Logica 2012

A classical view of constructive semantics

Sergel Artémov

Hejnice Monastery, June 20, 2012

Constructive Semantics

The intended meaning of intuitionistic logic is given by the in-
formal Brouwer-Heyting-Kolmogorov (BHK) semantics of con-
structive proofs:

1. a proof of A — B is a construction which, given a proot
of A, returns a proof of B;

2. a proof of AN\ B consists of a proof of A and a proof of B;

3. a proof of AV B is given by presenting either a proof of A
or a proof of B;

4. a proof of Yz A(x) is a function converting any ¢ into a
proof of A(c);

5. a proof of 3rA(x) is a pair (¢, d) where d is a proof of A(c).

Revealed the computational content of intuitionistic logic: real-
1zability models, Martin-Lof Type Theory, etc. However,
the original provability BHK turned out to be elusive.

Intuitionistic vs. Classical Perspective

Let ClS Int

denote a syntactical embedding of classical logic C/ into intuitionistic logic
Int, e.g., via the negative translation. Devoted intuitionists try to justify Int

without relying on classical logic, and hence, based on embedding ‘& |
provide a foundation for both /nt and CI.

BHK suggests that C/ augmented by a machinery for representing proofs
should capture /nt, which leads to to following picture:

Int 9(?) CI + proofs.
Classical mathematicians (Godel, Kolmogorov, Novikov, and others)
anticipated * ©(?) ’ thus aiming at

a classical definition of the constructive semantics
that does not rely on intuitionistic assumptions.

Immediate comments

There are objects of two sorts: proofs and (computable) func-
tions. Note that proofs yield computational programs, but not
vice versa. 5o, 1t 1s a priori unlikely that computational pro-
crams alone could represent BHK adequately, whereas proots
alone might do.

The notion of a proof is impredicative: clause 1 specifies
a proot by referring to the class of all proofs - expect seli-
referentiality in a formalization.

Proofs where? Derivations in intuitionistic systems itself
make this semantics immediately circular and then we have to
drop foundational ambitions. Derivations in the usual classical
systems, 1f applied naively, do not satisty BHK conditions, e.g..
for vV and 4.

Schwichtenberg Paradox

Consider BHK clause for universal quantifier:
A proof of YuF(u) is a function converting d into a proof of F(d)

Here is a simple “constructive proof” S of the Fermat’s Last The-
orem (FLT): let u range over quadruples of integers (z,y, z,n),
and F'(u) is the standard Fermat’s condition that if z,y,z > 0
and n > 2, then 2" + y" # z" which is clearly algorithmically
verifiable for each specific u. Algorithm S takes any specific
quadruple u = d, substitutes it to F'(u), and presents a straight-
forward PA-derivation of F'(d). Apparently, S satisfies the afore-
mentioned BHK 7v-clause, but could not by any stretch of imag-
ination be called a proot of F'TL.

Similar reasoning provides a “constructive proof” for each true Pi-1 sentence
Vx F(x): the required algorithm takes »n and searches for a proof of F(n).

Negation problem

BHK negation —F 1s the implication to falsum:

F— 1
where L 1s a statement that does not have a proof. By BHK clause 1,
a proof of —F is a construction which brings to the contradiction
any proof assertion concerning F.

Suppose F'1s not provable, then —F holds constructively. Indeed,

any p is a proof’ of —F: the assumption “c is a proof of F'” 1s
provably false, hence yields that p(c) 1s a proof of the contradiction.

This feature of BHK 1s rather disturbing: e.g.,

all independent statements are constructively false
which 1s counter-intuitive. Constructive proofs here are neither
constructive, nor relevant. This reflects a structural problem with
the BHK implication 1n the first place, of course.

Searching for BHK - some history

Formal provability interpretation of intuitionistic logic inter-
ested Godel who 1in 1933 and 1938 made meaningful steps toward
the solution (we will talk about this later).

Kleene (the 1940s) thought of formalizing proof-based BHK
but this turned out to be too hard. He found a computational
version of BHK which was an outstanding discovery: a compu-
tational content of constructive reasoning.

Kreisel (1960) tried to develop a provability BHK but failed.
and argued that it was impossible to accomplish.

The origin of computational BHK

Kleene realizability (1945) as a formalization of ‘constructively
true’ i1s reminiscent to BHK semantics; here the role of BHK
proofs is played by computational programs (indices of recursive
functions). In particular, a realizer of an implication A — B is
a program p which when applied to any realizer z of A returns
a realizer of B. Symbolically:

p(A—B)— (x:A—|p-z|:B)

Combinatory logic, lambda-calculi - all have such an operation
“application.”

