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1. INTRODUCTION AND NOTATION
On the interval [a, b] we consider the two-dimensional differential system
(1.1) wi(t) = ol (ur)(t) + oinlia(u2)(t) + ¢ (t) (i=1,2)
with the initial conditions
(1.2) ui(a) = ey, uz(a) = ca,
where l;r: C([a,b];R) — L([a,b]; R) are linear nondecreasing operators, o;, €

{-1,1}, ¢ € L([a,b;R), and ¢; € R (i,k = 1,2). Under a solution of the
problem (1.1), (1.2) we understand an absolutely continuous vector function
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u = (u1,u2)’: [a,b] — R? satisfying (1.1) almost everywhere on [a,b] and veri-
fying also the initial conditions (1.2).

The problem of solvability of the Cauchy problem for linear functional differential
equations and their systems has been studied by many authors (see, e.g., [1], [2], [3],
[4], 5], [6], [9], [10], [11], [12], [13], [14], [15], [17] and references therein). At present,
there are not but a few efficient conditions guaranteeing the unique solvability of the
initial value problem for n-dimensional systems of functional differential equations,
and most of them are available for the one-dimensional case only or for the systems
with the so-called Volterra operators (see, e.g., [3], [4], [5], [12], [9], [6]). Let us
mention that some efficient conditions guaranteeing the unique solvability of the
problem studied can be found, e.g., in [11], [2], [14], [13], [10].

In this paper we establish new efficient conditions sufficient for the unique solv-
ability of the problem (1.1), (1.2) with 017 = —1 and 092 = —1. The cases when
011 = 092 = 1 and 011092 = —1 are studied in [8] and [16], respectively.

The paper is based on the Fredholm property of the problem considered. The
assumptions of Theorems 2.1-2.3 guarantee that the homogeneous problem corre-
sponding to (1.1), (1.2) has only the trivial solution. To prove this, suitable a priori
estimates are found for the maximal and minimal values of a possible nontrivial
solution of the homogeneous problem indicated.

The integral conditions given in Theorems 2.1-2.3 are optimal in a certain sense;
this is shown by counter-examples constructed in the last part of the paper.

The following notation is used throughout the paper:

(1) R is the set of all real numbers, Ry = [0, +00].
(2) C([a,b]; R) is the Banach space of continuous functions u: [a,b] — R equipped
with the norm
lulle = max{[u(®)|: € [a,b]}

(3) L([a,b]; R) is the Banach space of Lebesgue integrable functions h: [a,b] — R
equipped with the norm

b
nmu:/NM@m&

(4) L([a,b]; Ry) = {h € L([a,b]; R): h(t) >0 for a.a. t € [a,b]}.
(5) An operator I: C([a,b]; R) — L([a,b];R) is said to be nondecreasing if the
inequality
l(up)(t) < l(ug)(t) for a.a. tE€ [a,b]

holds for every functions u1,us € C([a,b]; R) such that
u1(t) < wue(t) fort € la,b).
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(6) Pap is the set of linear nondecreasing operators I: C([a, b]; R) — L([a, b]; R).

In what follows, the equalities and inequalities with integrable functions are un-
derstood to hold almost everywhere.

2. MAIN RESULTS

In this section we present the main results of the paper. The proofs are given
later, in Section 3. Theorems formulated below contain efficient conditions sufficient
for the unique solvability of the problem (1.1), (1.2) with 013 = —1 and 092 = —1.
Recall that the operators [;; are supposed to be linear and nondecreasing, i.e., such
that l;p € Pup for i,k =1, 2.

Put
b
(2.1) Aik:/ Lie(1)(s)ds for ik =1,2
and
(2.2) (5) 1 for s € [0, 1],
. S) =
i 1—3(s—1)% forse[l,3].

First we consider the case when o19091 > 0.

Theorem 2.1. Let 011 = —1, 099 = —1 and 012091 > 0. Let, moreover,
(23) A11 < 3, A22 < 3,
and
1
(2.4) ApAoy < ;@(All)@(Am),
where
(25) w = Inax{l, All(AQQ — 1), AQQ(All — 1)},

the numbers A;;, (i,k = 1,2) are defined by (2.1) and the function ¢ is given by
(2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.1. The strict inequalities (2.3) cannot be replaced by the nonstrict
ones (see Example 4.1). Furthermore, the strict inequality (2.4) cannot be replaced
by the nonstrict one provided w = 1 (see Examples 4.2-4.4).
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Remark 2.2. Let Hy be the set of triplets (z,y,z) € R} satisfying

<3 y<3 a< p()e(y)

max{l,x(y —1),y(x — 1)}

(see Fig.2.1).

According to Theorem 2.1, the problem (1.1), (1.2) is uniquely solvable if l;;, € Pqp
(i,k =1,2) are such that

(/ 1 (1)(s)ds, / " Ia(1)(s) ds, / " La(1)(s)ds / () as) < .

Now we consider the case when o209 < 0.

Theorem 2.2. Let 017 = —1, 099 = —1 and 013091 < 0. Let, moreover, the
condition (2.3) be satisfied and

1 .
(26) Ap A < 5(3 — max{Au, AQQ})(P(mln{All, AQQ}),
where
(27) 0 = max{l, 3(A11 — 1), 3(A22 — 1)},

the numbers A;, (i,k = 1,2) are defined by (2.1) and the function ¢ is given by
(2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.3. The strict inequalities (2.3) cannot be replaced by the nonstrict
ones (see Example 4.1). Futhermore, the strict inequality (2.6) cannot be replaced by
the nonstrict one provided ¢ = 1 and max{A11, A22} > 1 (see Examples 4.5 and 4.6).
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Remark 2.4. Let H be the set of triplets (z,y,z) € R} satisfying

(3 — max{z,y})p(min{z, y})
r<3, y<3, z< max{l,?)(.%'— 1),3(y — 1)}

(see Fig.2.2).
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Fig. 2.2.

According to Theorem 2.2, the problem (1.1), (1.2) is uniquely solvable if l;; € Pgp
(i,k =1,2) are such that

(/ablu(l)(s) ds,/ab l22(1)(s) ds,/abllg(l)(s)ds /ab l21(1)(s) ds> € Hs.

If max{Aj1, A2o} < 1 then the assumption (2.6) of Theorem 2.2 can be improved.

For example, the next theorem improves Theorem 2.2 whenever max{Ai1, Aga} is
close to zero.
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Theorem 2.3. Let 011 = —1, 099 = —1 and 012021 < 0. Let, moreover,

(2.8) An <1,  Ap <1,
and
(2.9) A Aoy < A
’ e AM(Arr + Agy — A1 Agg) + A1 Age + 1
where
(2.10) A=d+ (V1=An+V1—Ap)°

and the numbers A;; (i,j = 1,2) are defined by (2.1). Then the problem (1.1), (1.2)
has a unique solution.

