
Sergei Artëmov

Hejnice Monastery, June 20, 2012

Logica 2012 

A classical view of constructive semantics 
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Constructive Semantics
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Intuitionistic vs. Classical Perspective
Let                                             Cl ↪ Int 

denote a syntactical embedding of classical logic Cl into intuitionistic logic 
Int, e.g., via the negative translation. Devoted intuitionists try to justify Int 
without relying on classical logic, and hence, based on embedding    ̒↪ , ̓ 
provide a foundation for both Int and Cl. 

BHK suggests that Cl augmented by a machinery for representing proofs 
should capture Int, which leads to to following picture:        

Int   ↪(?)  Cl + proofs. 

Classical mathematicians (Gödel, Kolmogorov, Novikov, and others) 
anticipated   ̒↪(?) ̓ thus aiming at 

a classical definition of the constructive semantics
that does not rely on intuitionistic assumptions. 
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Immediate comments
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Schwichtenberg Paradox

Similar reasoning provides a “constructive proof” for each true Pi-1 sentence 
∀x F(x): the required algorithm takes n and searches for a proof of F(n).
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Negation problem
BHK negation ¬F is the implication to falsum: 

F → ⊥
where ⊥ is a statement that does not have a proof. By BHK clause 1, 
a proof of ¬F is a construction which brings to the contradiction 
any proof assertion concerning F.  
Suppose F is not provable, then ¬F holds constructively. Indeed, 
any p is a `proof’ of  ¬F: the assumption “c is a proof of F” is 
provably false, hence yields that p(c) is a proof of the contradiction. 

This feature of BHK is rather disturbing: e.g., 
all independent statements are constructively false 

which is counter-intuitive. Constructive proofs here are neither 
constructive, nor relevant. This reflects a structural problem with 
the BHK implication in the first place, of course. 
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Searching for BHK - some history
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The origin of computational BHK
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Computational BHK - almost BHK
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Computational BHK: some failures

Computational BHK does not address the negation problem: in 
realizability, 

n realizes ¬F            iff          for no m, m realizes F. 

The predicate “for no m, m realizes F” is not constructive, its 
realizer n does not appear to qualify as its constructive ‘witness’ 
since it does not carry any information about the validity of “for no 
m, m realizes F.”All independent formulas are constructively false 
since their negations are ‘baptized’ as realizable by any witness n.
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Computational BHK
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Provability calculus, 1933 
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Provability embedding 
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Provable reflexivity issue
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Impredicativity issue
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First steps 
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New operation +
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The basic Logic of Proofs
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Arithmetical semantics
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Invariant principles
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Soundness and completeness in PA
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Kripke-style semantics
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Constant specifications
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Internalization
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Realization
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Realization: example
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Realization via cut-elimination
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Self-referentiality of proofs is needed.
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Kuznets’ Theorem
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Yu’s Theorem
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First order LP
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Proof assertions in FOLP
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Language of FOLP - proof terms
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Language of FOLP - formulas
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FOLP - axioms and rules
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FOLP - axioms and rules
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Derivation example
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Internalization
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Realization of FOS4 and HPC
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Parametric interpretation
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Soundness
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Invariant interpretation

42



Most general: generic semantics
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Completeness is not attainable
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To what extent FOLP is BHK?
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Conjunction
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Disjunction
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Universal quantifier
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Corrected formulation  
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Existential quantifier
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Negation
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Implication, revisited
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Provability vs. computational BHK
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Conclusions
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