Computational BHK - almost BHK

All BHK clauses are satisfied by realizability except for dis-
junction. In realizability semantics there is an extra requirement
of a bit indicator that points at the proper disjunct:

e p proves AV B iff p = (pg,p1) with pg € {0,1}, and p;
proves A if pp = 0 and p; proves B if pg = 1.

This adjustment illustrates a difference between proots and com-
putational programs in the BHK setting: the proof predicate

p is a proof of F (1)
i1s decidable, whereas the realizability assertion
p realizes F (2)

is not decidable. The ‘indicator’ is needed for (2) but is redun-

dant for (1) since given p, one can compute the right disjunct.

Computational BHK: some failures

The principal conceptual failure of the computational BHK is
its mability to resolve the Schwichtenberg paradox: in the com-
putational model, the algorithm from the paradox description is
a legitimate “proot.”

Computational BHK does not address the negation problem: in
realizability,

n realizes —F 1ff for no m, m realizes F.

The predicate “for no m, m realizes I’ 1s not constructive, 1ts
realizer n does not appear to qualify as 1ts constructive ‘witness’
since 1t does not carry any information about the validity of “for no
m, m realizes F.”All independent formulas are constructively false
since their negations are ‘baptized’ as realizable by any witness n.

10

Computational BHK

Despite these failures, the computational BHK semantics has
been playing a profound role in connecting mathematical logic
with a variety of fields in Computer Science, 1t have been equally
instrumental for the studies of constructive logic and theories.

A good example of a computational BHK semantics is given
by Martin-Lof type theory. Though it uses a BHK proof termi-
nology, Martin-Lof ‘proofs’ or ‘constructions’ are not identified
with formal proots, but rather have a natural computational
Interpretation.

11

Provability calculus, 1933

Kolmogorov and Godel viewed BHK-proots classically. Godel
endorsed classical modal logic S4 as the calculus of provability:

Axioms and rules of classical propositional logic,

(F—G)— (DF=0G),

F—F reflexivity,

F—OOF introspection,
— F

Rule of Necessitation:

- 0OF
(Godel offered connecting classical provability with intuitionistic
logic in a way that respects the provability reading of IPC:

IPC-F iff S4F tr(F),

where tr(F') is obtained by ‘boxing’ each subformula of F'.

12

Provability embedding

When parsing Godel’s translation tr(F') of some formula F,
we encounter a provability modality before each subformula,
which forces us to read said subformula as provable rather than
true. Theretfore, Godel’'s translation reflects the fundamental
intuitionistic paradigm that intuitionistic truth is provability.
Moreover, the classical version of BHK is that which provides a
non-circular semantics for intuitionistic logic.

At that stage, the problem of finding a provability semantics
for IPC seemed to reduce to developing such a semantics for S4.

I'here was an immediate problem and a subtle problem along
this pass.

13

Provable reflexivity 1ssue

The immediate problem, noticed by Godel, was that reflexivity
1s not compatible with a suggestive reading of O as a formal

provability in PA. Indeed, from

(—

1 — | one can derive

1)

in 5S4, which states the provability of consistency in PA. Later
in 1938, Godel suggested an elegant way around this problem,
which was to return to the original BHK language of explicit

proofs: if p:F stands for p is a proof of F', then the explicit

reflection

pF— F

1s internally provable since p:F’ is decidable.

Impredicativity i1ssue

The second, more subtle problem was impredicativity of BHK
in 1ts implication clause. In realizability, 1t manifested itself in
undecidability of realizers. We will soon see how this problem
played out in provability BHK.

Perhaps, due to these difficulties, provability BHK proved to be
quite elusive. In this context, Godel in one of his lectures in 1938
discussed the possibility of a classical logic of proots which could
provide a provability semantics of 54, hence for IPC. However,
this Godel’s lecture remained unpublished till the third volume
of Kurt Godel Collected work appeared in 1995, when the Logic
of Proofs LP has already been independently developed.

15

First steps

The 1dea of the logic of proots LP was to make provability

operators In 5S4 explicit by using the proot assertions ¢:F'. The
first steps were straightforward, almost trivial: a direct inspec-
tion of the Hilbert-Bernays derivability conditions vielded two
computable operations on proofs: application

t(A— B)— (s:A—t-s|:B)

and proof checker:

t:A—tt:A.

whose forgettul projections correspond to basic S4 axioms

(F—G)— (OF—0G) and OF—0O0F.

New operation +

Further analysis showed that one more operation on proofs is
needed to capture the S4 reasoning. Provability operators do
not distinguish between different proofs of the same fact; In
the explicit setting, we need an operation that reconciles such
proofs. We call such operation ‘+’ and assume the identities

tA—|t+sA and sA—|t+ s|A.