Remark 2.5. If Aj; = Agy = 0 then the inequality (2.9) can be rewritten as
A12421 <8,
which coincides with the assumptions of Theorem 2.2 in [8].
Remark 2.6. Let H3 be the set of triplets (z,y,2) € R} satisfying

Ao
Mz +y —zy) +ay + 1

r<l1l, y<l1l, =z<

where

N=d+(VT—z+/1—y)
(see Fig.2.3).

According to Theorem 2.3, the problem (1.1), (1.2) is uniquely solvable if l;;; € Py
(i,k = 1,2) are such that

( / L (1)(s) s, / I (1)(s) s, / L (1)(s) ds / (1)) ds> € H;

3. PROOFS OF THE MAIN RESULTS

In this section we shall prove the statements formulated above. Recall that the
numbers A;; (i, = 1,2) are defined by (2.1) and the function ¢ is given by (2.2).

It is well-known from the general theory of boundary value problems for functional
differential equations (see, e.g., [11], [7], [10], [15]) that the following lemma is true.
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Fig. 2.3.

Lemma 3.1. The problem (1.1), (1.2) is uniquely solvable if and only if the

corresponding homogeneous problem

(3.1) u;(t) = oillil(ul)(t) + 0i21i2(u2)(t) (z =1,2),
(3.2) ui(a) =0, uz(a) =0

has only the trivial solution.

In order to simplify the discussion in the proofs below, we formulate the following

obvious lemma.

Lemma 3.2. (uj,u2)? is a solution of the problem (3.1), (3.2) if and only if
(u1, —ug)? is a solution of the problem

(33) ’Uzl-(t) = (—1)1.7101'1%1(’01)(15) + (—1)i0i2li2(vz)(t) (Z = 1, 2),
(3.4) vi(a) =0, va(a) = 0.
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Lemma 3.3. Let the function ¢ be defined by (2.2). Then, for any 0 < z < y < 3,
the inequality

(3.5) B—y)elx) < (3—1)p(y)
is satisfied.

Proof. Let 0 < z < y < 3 be arbitrary but fixed. It is clear that one of the
following cases occurs:
(a) 0 <2 <y <1holds. Then

(B-y)px)=3-y<3-z=3-12)py)
(b) 0< < 1and1<y<3. Then we have
3-y<2l-3(y-1)7%
Consequently,
(B-y)e@) =3 -y <20 - 3y-1°] < B -2)ey)
(c) 1<z <y<3is true. Then we obtain
B-yd-(z-1]=0B-y)2+@-D]2-(z-1)]

=B-y»(l+2)B-2)<B-2)(1+y)B-y)
=B-2)2+@w-1]2-w-1D]=0B-2)[4-(y—1)?,

i.e., the inequality (3.5) holds.

Now we are in position to prove Theorems 2.1-2.3.

Proof of Theorem 2.1. According to Lemmas 3.1 and 3.2, in order to prove
the theorem it is sufficient to show that the system

uy(t) = =l (ur)(t) + iz (u2)(t),
(3.7) us(t) = lo1 (u1)(t) — laz(uz)(t)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (u;,us)” is a nontrivial solution of the problem
(3.6), (3.7), (3.2). For i = 1,2, we put

(3.8) M; = max {u;(t): t € [a,b]}, m; =—min{w(t): t € [a,b]}.
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Choose «;, §; € [a,b] (i =1,2) such that the equalities

(3.9) uy (o) = My, ui(fh) = —mu
and
(3.10) uz(az) = Mo, uz(fB2) = —ma

are satisfied. Obviously, (3.2) guarantees
M; >0, m;>0 fori=1,2.

Furthermore, for i,k = 1,2, we denote

min{e;,B:} max{c;,B;}
a min{a;,3: }

It is clear that
(3.12) Bip + Dy, < Ay, forik=1,2.

For the sake of clarity we shall divide the discussion into the following cases.
(a) Neither of the functions u; and ug changes its sign and us (t)uz(t) > 0 holds for
t € [a,b]. Then, without loss of generality, we can assume that

ui(t) =0, we(t) >0 forte a,b].

(b) Neither of the functions u; and us changes its sign and wu; (t)uz(t) < 0 holds for
t € [a,b]. Then, without loss of generality, we can assume that

ui(t) =0, wu2(t) <0 fort e a,b].

(c) One of the functions u; and ug is of a constant sign and the other one changes
its sign. Then, without loss of generality, we can assume that ui(t) > 0 for
t € la,b].

(d) Both functions u; and ws change their signs. Then, without loss of generality,
we can assume that a3 < (3. Obviously, one of the following conditions is
satisfied.

(d1) B2 < ag and D;; > 1 for some i € {1,2}.
(d2) B2 < az and Dy <1 fori=1,2.
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(d3) B2 > ag and D;; > 1 for some i € {1,2}.
(d4) B2 > ag and Dy; <1 fori=1,2.

First we note that the function ¢ satisfies

(3.13) ¢(Ai) <1— By(Dyi —1) fori=1,2.
Case (a): u1(t) > 0 and ug(t) > 0 for ¢ € [a,b]. Obviuously,

(3.14) M; >0, My>0, M + M >0.

The integrations of (3.6) and (3.7) from a to ay and from a to as, respectively, in
view of (3.8), (3.9), (3.10) and the assumptions l;; € Pap, result in

(677

(3.15) M; = (~1)i /ai Lix () (s) ds + (—1)i—1/ lia(us)(s) ds
< Ms_; /ai lis—i(1)(s)ds < M3_;Ajz—; (1 =1,2).

By virtue of (3.14), (3.15) implies M7 > 0, My > 0 and Aj2A2; > 1, which contra-
dicts (2.4), because w > 1 and 0 < p(A;;) < 1fori=1,2.

Case (b): u1(t) > 0 and uo(t) < 0 for ¢t € [a,b]. In view of the assumptions
lij € Pap (1,7 =1,2), (3.6) and (3.7) imply v/ (¢) < 0 for ¢t € [a,b] and u5(t) > O for
t € [a, b], respectively. Consequently, u; = 0 and us = 0, which is a contradiction.

Case (¢): u1(t) =2 0 for t € [a,b] and us changes its sign. Obviously, m; = 0 and

(316) My > 0, meo > 0.

Suppose that B2 < «y (the case when 3 > ay can be proved analogously). The
integration of (3.6) from a to «y, on account of (3.8), (3.9) and the assumptions
li1,li2 € Pay, yields
a1 [e5)
(3.17) My = _/ lll(ul)(s)ds—l—/ ia(uz)(s) ds
< Mg/ 1 112(1)(8) ds < M2A12.

