Multiwavelength campaign on Mkn 509

Testing realistic comptonization models

P.O. Petrucci

Collaborators: S. Paltani, J. Malzac, J.S. Kaastra, M. Cappi, G. Ponti, B. De Marco, G.A. Kriss, K.C. Steenbrugge, S. Bianchi, G. Branduardi-Raymont, M. Mehdipour, E. Costantini, M. Dadina, and P. Lubinski

UV-X-Gamma spectrum of Seyfert galaxies

UV-X-Gamma spectrum of Seyfert galaxies

UV-X-Gamma spectrum of Seyfert galaxies

Comptonisation Spectrum

i.e. soft photons crossing the corona without being scattered Compton spectrum often approximated by a cut-off power law

$$F_E \propto E^{-\Gamma(kT,\tau)} \exp -\left(\frac{E}{E_c(kT)}\right)$$

depends on kT

Compton parameter

$$y = 4\left(\frac{kT_e}{m_e c^2}\right)\tau$$

Energetics dependency

Spectral shape depends on LH/Lc

Energetics dependency

Energetics dependency

e.g. slab corona above a passive disc - LH/Lc=1

Radiative equilibrium

Radiative equilibrium

Radiative equilibrium

The case of Mrk 509

- Seyfert 1, MBH~108 Msun
- One of the brighest Seyfert in X-rays
- · X-ray spectrum with all the common spectral

components

VBig blue bump

Viron line (+ reflection hump)

√ soft X-ray excess

V WA

The case of Mrk 509

- Seyfert 1, MBH~108 Msun
- One of the brighest Seyfert in X-rays
- · X-ray spectrum with all the common spectral

components

√Big blue bump

Viron line (+ reflection hump)

√ soft X-ray excess

√ WA

Broad band monitoring coordinated by J. Kaastra (SRON, Netherland)

Mean spectrum

Mean spectrum

Light curves

Light curves

Light curves

yariability in UV, X. Not clear in gamma (limited by stat.)

Correlations

Principal Component Analysis

PCA transform a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables called principal components.

In agreement with two independent spectral components

Principal Component Analysis

PCA transform a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables called principal components.

In agreement with two independent spectral components

■ A multi-black body disc to fit the optical-UV data

- A multi-black body disc to fit the optical-UV data
- A "warm" corona to fit the soft X-ray emission

- A multi-black body disc to fit the optical-UV data
- A "warm" corona to fit the soft X-ray emission
- A "hot" corona to fit the hard X-rays

- A multi-black body disc to fit the optical-UV data
- A "warm" corona to fit the soft X-ray emission
- A "hot" corona to fit the hard X-rays
- @ Reflection components to fit the iron line profile

- A multi-black body disc to fit the optical-UV data
- A "warm" corona to fit the soft X-ray emission
- A "hot" corona to fit the hard X-rays
- @ Reflection components to fit the iron line profile
- A warm absorber from the outflow analysis

Warm Corona Parameters

The disc flux agrees with the presence of the disc down to a few Rsch

Hot Corona Parameters

• Le from photon conservation

- Ltot = LH + Lc Lobs = LH,up+Lc,up
- Le from photon conservation

$$n_{ph,obs} \approx n_{ph,c}e^{-\tau} + n_{ph,c}(1-e^{-\tau})/2$$

given by o^{th} order half of the
the fits other orders

· Ltot = LH + Lc

- · Lobs = LH,up+Lc,up
- Le from photon conservation

Nph,obs
$$\approx$$
 Nph,ce⁻⁷ + Nph,c(1-e⁻⁷)/2 \rightarrow Nph,c \approx 2 Nph,obs/(1-e⁻⁷) given by 0th order half of the the fits other orders

• Le from photon conservation

Nph,obs
$$\approx$$
 Nph,ce⁻⁷ + Nph,c(1-e⁻⁷)/2 \rightarrow Nph,c \approx 2 Nph,obs/(1-e⁻⁷) given by 0th order half of the the fits other orders

Knowing $n_{ph,c}$ and the multicolor disc temperature (given by the fits) we deduce L_c

• LH = LH,up + LH,down ≈ 2LH,up (isotropic)

- LH = LH,up + LH,down ≈ 2LH,up (isotropic)
- Lc,up \approx Lce^{-t} + Lc(1-e^{-t})/2

 oth order half of the other orders

- LH = LH,up + LH,down ≈ 2LH,up (isotropic)
- Lc,up $\approx Lce^{-\tau} + Lc(1-e^{-\tau})/2$ Lc,down $\approx Lc(1-e^{-\tau})/2$ oth order half of the other orders
 - the other half

