . . , An) be a commuting n-tuple of operators
on X. Suppose that σT (A) ⊂ U1 ∪ U2, where U1, U2 are open disjoint sets.
Then there exists closed subspaces X1, X2 ⊂ X invariant for A1, . . . , An such
that X = X1 ⊕X2 and σT (A1|Xj , . . . , An|Xj) ⊂ Uj for j = 1, 2.

Proof. Consider the function f ≡ 1 on U1 and f ≡ 0 on U2. It is easy to see
that f(A) is a projection, Set X1 = f(A)X and X2 = (1− f)(A)X. �

The following theorem was proved by (Putinar, 1982).

Theorem 5.16. (superposition principle) Let A = (A1, . . . , An) be a com-
muting n-tuple of operators onX, let f = (f1, . . . , fm) be anm-tuple of func-
tion analytic on a neighbourhood of σT (A), let B = f(A), let g be a function
analytic on a neighbourhood of σT (B) and let h(z) = g(f1(z), . . . , fm(z)).
Then h(A) = g(B).

Proof. By Lemma 5.8, g(v)− g(w) =
∑m

j=1(vj − wj)rj(v, w) for some func-
tions r1, . . . , rm analytic on a neighbourhood of the set

{
(v, v) : v ∈ σT (B)

}
.

So g(f(z))−g(w) =
∑m

j=1(fj(z)−wj)r′j(z, w), where r′j(z, w) = rj(f(z), w))
are functions analytic on certain neighbourhood of the set σT (A, f(A)) ={

(z, f(z)) : z ∈ σT (A)
}

. Thus h(A)−g(B) =
∑m

j=1(fj(A)−Bj)r′j(A,B) = 0.
Hence h(A) = g(B). �

As a corollary of the Taylor functional calculus it is possible to obtain the
properties of the functional calculus in commutative Banach algebras.
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Theorem 5.17. Let A be a commutative Banach algebra. To each finite
family a = (a1, . . . , an) of elements of A and each function f ∈ Hσ(a) it is
possible to assign an element f(a) ∈ A such that the following conditions
are satisfied:

(i) if f(z1, . . . , zn) =
∑

α∈Zn
+
cαz

α1
1 · · · zαn

n is a polynomial in n indeter-

minates, then f(a1, . . . , an) =
∑

α∈Zn
+
cαa

α1
1 · · · aαn

n ;

(ii) the mapping f 7→ f(a1, . . . , an) is an algebra homomorphism from
the algebra Hσ(a1,...,an) to A;

(iii) if U is a neighbourhood of σ(x1, . . . , xn), f , fk (k ∈ N) are analytic
in U and fk converge to f uniformly on U , then

fk(a1, . . . , an)→ f(a1, . . . , an);

(iv) if ϕ ∈M(A) and f ∈ Hσ(a1,...,an), then

ϕ
(
f(a1, . . . , an)

)
= f

(
ϕ(a1), . . . , ϕ(an)

)
;

(v) σ̃
(
f(a1, . . . , an)

)
= f

(
σ̃(a1, . . . , an)

)
for each compact-valued spec-

tral system in A;
(vi) if a1, . . . , am ∈ A, n < m, f ∈ Hσ(a1,...,an) and f̃ ∈ Hσ(a1,...,am) satisfy

f̃(z1, . . . , zm) = f(z1, . . . , zn) for all z1, . . . , zm in a neighbourhood
of σ(a1, . . . , am), then

f̃(a1, . . . , am) = f(a1, . . . , an);

(vii) if f1, . . . , fm ∈ Hσ(a), bi = fi(a), g ∈ Hσ(b1,...,bm) and h ∈ Hσ(a) is
defined by h(z) = g(f1(z), . . . , fm(z), then h(a) = g(b).

Proof. For an n-tuple a = (a1, . . . , an) ∈ An consider the left multiplication
operators Lai ∈ B(A) defined by Laix = aix (x ∈ A, i = 1, . . . , n). Then
La = (La1 , . . . , Lan) is a commuting n-tuple of operators. It is easy to show
that σ(a) = σT (La).

For a function f analytic on a neighbourhood of σ(a) set f(a) = f(La)1A.
Since f(La) ∈ (La)′′, for each b ∈ A one has f(La)(b) = f(La)Lb(1A) =

Lbf(La)(1A) = b · f(a) = Lf(a)(b). Thus f(La) = Lf(a).
Properties (i), (ii), (iii), (vi) and (vii) follow from the corresponding prop-

erties of the Taylor functional calculus; the multiplicativity follows from the
observation that

(fg)(a) = (fg)(La)(1A) = f(La)g(La)(1A) = Lf(a)g(a) = f(a)g(a).

Property (iv) follows from Lemma 5.13; this implies also (v). �

It is possible to show that properties (i), (ii), (iii) and (vi) determine the
functional calculus uniquely, see (Zame, 1979). For the unicity of the Taylor
functional calculus see (Putinar, 1983).



30 VLADIMIR MÜLLER

6. Concluding remarks

The Taylor spectrum and the corresponding functional calculus are de-
fined for n-tuples of commuting Banach space operators. It is a natural
question whether it is possible to define something similar for commuting
n-tuples of elements of a Banach algebra.

Let A be a unital Banach algebra and a1, . . . , an ∈ A mutually commut-
ing elements. The first idea is of course to define the Taylor spectrum of
(a1, . . . , an) as the Taylor spectrum of the n-tuple (La1 , . . . , Lan) ∈ B(A)n.
However, if A = B(X) for some Banach space X and A1, . . . , An ∈ B(X)
commuting operators, then σT (LA1 , . . . , LAn) is equal to the split spectrum
σS(A1, . . . , An), and not to the Taylor spectrum σT (A1, . . . , An). So this
natural definition of the Taylor spectrum in Banach algebras is not proper.

Problem 6.1. Does there exist a reasonable definition of the Taylor spec-
trum and corresponding functional calculus for commuting n-tuples of Ba-
nach algebra elements?

Further problems concern relations between the Taylor functional calculus
and other types of spectra.

It was mentioned above that the split spectrum is in general bigger than
the Taylor spectrum. However, it is not clear whether the Taylor functional
calculus is really richer than the split functional calculus.

Problem 6.2. Let A = (A1, . . . , An) ∈ B(X)n be a commuting n-tuple of
operators. Let f be a function analytic on a neighbourhood of σT (A). Is it
possible to extend f analytically to a neighbourhood of σS(A)?

Note that for each polynomial p one has

p(σS(A)) = σs(p(A)) = σ(p(A)) = σT (p(A)) = p(σT (A)).

So σT (A) can be smaller than σS(A) but not ”much smaller”.
The following problem is similar. Note that the Taylor spectrum is not

the smallest set for which there exists an analytic functional calculus. For
example, for n = 2, one has σap(A) ∪ σsur(A) ⊃ ∂σT (A). So any function
analytic on a connected neighbourhood of σap(A)∪σsur(A) can be extended
analytically to a neighbourhood of σT (A).

Problem 6.3. Is it possible to find a reasonable subset of the Taylor spec-
trum such that each function analytic on its neighbourhood can be extended
analytically to a neighbourhood of the Taylor spectrum?
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