On the other hand, the integrations of (3.7) from a to 82 and from 3 to as, in view
of (3.8), (3.10), (3.11) and the assumptions la1, l22 € Pyp, result in

B2 B2
(3.18) mo = —/ 21 (ul)(s) ds +/ oo (UQ)(S) ds
a /82 a
< Mz/ 122(1)(8) ds = MQBQQ
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and

a2

(319) M2 + mg = /OL2 lgl(ul)(s) ds — / lgg(’dg)(s) ds

2
a2

asz
< M1 / 121(1)(8) ds + mg/ 122(1)(8) ds = M1D21 + nggg,
2

2

respectively.
It follows from (3.17) and (3.19) that

(3.20) My < My A2 A21 + ma(Daz — 1).
Hence, by virtue of (2.4) and (3.16), (3.20) implies
(3.21) 0 < Ma(1 — A1aAsy) < ma(Das —1).
Using (3.13), the relations (3.18) and (3.21) result in

¢(A22) <1 — Baz(Daa — 1) < A1 Ao,

which contradicts (2.4), because w > 1 and 0 < p(A;11) < 1.
Case (d): u; and ug change their signs and oy < 1. Obviously,

(322) M; >0, m; >0 fori=1,2.

The integrations of (3.6) from a to «; and from ay to (1, in view of (3.8), (3.9),
(3.11) and the assumptions l11,l12 € Pap, yield

(3.23) M = — / () (s) ds + / " () (s) ds

ay
§ mq / 111(1)(8) ds + M2/ 112(1)(5) ds = m1B11 + M2B12

and
B B
(324) Ml +mp = / lll(ul)(s) ds — / llQ(UQ)(S) ds
[e5} [e58
B B
< Ml/ 111(1)(s)ds+m2/ lm(l)(S)dSZMlDll + moD1s.
[e%} Q1
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Furthermore, under the assumption 82 < ag, the integrations of (3.7) from a to 52
and from (2 to aw, in view of (3.8), (3.10), (3.11) and the assumptions la1, a2 € Pap,
result in

B2 B2
(3.25) mo = —/ lo1(u1)(s)ds +/ loa(uz2)(s)ds
B2 B2
g mia / 121(1)(8) dS =+ MQ/ 122(1)(8) dS = m1B21 =+ M2B22

and

fe

(326) M2 + meo = /az lgl(ul)(s) ds — / ZQQ(UQ)(S) ds

2
a2

Qs
§ Ml / 121(1)(8) dS =+ m2/ 122(1)(5) dS = M1D21 + m2D22.
2

2

If B2 > a9, we obtain in a similar manner the inequalities

(3.27) My < My By + maoBaa,
(328) M2 “+ mo § m1D21 + MQDQQ.

Now we are in position to discuss the cases (d1)—(d4).

Case (dl): B2 < ag and D;; > 1 for some i € {1,2}. Suppose that Dag > 1 (the
case D11 > 1 can be proved analogously). Using this assumption, from (3.25) and
(3.26) we get

mo < m1Bar + M1Bas Do + maBas(Das — 1)

and
My < M1Da1 4+ myBa1(Dag — 1) + MaBas(Dag — 1).

Hence, in view of (3.13), the last two inequalities yield

(3.29) maop(As2) < miBay + My B2y Doy,
(3.30) Map(Aaz) < My Day + myBai(Dag — 1).

By virtue of (2.4) and (3.22), it follows from (3.23), (3.30) and (3.24), (3.29) that

(3.31) 0 < My[p(Az2) — B12Da1]) < mi[p(Aze) By + B12Ba1 (Do — 1)
and
(3.32) 0 < mi[p(A22) — Di2Bai] < Mi[p(A22)(D11 — 1) + Di12D21 Bay),
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respectively. Combining (3.31) and (3.32), we get

(3.33)  ¢*(Az) < ¢(Az2)[Bi12D21 + D12Bo]
— B12D12B21 D21 (1 — Baa(D2s — 1))
+ ¢(A22)[B12B21(D11 — 1)(Da2 — 1) + D12D21 B11 Bao]
+ ¢*(A22)B11 (D11 — 1).

Since 1 — B“(D“ — 1) 2 (P(A”) >0 fori= 1, 2 and
(3.34) Bi12D21 + D12Boy < A12A421 — B12Boy — D12Doy,
we obtain from (3.33) that

(3.35) ©(A11)p(A2) < A12A21 + B12Ba1[(D11 — 1) (D22 — 1) — 1]
+ D12D21[B11Ba2 — 1].

If (Dll — 1)(D22 — 1) < 1 and BllB22 < 1 then (335) implies
©(A11)p(Az2) < A12A,

which contradicts (2.4).

If (D11—1)(D22—1) < 1 and By1 B2y > 1 then, in view of (3.12) and the assumption

D3y > 1, we obtain from (3.35) that

©(A11)p(A22) < A12A421 B11Bas < A19A21B11(A22 — Da2) < A12A421A11 (A2 — 1),

which contradicts (2.4).
If (D11 — 1)(D22 — 1) > 1 and B11B22 § 1 then (335) results in

©(A11)p(Az2) < A12A21 (D11 — 1)(Dag — 1) < A12A21A11(A22 — 1),

which contradicts (2.4).
If (D11 — 1)(D22 — 1) > 1 and B11B2s > 1 then (335) ylelds

12421 (D11 — 1)(D22 — 1) + B11Bag — 1]
12421 [A11 (D22 — 1) + A11Baa] < A12A21 A11 (A2 — 1),

(A11)p(A22) < A
<A

which contradicts (2.4).
Case (d2): B2 < ag and D;; < 1 for i = 1,2. We first note that

(3.36) B11Baz < (A11 — D11)Baz2 = (A1 — 1)Baa + (1 — D11) B
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and also
(3.37) B11B2s < (A2a — Do) Bi1 = (A22 — 1)Bi1 + (1 — Da9)Bi.

By virtue of (3.22), we get from the inequalities (3.24) and (3.26)

(3.38) my < maDi2
and
(339) Moy < M1 Doy

Therefore, in view of (2.4) and (3.22), the relations (3.24), (3.25), (3.39) and (3.23),
(3.39) result in

(3.40) 0< m1(1 - D12B21) < M, [D12D2IB22 - (1 - Dll)]
and
(341) 0< Ml(l — BI2D21) < my By,

respectively. Combining (3.36), (3.40), (3.41) and taking the inequality D12D2; < 1
into account, we get

(3.42) (1 — B12D21)(1 — D12B21) < D12D21(A11 — 1)Bag + (B22 — B11)(1 — D11).