As motivation, one might think of s and ¢ as two volumes of an
encyclopedia, and s+t as the set of those two volumes. Imagine
that one of the volumes, say s, contains a sufficient justification
for a proposition F, 1.e., s:F' is the case. Then the larger set
s+t also contains a sufficient justification for F', [s+¢|:F". In the
context of Hilbert-style derivations, ‘s +%’ can be interpreted as

a concatenation of proofs s and t.

17

The basic Logic of Proots

In the language of LP, prootfs are represented by proof terms
constructed from proof variables and proof constants by means
of functional symbols for elementary computable operations on
proofs, binary -, +, and unary !. The formulas of LP are built
by Boolean connectives from propositional atoms and those of
the form t:F where t 1s a proof term and F' 1s a formula.

The basic system of the Logic of Proofs LPy has the axioms
and rules of classical logic along with the schemas:

tA— A reflexivity.
t:(A—B)— (s:A—(t-s):B) application
tA—(t+5s)A, sA—(t+s)A sum

tA—ttA proof checker.

18

Arithmetical semantics

tA— A reflexivity.
t(A—B)—(s:A—(t-s):B) application
tA—(t+s)A, sA—(t+s)A sum
tA—ttA proof checker.

The intended semantics for LPy 1s provided by proof predicates
in Peano Arithmetic PA. The proot terms are interpreted by
codes of arithmetical derivations. Operations -, +, and unary !
become total recursive tunctions on such codes. Formulas of LP
are Interpreted by closed arithmetical formulas; interpretations
commute with Boolean connectives and ¢:F' is interpreted by an
arithmetical proof predicate that numerates theorems of PA.

19

Invariant principles

It is not sufficient to consider only the standard proof predicate

Proof (z,y)
‘T 1s a proof of 1.’

A fixed proot predicate could support some sporadic identities.
For example, consider the question of whether

(T AT)—=xT

is a sound principle? We don’t know the answer for Proof (z,y)
and we don’t want to know this answer. By re-arranging
the set of proofs insignificantly, one can falsify this ‘law’ with-
out compromising the ability of the proof system to effectively
numerate the same set of theorems. So., we have to consider
only principles that hold for all proof systems. This sometimes
1s called super-evaluation.

20

Soundness and completeness in PA

A proof system is a provably decidable predicate Proof (z,vy) that
enumerates all theorems of PA. 1.e..

PAF-yp iff Proof(n,y) holds for some n ,

together with computable functions which satisty identities for
. '+, and ‘!" respectively.

An arithmetical interpretation = consists of a proof system, in-
terpretation of proof variables and constants by codes of proots,
and propositional variables by arithmetical sentences. Boolean
connectives do not change and

(p:F")" = Proof (p, F).

Theorem: LPy is sound and complete.

21

Kripke-style semantics

Kripke-style models for LPy are built from the usual S4-models

(W, R,

—). We retain a classical interpretation = formulas F'm

as propositions, 1.e., as subsets of the set W of possible worlds,

and u

%+ Fm — 2V

— F' means u € F*.

We interpret proof terms 1'm at each world as sets of formulas,

and u

x - W x T?HHZFTH

— t:F means that F' € x(u,t). Some natural closure

conditions are assumed.

Interpreting proofs syntactically, as sets of formulas rather
than propositions is crucial: theory of justification can-
not be built on the traditional ‘propositions’ paradigm.

22

Constant specifications

To capture S4. we have to explicitly represent the internalization
property:

- F = = 0F.

Constant Specification CS is a set of formulas of the form
c:A where c 1s a proot constant and A 1s an axiom of LPy.

Some special CS's:
Empty: CS = 0.
Finite: CS 1s a finite set of formulas.
Total: for each axiom A and any constants ¢, cA 1s in CS.

Logic of Proofs with given Constant Specification CS:
LPeg = LPy + CS

Logic of Proofs LP is LP#g for the total CS.

23

Internalization

One of the basic properties of LP is 1ts capability of internalizing
1its own derivations. The weak form:

if = F, then = p:F' for some proof term p .
The following more general internalization rule holds for LP: if
A,... A, - B,
then there is a proof term t(xy,...,x,) such that
riAL, . o An (... 1) B

The Curry-Howard isomorphism covers only a simple instance
of the proof internalization property where all of A;,...,A,,. B
are purely propositional formulas containing no prootf assertions.

24

Realization

The principal feature of LP is its ability to realize all S4 theo-
rems by restoring corresponding proof terms inside occurrences

of modality.

A forgetful projection of an LP-formula F' 1s a modal formula

obtained by replacing all assertions t:(-) in F' by

().

Realization Theorem: S4 is the forgetful projection of LP.