- LH = LH,up + LH,down ≈ 2LH,up (isotropic)
- Lc,up \approx Lce⁻⁷ + Lc(1-e⁻⁷)/2 Lc,down \approx Lc(1-e⁻⁷)/2

 oth order half of the other the other half orders

Disc-Corona configurations

Disc-Corona configurations

The Hot corona Looks rather

Disc-Corona configurations

The Hot corona looks rather

like:

Warm corona looks rather

- Warm corona: upper layer of the accretion disc?
 - → soft photon (3 eV) from the deeper layers?
 - accretion power mainly released in the warm corona

- Warm corona: upper layer of the accretion disc?
 - → soft photon (3 eV) from the deeper layers?
 - accretion power mainly released in the warm corona
- · Hot corona: inner part of the accretion flow?
 - → contributes to the formation of the warm corona through X-ray irradiation
 - → soft photon (100 eV) from the warm corona?

- → contributes to the formation of the warm corona through X-ray irradiation
- → soft photon (100 eV) from the warm corona?

$$P_{acc,wc} = \frac{GM\dot{M}}{2R_{in}} \left[1 - \frac{R_{in}}{R_{out}} \right]$$

$$P_{acc,hc} = \frac{GM\dot{M}}{2R_{isco}} \left[1 - \frac{R_{isco}}{R_{in}} \right].$$

$$P_{acc,wc} = \frac{GM\dot{M}}{2R_{in}} \left[1 - \frac{R_{in}}{R_{out}} \right] \qquad P_{acc,hc} = \frac{GM\dot{M}}{2R_{isco}} \left[1 - \frac{R_{isco}}{R_{in}} \right].$$

If no advection, Pacc, corona = Ltot, corona

Constraints on Rin and Model

Rin ~10 Rg and Mdot~ 0.2-0.3 Medd

Geometry variation?

The WARM corona luminosity increases in the middle of the campaign, while the amplification ratio of the HOT corona decreases.

Consistent with a variation (decrease) of Rin

- A narrow Feka core (σ=0.03 keV)
 - → Constant flux on year time scale
 - → Signature of remote reflection

- A narrow FeKα core (σ=0.03 keV)
 - Constant flux on year time scale
 - → Signature of remote reflection
- · A "broad" FeKα line (σ=0.22 keV)
 - Constant EW on day time scale
 - Originates from outer disc or BLR

- A narrow FeKα core (σ=0.03 keV)
 - Constant flux on year time scale
 - → Signature of remote reflection
- · A "broad" FeKα line (σ=0.22 keV)
 - → Constant EW on day time scale
 - Originates from outer disc or BLR
- · A ionized line (Eline = 6.7-6.96 EW~20 eV)
 - → Consistent with ionized reflection from inner disk (Rin > 7 Rg)

e Compacity:
$$l_h = \frac{L_h \sigma_T}{R m_e c^3}$$
 $l_c = \frac{L_c \sigma_T}{R m_e c^3}$

- $m{e}$ Compacity: $l_h = rac{L_h \sigma_T}{R m_e c^3}$ $l_c = rac{L_c \sigma_T}{R m_e c^3}$
- In a pair-dominated plasma (ln, ln/lc) \leftrightarrow (α , T)

$$m{e}$$
 Compacity: $l_h = rac{L_h \sigma_T}{R m_e c^3}$ $l_c = rac{L_c \sigma_T}{R m_e c^3}$

• In a pair-dominated plasma (lh, lh/lc) \leftrightarrow (α , T)

$$m{e}$$
 Compacity: $l_h = rac{L_h \sigma_T}{R m_e c^3}$ $l_c = rac{L_c \sigma_T}{R m_e c^3}$

• In a pair-dominated plasma (ln, ln/lc) \leftrightarrow (α , T)

$$m{e}$$
 Compacity: $l_h = rac{L_h \sigma_T}{R m_e c^3}$ $l_c = rac{L_c \sigma_T}{R m_e c^3}$

• In a pair-dominated plasma (lh, lh/lc) \leftrightarrow (α , T)

The soft-X-ray excess

Its roughly constant spectral shape observed in AGNs of different BH masses and luminosities could be due to its configuration which implies a constant Ltot/Lc

Narrow component

Constant on year time scale

The Broad Ka component

The broad line follows the continuum on day time-scale

- May come from the disk at $R = 300 1000 R_9$
- May come from the BLR