On the other hand, by virtue of (2.4) and (3.22), the relations (3.23), (3.26), (3.38)
and (3.25), (3.38) imply

(3.43) 0< Mg(l - Bl2D2l) < m2[D12D2lBll - (1 - Dgg)]
and
(344) 0< mg(l — D12B21) < M3 Bss,

respectively. Combining (3.37), (3.43), (3.44) and taking the inequality D12D2; < 1

into account, we obtain

(3.45) (1 — B12D21)(1 — D12B21) < D12D21(Age — 1)B11 + (B11 — Ba2)(1 — Daa).
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First suppose that Bss < Bji. Then, by virtue of (3.34), the inequality (3.42)
yields

(3.46) 1 12D21 + D12Ba1 + D12D21(A11 — 1) B

<B
< A12A91 + D19D21[(A1n — 1)Bas — 1]

If (A7 — 1)Bos < 1 then (3.46) implies 1 < Aj2As;, which contradicts (2.4),
because 0 < p(A;;) <1 fori=1,2.
If (All — 1)322 > 1 then (346) ylelds

1 < A12A21 (A1 — 1)Bag < A19A21 (A1 — 1) Ao,

which contradicts (2.4), because 0 < ¢(A;;) < 1fori=1,2.
Now suppose that Bz > Bii. Then, by virtue of (3.34), the inequality (3.45)
results in

(3.47) 1 12D21 + D12B21 + D12D31 (A2 — 1) B1y

<B
< A12A21 + Di3Dy[(Az2 — 1) By — 1]

If (A3 — 1)B1; < 1 then (3.47) implies 1 < Aj2A21, which contradicts (2.4),
because 0 < p(A;;) < 1fori=1,2.

If (AQQ — 1)311 > 1 then (347) ylelds

1 < A1pAg(Azp — 1)By1 < Ao A (Azp — 1) Ay,

which contradicts (2.4), because 0 < ¢(A;;) < 1 fori=1,2.

Case (d3): B2 > az and D;; > 1 for some i € {1,2}. Suppose that Day > 1 (the
case D11 > 1 can be proved analogously). In a similar manner as in the case (d1),

combining (3.23), (3.24) and (3.27), (3.28) we get

(3.48) ©(A11)p(A22) < A12421 + D12B21[B11(Da2 — 1) — 1]
+ Bi2D21[Ba2(D1p — 1) — 1].

If Bll(Dgg — 1) < 1 and BQQ(DH — 1) < 1 then (348) implies
©(A11)p(Az2) < A12Aa1,

which contradicts (2.4).
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If B11(D22 — 1) < 1 and Baa(D11 — 1) > 1 then we obtain from (3.48) that
©(A11)p(A22) < A12A421Bog(Di1 — 1) < A19A21 A2 (A1 — 1),

which contradicts (2.4).
If B11(D22 — 1) > 1 and Baa(D11 — 1) < 1 then (3.48) implies at

©(A11)p(A22) < A12A421B11(Dag — 1) < A19A21A11 (A2 — 1),

which contradicts (2.4).
If Bll(Dgg — 1) > 1 and BQQ(DH — 1) > 1 then (348) yields

¢(A11)p(A22) 12421 [B11(D22 — 1) + (D11 — 1) Bag — 1]

12A421[A11 (D22 — 1) + A11Bos] < A12A21A11(A22 — 1),

which contradicts (2.4).
Case (d4): B2 > az and D;; < 1 for i = 1,2. The inequalities (3.24) and (3.28)
result in

my < maDyo, mg < myDay.

Hence, we get
1< Di19Da1 < A1p451,

which contradicts (2.4), because 0 < ¢(A;;) < 1 fori=1,2.
The contradictions obtained in (a)—(d) prove that the problem (3.6), (3.7), (3.2)
has only the trivial solution. ([l

Proof of Theorem 2.2. According to Lemmas 3.1 and 3.2, in order to prove
the theorem it is sufficient to show that the system

(3.49) u'l (t) = —111(U1)(t) + 112(u2)(t),
(3.50) uy(t) = —laa(ur)(t) — la2(u2)(t)
has only the trivial solution satisfying (3.2).

Suppose that, on the contrary, (uy,us)? is a nontrivial solution of the problem

(3.49), (3.50), (3.2). Define numbers M;,m; (i = 1,2) by (3.8) and choose «;, 8; €
[a,b] (i = 1,2) such that the equalities (3.9) and (3.10) are satisfied. Furthermore,
let numbers B;j, D;; (i,7 = 1,2) be given by (3.11). It is clear that (3.2) guarantees

MZ>O, m120 fOI‘Z:1,2

For the sake of clarity we shall divide the discussion into the following cases.
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(a) Neither of the functions u; and us changes its sign. According to Lemma 3.2,
we can assume without loss of generality that

ui(t) =0, we(t) >0 forte a,b].

(b) One of the functions u; and wus is of a constant sign and the other one changes
its sign. According to Lemma 3.2, we can assume without loss of generality
that uy(t) > 0 for ¢ € [a, b].

(¢) Both functions u; and us change their signs. According to Lemma 3.2, we can
assume without loss of generality that oy < 1 and B3 < as. Obviously, one of
the following conditions is satisfied:

(c1) Dy; > 1 for some i € {1,2},
(¢2) Dy < 1fori=1,2 and
(¢2.1) m1Da1 < maBag,
(C2.2) M1 < M2D12,
(C2.3) myDaoy > moBos and My > MsDqs.
First we note that (3.13) is true and, by virtue of Lemma 3.3, the assumption (2.6)
can be rewritten as

(3.51) 0A12451 < (3— Au)p(Az_iz—;) fori=1,2.

Case (a): ui(t) = 0 and us(t) > 0 for ¢t € [a,b]. In view of the assumptions
l21,1l22 € Pap, (3.50) implies ub(t) < 0 for ¢ € [a,b]. Therefore, us = 0 and, by virtue
of the assumption 11 € Pap, (3.49) yields uwj(t) < 0 for ¢t € [a,b]. Consequently,
u1 = 0 as well, which is a contradiction.

Case (b): u1(t) > 0 for ¢t € [a,b] and ua changes its sign. Obviously, (3.16) is
true, M7 > 0 and m; = 0. Suppose that oy < (2 (the case ag > (33 can be proved
analogously). The integration of (3.49) from a to a1, in view of (3.8), (3.9) and the
assumptions l11, l12 € Pap, yields (3.17).

On the other hand, the integrations of (3.50) from a to as and from as to (B2, in
view of (3.8), (3.10) and the assumptions lo1, lao € Pyp, result in

M, = _La2 o1 (u1)(s) ds — /:2 laa(us)(s) ds

(3.52) -
g m2/ 122(1)(8) ds = m2B22
and
B2 B2
(3.53) My +mg = / lo1(u1)(s)ds +/ laa(us2)(s)ds
a2 Q2
B2 B2
< M1 / 121(1)(8) ds + Mg/ 122(1)(8) ds = M1D21 + M2D22,
a2 Q2
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respectively. By virtue of (3.16), combining (3.17), (3.52), and (3.53), we get

M M
3 — Ay < 1+—2+—_B22_D22 1

< A2 491,
o, A Dy, 12421

which contradicts (3.51), because ¢ > 1 and 0 < ¢(A411) <

Case (c): u1 and ug change their signs, ay < (31, and 62 < ag. Obviously, (3.22)
is true. The integrations of (3.49) from a to «; and from «; to 31, in view of (3.8),
(3.9) and the assumptions l11, l12 € Pap, imply (3.23) and (3.24). On the other hand,
the integrations of (3.50) from a to 2 and from (2 to asg, on account of (3.8), (3.10)
and the assumptions la1, loo € Pap, result in

B2 B2
(3.54) ma :/ l21(u1)(s) ds+/ loa(uz2)(s)ds
B2 B2
< M1 / 121(1)(8) ds + Mz/ 122(1)(8) ds = M1321 + MQB22

and

Je

(355) MQ +mo = — /OQ 121 (ul)(s) ds — / 122(11,2)(5) ds

2

a2 Q2
g mi / 121(1)(5) ds + mg/ 122(1)(5) ds = m1D21 + m2D22.
2

2

By virtue of (3.22), the relations (3.23), (3.24) and (3.54), (3.55) yield

M, Mo ma
3.56 3—B11—D11 <14+ — ! B,-D < —=B —D
( ) 11 11 S + + 7 11 11 - 12 + 7, 12
and

M. M m
(3.57) 3— DBy — Dy <1+ —2 + ﬁ — Bz — Dy < —1321 + Dy,

2 Mo ma

respectively.

Case (cl): Dy > 1 for some i € {1,2}. Suppose that D17 > 1 (the case Day > 1
can be proved analogously). Using this assumption and combining (3.23) and (3.24),
we get

My < M1B11(D11 — 1) + meB11 D12 + MaBis

and
m1 < m1B11(D11 — 1) + Ma(D11 — 1)Bi2 + maDia.
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Hence, in view of (3.13), the last two inequalities yield

(3.58) Mip(A1r)
(3.59) m1p(A1r)

moB11 D12 + My B2,
Ms(D11 — 1)Big + maDio.

NN

By virtue of the assumption D7 > 1, it follows from (3.54), (3.58 and (3.55), (3.59)
that

(3.60) Mi[p(A11) — Bi1Di12Bo1] < Ma[B11 B2 D12 + Big]
and
(3.61) mi[p(A11) — (D11 — 1)B12Da1] < ma[(D11 — 1)(D22 — 1)Bia + D12,

respectively. Note that, in view of (3.12) and the condition Dy; > 1, the assumption
(3.51) guarantees

3—A
B11D19Bg1 < (A1 — 1)A19401 < 2

(A1) < p(A11),
(3.62) .
(D11 —1)Bi2Da1 < (A1 — 1)A12421 < 22

p(An) < (A1)
Consequently, we get from (3.57), (3.60) and (3.61) that

(3.63) (3= Baga — Da2)[p(A11) — Bi1D12Ba1][p(A11) — (D11 — 1) B12Doa1]
< [B11B22D12Ba1 + Bi2Baal[p(A11) — (D11 — 1) B12 Doy
+ [(D11 — 1)(D22 — 1) B12 D21 + D12D21][0(A11) — B11D12Boa1]
< @(A11)[B12Ba1 + D12Day + B11 Baa D12 Boy
+ (D11 — 1)(Dag — 1) B2 Da1].

On the other hand,

(3.64) (3 — Baz — D22)[¢(A11) — Bi1D12Ba1][¢(A11) — (D11 — 1) Bi2Day]
> (3 — Ag2)p(A11)? — ¢(A11)(3 — Baa — Dag)B11D12Boy
— ¢(A11)(3 — Ba2 — D22)(D11 — 1)Bi2Das.

By virtue of (3.12), the inequality

(3.65) B12Bo1 + D12D21 < A12A21 — D19Bo1 — B12 Doy
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is true. Consequently, (3.63) and (3.64) imply

(3.66) (83— A)p(A11) < A12491 + D12B21[(3 — Da2)Bi1 — 1]
+ B12D21[(2 — Ba2)(D11 — 1) — 1].

If (3 - D22)B11 g 1 and (2 — BQQ)(Dll - 1) § 1 then (366) ylelds
(3 = A22)p(A11) < A1p Aoy,

which contradicts (3.51).
If (3— D32)B11 <1 and (2 — Baa)(D11 — 1) > 1 then (3.66) results in

(83— Ax)p(A11) < A12421(2 — Baz)(D11 — 1) < 3(A11 — 1)A12401,

which contradicts (3.51).
If (3 — D22)B11 > 1 and (2 - B22)(D11 - 1) § 1 then, in view of (312) and the
assumption D17 > 1, we obtain from (3.66) that

(83— A22)p(A11) < A12421(3 — Da2)B11 < 3A12A421(A11 — D11) < 3(A1nn —1)A1240,

which contradicts (3.51).
If (3— D32)By1 > 1 and (2 — Baa)(D11 — 1) > 1 then (3.66) arrives at

(3 — A22)p(A11) < A12A421[(3 — Da2)B11 + (2 — Bag)(D11 — 1) — 1]
< A12421[3B11 +3(D11 — 1)] < 3(A1nn — 1)A12401,
which contradicts (3.51).

Case (c2): D; < 1 for i = 1,2. By virtue of (3.22), the inequalities (3.24) and
(3.55) result in

(3.67) my < maDi2
and

(3.68) My < m1 Do,
respectively.

Case (c2.1): myDa; < maBas. Combining (3.54), (3.55) and taking (3.12) into
account, we get

MiBo1 + m1B2s Dot + maBaa(Dag — 1)
M Bs1 +mi(Aza — Dag) Doy + maBaa(Das — 1)
= M31Bg1 + m1(Agz — 1)Day + (1 — Dag)[m1Da1 — maBag].

may <
<
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Consequently,
(3.69) ma < M1 B2 + mi(A2z — 1)Day.
If A3z <1 then (3.56), (3.68), and (3.69) imply
3 — A11 <3— Bi1 — D11 < Bi1aDa1 + D12Ba1 < A124a,

which contradicts (3.51), because 0 < ¢(Aaz) < 1.
Therefore, suppose that

(370) Ago > 1.
Then, using (3.24) in (3.69), we obtain
my < M1 Boy + Mi(Aza — 1)(D11 — 1)Da1 + ma(Ase — 1)D12Dan,

ie.,

(3.71) mg[l — (Agg — 1)D12D21] < My [Bgl — (Agg — 1)(1 — Dll)Dgl.

Note that the assumption (3.51) guarantees

3—A
(A2o —1)D12Day < (Aze — 1)A12A491 < 2

(P(All) < 1.
Consequently, we get from (3.56), (3.68) and (3.71) that

(372) (3 — B11 — Dll)[l — (AQQ — 1)D12D21]
< [1 = (A22 — 1)D12D21]B12Da1
+ D12B21 — (A22 — 1)(1 = D11)D12Doy

< Bi2Da1 + D12Bo1 — (As2 — 1)(1 — D11)D12Do;.

By virtue of the inequality
(3.73) Bi2D21 + D19Ba1 < A12A21 — B1aBoy — D12Doy,
(3.72) implies

(3.74) 3= An < Ai2Ag + D1aDor[(A22 — 1)(2 — Buy) — 1]
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If (A3 — 1)(2 — B11) < 1 then (3.74) results in
3— An < ApAa,

which contradicts (3.51), because 0 < p(Az2) < 1.
If (Azg — 1)(2 — Bll) > 1 then (374) yields

3— A1 < Ai12A2(Aze — 1)(2 — Bi1) < 3(Az2 — 1)A12491,

which contradicts (3.51), because 0 < ¢(Aaz) < 1.
Case (¢2.2): My < M2D1s. Using (3.67), we get from (3.57) that

3 — A <3 — Bz — Doy < D12B21 + D12D21 = Di2(Ba1 + Da1) < A4,

which contradicts (3.51), because 0 < ¢(A11) < 1.

Case (¢2.3): m1Da1 > maBay and My > MsDqs. It follows from the relation

(3.67) that D12 > 0, because m; > 0 for ¢ = 1,2. Therefore, we have

My _ 1

3.75 < —.
( ) My D12

Note also that (3.67) and the assumption mjDs; > moBaoo guarantee
(376) D12D291 > Bas.

It follows from (3.54) and (3.75) that

(3.77) ]T(L/[—? < Boy + %322 < Boy + g—i
Finally, (3.56), (3.68) and (3.77) result in
3 — A1 <3— Bi1 — D11 < BiaDa1 + Di12B21 + Bao.
Using (3.73) and (3.76) in the last inequality, we get
3 — An < A12A21 — B12Ba1 — D12Day + Baa < A2 Aoy,

which contradicts (3.51), because 0 < p(A22) < 1.

The contradictions obtained in (a)—(c) prove that the problem (3.49), (3.50), (3.2)

has only the trivial solution.
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Proof of Theorem 2.3. If Aj5A45; < 1 then the validity of the theorem
follows immediately from Theorem 2.2. Therefore, suppose in the sequel that

(3.78) A12A21 > 1.

According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to
show that the problem (3.49), (3.50), (3.2) has only the trivial solution.

Suppose that, on the contrary, (u;,us)? is a nontrivial solution of the problem
(3.49), (3.50), (3.2). Define numbers M;, m; (i = 1,2) by (3.8) and choose «;, 3; €
[a,b] (i = 1,2) such that the equalities (3.9) and (3.10) are satisfied. Furthermore,

let numbers B;j, D;; (4,5 = 1,2) be given by (3.11). It is clear that (3.2) guarantees
MZ>O, m120 fOI‘Z:1,2

For the sake of clarity we shall divide the discussion into the following cases.
(a) Neiher of the functions u; and us changes its sign. According to Lemma 3.2,
we can assume without loss of generality that

ui(t) =0, wue(t) >0 forte a,b].

(b) One of the functions u; and wus is of a constant sign and the other one changes
its sign. According to Lemma 3.2, we can assume without loss of generality that
u1(t) = 0 for t € [a,b]. Obviously, one of the following conditions is satisfied:

(bl) g < fa,
(b2) Qg > 52.

(¢) Both functions u; and us change their signs. According to Lemma 3.2, we can
assume without loss of generality that a; < (61 and (2 < as.

First we note that, in view of (2.8), the inequality (2.9) guarantees

(3.79) A Ao Ao < [Aii + (1 — Ay)As_iz—i]A12Ax
= (All + Aoy — A11A22)A12A21 <1 fori=1,2.

Now we are in position to discuss the cases (a)—(c).

Case (a): ui(t) > 0 and ua(t) > 0 for ¢ € [a,b]. In view of the assumptions
l21,1l22 € Pap, (3.50) implies u5(t) < 0 for ¢ € [a, b]. Therefore, us = 0 and, by virtue
of the assumption l11 € Py, (3.49) implies u}(t) < 0 for ¢ € [a,b]. Consequently,
u1 = 0 as well, which is a contradiction.

Case (b): ui(t) > 0 for t € [a,b] and ug changes its sign. Obviously, m; = 0 and
(3.16) is true. The integration of (3.49) from a to a1, in view of (3.8), (3.9), and the
assumptions l11,l12 € Pap, yield (3.17).
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Case (bl): ag < 2. The integrations of (3.50) from a to ay and from «s to O,
in view of (3.8), (3.10) and the assumptions la1,l22 € Pap, yield (3.52) and (3.53),
respectively. Using (2.8), (3.17) and (3.52) in the relation (3.53), we get

0 <mg < M1 Doy < MaA12A2 < maBagAiaAs.

Hence we get 1 < Aga A1 421, which contradicts (3.79).
Case (b2): ag > (2. The integration of (3.50) from (2 to az, on account of (3.8),
(3.10) and the assumptions la1,l22 € Pap, yields

a2

(380) MQ +mo = — /0(2 121(’[1,1)(8) ds — / 122(11,2)(5) ds

2

[e
§ mg/ 122(1)(8) dS g m2A22.
2

By virtue of (2.8) and (3.16), (3.80) implies
0< My < mQ(AQQ — 1) < O,

a contradiction.

Case (¢): u1 and ug change their signs, ay < 51 and G2 < ay. Obviously, (3.22)
is true. The integrations of (3.49) from a to «; and from «; to 3, in view of (3.8),
(3.9) and the assumptions /11, l12 € Pap, imply (3.23) and (3.24). On the other hand,
the integrations of (3.50) from a to 2 and from (2 to asg, on account of (3.8), (3.10)
and the assumptions la1,lag € Pap, result in (3.54) and (3.55).

By virtue of (2.8) and (3.22), from the inequalities (3.23), (3.24) and (3.54), (3.55)

we get

M, M, mi m
3.81 0<—+—(1-D — <A —B
( ) <M2+m2( 11)-i-m2 12-|-]\/[2 11
and

mao M2 meo M2
3.82 0<—+—+—(1-D9) <A —=Bs9,
( ) <M1+m1+m1( 22) 21+M1 22
respectively.

On the other hand, in view of (2.8), the inequalities (3.55) and (3.24) imply
(3.83) my < maDia, My < m1Da;.
Combining (3.83) and (3.54), we get
My < maD12Day < My A1 A3y + MyAgy Ara Agy,
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ie.,
(3.84) M3 (1 — Agp A1 As1) < M1App A3,
Furthermore, combining (3.54), (3.23) and (3.83), we obtain

m1 < moDig < M1 A12Ax + MaAzeAqo
<myAp Arg Aoy + MaA3yAgy + My Agg Ao,
ie.,

(3.85) mi(1 — A11A12A421) < MaA12(A12A91 + Ag2).

Now, (3.84) and (3.85) yield

1+ A11A499)A
Aﬁ_}_mBllg( + A1 Ag) 12
(3.86) M, 1—A11A41249
’ My Ao
Aoy +

— By < ——————,
My, %% S 1= Ay ApAgy

because the condition (3.79) is true.
It follows from (3.81), (3.82) and (3.86) that

(14 A11A2)A124%
(1—A11A412421)(1 — AgaA12A2)

mo M1 M1m2 M1M2
> — 4+ — 1-D 1-D
M2 + mi + Mgml( 22) + 1+ mimso
M, my Mo
—({1-D1)(1—-D — + — 41— Das.
+ m1( 11)( 22) + i, + + 22

ma

(3.87)

(1-D11)

Using the relation
r+y=2y/xy forxz >0, y=>0,

we get
Mlmg M1M2 Ml
3.88) ——(1—-D 1-D >2— 1-D 1 — Dyo),
(3.88) M2m1( 22) + m1m2( 11) - V( 11)( 22)
M1 Ml Ml
3.89) — 42— 1-D 1-D —(1—-D 1-D
(3.89) - + - V( 11)( 22) + ml( 11)( 22)
M,

= m—l(l ++v/(1 = D)1 - D22))2’

% (1++(1—Du)(1 - D22))2 + % >2(1+ /(1= Du1)(1 — Da)),

(3.90)

)—“)—‘
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and

mo MQ
3.91 — 4+ — > 2.
(3.91) 0 my

Now, in view of (3.88)—(3.91), (3.87) implies
(1+ A1 A92)A12An
(1= A11A12A21)(1 — Az A12Agg)
>2+2(1++/(1—Di1)(1—Dy2))+1—Di1+1— Do
—4+4 (V1= Di1 + 1= Dg)?
>4+ (VI-An+V1-An)’ =\

(3.92)

Therefore, using (3.79) and the inequality (3.78), we get

(14 A11A9)A19A9 [1— (A1 + Ax2)Ai2 Ao + A11A22(A12A21)2]

> A
> AL — (A1 + Az — A11A29) A12A0],

which contradicts (2.9).
The contradictions obtained in (a)—(c) prove that the problem (3.49), (3.50), (3.2)
has only the trivial solution. ([l

4. COUNTER-EXAMPLES

In this section, counter-examples are constructed verifying that the results ob-

tained above are optimal in a certain sense.

Example 4.1. Let 0;; € {—1,1}, hy; € L([a,b]; R+) (1,7 = 1,2) be such that

b
011 = —1, / hll(S) ds 2 3.

It is clear that there exist ¢y € Ja,b[ and t1 € [to,b] such that

t() tl
/ hll(S) ds = 1, / hll(s) ds = 2.

to
Let operators l;; € Pgp (4,5 = 1,2) be defined by
(4.1) Lij(v)(t) = hij(t)v(nj(t)) for t € [a,b], v e C([a,b]; R),
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where T12(t) = a, 721(t) = a, T22(t) = a for t € [a, b], and

0 t1 for ¢ € [a,to],
T =
" to forte [to,b].

Put ‘
/ hi1(s)ds for ¢ € [a, to],
u(t) = “ t

1—/ hll(S)dS for t € [to,b].

to
It is easy to verify that (u,0)7 is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).

An analogous example can be constructed for the case

b
0922 = —1, / hQQ(S) ds 2 3.

This example shows that the constant 3 on the right-hand side of the inequalities
in (2.3) is optimal and cannot be weakened.

Example 4.2. Let 0; = —1, 03—, = 1 for i = 1,2 and let h;; € L([a,b]; R+)
(i = 1,2) be such that

b b b b
/ hll(s) ds < 1, / hgg(s) ds < 1, / hlg(s) dS/ hgl(S) ds 2 1.

It is clear that there exists to € ]a, b satisfying

t() t()
/ hlg(S) dS/ hgl(s) ds = 1.

Let operators l;; € Pap (i,j = 1,2) be defined by (4.1), where 7,;(t) = a and
Ti3_i(t) =tg fort e [a,b] (Z = 1,2). Put

t to t
u(t) :/ hia(s)ds, wua(t) :/ hi2(s) ds/ ho1(s)ds for t € [a, b].

It is easy to verify that (u;,u2)” is a nontrivial solution of the problem (1.1), (1.2)

with ¢; =0and ¢; =0 (i = 1,2).

This example shows that the strict inequality (2.4) in Theorem 2.1 cannot be
replaced by the nonstrict one provided max{A;;, Asx} < 1.
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Example 4.3. Let 0; = —1, 0;3—; = 1 for i = 1,2 and let functions hi1, hoo €
L([a,b]; R} ) be such that

b b
(42) / hll(S) ds < 1, 1< / hQQ(S) ds < 3.

Obviously, there exists to € |a, b such that

to " hoo(s)ds — 1
/ h22(5)ds:—f“ 22(52) 5 .

Furthermore, we choose hio, hoy € L([a, bl; R+) with the properties

ha1 (t) =0 forte [to, b]

/ab h12(s) ds/ab hon(s) ds > 1 — i(/ab . 1>2'

It is clear that there exists t; € Ja, b] satisfying

/atl e /‘:0 Par(s)ds =1 - i(/ab haa(s)ds — 1)2,

Let operators [;; € Py (4,5 = 1,2) be defined by (4.1), where 711 (t) = a, T12(t) = to,
T21(t) = t1 for ¢ € [a,b], and

b fort € [a,to],
(43) T22 (t) =
to forte [to, b]

and

Put

ui(t) = /t hia(s)ds for t € [a, ],

/a ! hia(s) ds / t hoi(s) ds

us(t) = —l—%(/ab hoa(s)ds — 1) /at hao(s)ds for t € [a,to],

t
1 —/ hQQ(S) ds for t € [to,b].

to

T

It is easy to verify that (u1,u2)" is a nontrivial solution of the problem (1.1), (1.2)

with ¢; =0and ¢; =0 (i = 1,2).
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An analogous example can be constructed for the case

b b
(44) 1< / hll(S) ds < 3, / hQQ(S) ds < 1.

This example shows that the strict inequality (2.4) in Theorem 2.1 cannot be
replaced by the nonstrict one provided min{ A1, A22} < 1, max{A11, A22} > 1 and
w=1.

Example 4.4. Let 0;; = —1, 0y3_; = 1 for ¢ = 1,2 and let functions hi1, hoo €
L([a,b]; Ry ) be such that

b
1</ hii(s)ds <3 fori=1,2.

Obviously, there exist ¢1,ty € |a, b] satisfying
t * hii(s)ds — 1
/ hii(S)dSZLl”% fori=1,2.

Furthermore, we choose hio, hay € L([a, bl; R+) with the properties
hlg(t) =0 forte [tl, b], hgl(t) =0 forte [CL, tQ],

and

/ab hi2(s)ds /ab ho1(s)ds

(o) o2 o)

It is clear that there exists o € ]0,1] such that

a/:1 hia(s)ds /b ho1(s)ds

to

_ {1—%</abhu(s)ds—1>2] [1_%(1:);122(5)@15_1)2}
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Put

b b t
h ds—1 [t h d h d
—fa 11(52) i / hi1(s) ds + aft? 121(:) Sfa 12(s) ds for t € [a, t1],
ul(t): a 1_1(«[(1 hQQ(S)dS—l)Q
t
1—/ hi11(s) ds for ¢ € [t1, 0],
t1 b
h d t
_ fti 21(8) 5 / hQQ(S) ds for t € [a, tQ[,
(t) 1— %(«fa hQQ(S) dS — 1)2 a
U2\t) = b ¢ ¢
t ho1(s)ds [? haa(s)ds( [, hoa(s)ds —1
/ hgl(S) ds + Lz 21( ) fa 52( ) (ftz 22( ) ) fort € [tQ, b]
ta 1— 2 haa(s)ds — 1)2

Since ug(t2) < 0 and uqz(b) > 0, there exists ¢ty € |t2,b] satisfying usa(to) = ausa(b).
Let operators l;; € Py (4,7 = 1,2) be defined by (4.1), where my2(t) = to, 721 (t) = t1
for t € [a,b], and

0 b fort € [a,tq],
T11(¢) =
H ty forte t1, b]

[
[t1, 0],
roalt) = {b fort € {a,tg[j

to forte tg,b]

(4.5)

T

It is easy to verify that (u1,u2)’ is a nontrivial solution of the problem (1.1), (1.2)

with ¢; =0and ¢; =0 (i = 1,2).

This example shows that the strict inequality (2.4) in Theorem 2.1 cannot be
replaced by the nonstrict one provided min{A;;, Ass} > 1 and w = 1.

Example 4.5. Let 011 = =1, 012 = 1, 091 = —1, 099 = —1 and let Ay, hoo €
L([a,b]; R} ) be such that (4.2) holds. Obviously, there exists ¢y € |a, b[ such that

to
/ hQQ(S) ds = 1.

Furthermore, we choose hio, hay € L([a, bl; R+) with the properties

hgl(t) =0 forte [CL, to]

b b b
/ hlg(s)ds/ hgl(S)dS>3—/ th(S)dS.

It is clear that there exists t1 € ]a, ] satisfying

/:1 hia(s)ds /b ho1(s)ds =2 — /b has(s) ds.

to to

and
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Let operators l;; € Py (4,7 = 1,2) be defined by (4.1), where 711 (t) = a, 112(t) = to,
T21(t) = t1 for ¢ € [a,b], and 792 is given by (4.3). Put

ui(t) = / hi2(s)ds for t € [a,b],

¢

/ hQQ(S) ds fort € [CL, to[,
U2(t) = “ t1 t t

1 —/ hia(s) ds/ ho1(s) ds —/ haa(s)ds for t € [to,b].

to to
It is easy to verify that (uy,us)”
with ¢; =0and ¢; =0 (i = 1,2).

is a nontrivial solution of the problem (1.1), (1.2)

An analogous example can be constructed for the case when the functions
hi1, haz € L([a,b]; Ry ) satisfy (4.4).

This example shows that the strict inequality (2.6) in Theorem 2.2 cannot be
replaced by the nonstrict one provided min{ A1, As2} < 1, max{Aj1, A2} > 1 and
o=1.

Example 4.6. Let 011 = —1, o120 =1, 091 = —1, 092 = —1 and let hll,hQQ S
L([a,b]; Ry ) be such that

b b
1</ hll(s)dsg/ hgg(S)dS<3.

Obviously, there exist ¢1,t2 € ]a, b] satisfying

t " hii(s)ds — 1 ta
/hn(S)dS—%, /hzz(s)dszl-

Furthermore, we choose hio, hoy € L([a, bl; R+) with the properties
hlg(t) =0 forte [tl, b], hgl(t) =0 forte [CL, tQ],

and

/abhlg(s)ds/abhgl(s)ds> <3—/abh22(s)ds> {1_ %</abh11(s)ds—1>2].

It is clear that there exist o € |0, 1] and ¢y € ]a, t2] such that

a/atl hlg(s)ds/:hgl(s)ds: (2—/:1122(3)(15) [1—i</abh11(s)ds—1>2]
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and

to
/ haa(s)ds = a.

Let operators [;; € Py (4,5 = 1,2) be defined by (4.1), where 712(t) = to, 721(t) = t1
for ¢ € [a, b], and 711, Te2 are given by (4.5). Put

t t
(7)) /
———— | hui(s)ds+ a/ hi2(s)ds for t € [a, t1],
2 ftl; h21 (S) ds Ja a
ui(t) = b .
2 — j; hQQ(S) ds
Ty —/ his(s) ds) for t € [t1, 0],
ft2 hgl(S) ds t1
t
/ hao(s)ds for ¢ € [a, ta],
us(t) = ‘ ty t
« hiz2(s)ds [, hoi(s)ds t
_ f‘l 12(b) ft2 21(5) —/ haa(s)ds for t € [t2,b],
1-— %(fa hll(S)dS—1)2 to
where

ap = <2—/:h22(5)ds></abh11(s)ds—1>.

It is easy to verify that (uy,u2)”

with ¢; =0and ¢; =0 (i = 1,2).

is a nontrivial solution of the problem (1.1), (1.2)

An analogous example can be constructed for the case when

b b
1</ hzg(s)dsg/ hll(s)ds<3.

This example shows that the strict inequality (2.6) in Theorem 2.2 cannot be
replaced by the nonstrict one provided min{A4;1, As2} > 1 and o = 1.
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