That the forgetful projection of LP is S4-compliant is a straight-

forward observation. The converse has been established by pre-
senting an algorithm which substitutes proof terms for all oc-
currences of modalities in a cut-free Gentzen-style S4-derivation
of a formula F', thereby producing a formula /" derivable in LP.

25

Realization: example

Derivation in 5S4 Derivation in LP
1. ODA—U0OAVEB rA— 1AV B
2. O(ODA—0OAV B) a(r:A— AV B)
3. OOA—DO(OAVB) lr:A— (a-lz):(z:AV B)
4. OA—OOA AT A
5. OA—DO(OAVB) r:A— (alx):(x:AVB)
5. (a'!lz):(x:AVB)— (a'lz+b-y):(x:AVB)
5. r:A—(alzx+b-y)(x:AVB)
6. B—OAVBEB B—xAV B
7. O(B—OAVB) b:(B—z:AV B)
8. OB—O(OAVDB) y:B— (b-y):(z:AV B)
8’ (b-y)(z:AV B)— (a!lz+b-y)(x:AVB)
8" y:B—(a'z+b-y)(x:AVB)
9. OAvVOB—O(OAVB) zAvVyB —(a'lz+b-y):(z:AVB)

Extra steps 5, 57, &, and 8" are needed to reconcile different
internalized proofs of the same formula.

26

Realization via cut-elimination

There are several proofs of the realization theorem already known
(S.A., Fitting, Wang). The first proof was constructive and
uses cut-free proofs in S4. 'The resulting realization respects
Skolem'’s idea that negative occurrences of existential quantifiers
over proofs (hidden in the modality of provability) are realized
by free proot variables whereas positive occurrences are realized
by functions of those variables.

The Realization Theorem provides 5S4, and therefore intuition-
istic logic |IPC, with an exact semantics via LP proof terms. To
complete building a provability BHK semantics for |IPC it 1s now
sufficient to note that LP has a natural interpretation in a sys-
tem of formal proofs in Peano arithmetic PA or a similar system
capable of encoding its own proofs.

27

Self-reterentiality of proots 1s needed.
LP admits self-referential types of the sort t:F'(t) stating that ¢ is

a proot of a sentence F' which explicit.
rentiality is supported by the provabi.

v contains t. This self-refe-
1ty semantics that includes

an arithmetical fixed-point argument. But is self-referentiality

actually needed for the provability

BHK semantics?

Consider so-called Moore sentence: It rains but [don’t know it.
denotes ‘knowledge’ then a modal

If p stands for it rains and

formalization of Moore sentence 1s

ﬁf_f —

pA—

P.

M 1is easily satisfiable, hence consistent, e.g.., when p is true but
not known. However, it is impossible to know Moore’s sentence.

Indeed, S4 proves —

M = -

(p N —

p).

28

Kuznets’ Theorem

Here 1s a derivation of —OM is S4:
1. (p A —0Op)—p, logical axiom
2. O((p A —=Op)— p), Necessitation

3. O(p A =0Op)— 0p, from 2, by Distribution

4. O(p A =Op)— (p A =0Op), Reflexivity

5. =O(p A =Op), from 3 and 4, in Boolean logic

Its natural realization in LP is self-referential:
1. (p N\ —|c-z|:p)—p, logical axiom

2. c:((p A —lc-z]p) —p), self-referential CS

3. z:(p A\ —=|c-z|:p)— |c-x|:p, from 2, by Application
4. z:(p A —|c-z|p)— (p A —[c-z|:p), Reflexrivity

5. —x:(p A —le-z|p), from 3 and 4, in Boolean logic

Kuznets’s Theorem: Any realization of —
self-referential constant specifications.

The impredicativity of BHK manifests itselt!

M in LP requires

29

Yu’s Theorem

The question of self-referentiality of BHK-semantics for IPC has
been answered by Yu (my Ph.D. student from New York). Ex-

tending Kuznets’ method, he established

Yu’s Theorem: Fach LP realization of the intuitionistic law of
double negation ——(——p — p) requires self-referential constant
specifications.

These results indicate that provability BHK semantics for 54
and |PC i1s intrinsically self-referential and needs a fixed-point
construction for connect it to formal proots in PA or similar
systems. This might explain, in part, why any attempt to build
provability BHK semantics in a direct inductive manner without
self-referentiality was doomed to fail.

30

First order LP

FOLP was developed 1in 2011 in a joint work with Yavorsyaya.

Let A(z) be z = 0. Then formula OA(x) stating, in the prov-
ability setting, that x = 0 is provable, has x free and holds when

r 1s Instanced by 0. In such situations, i.e., when x is available
for substitutions in JA(x), we call such = a global variable. This
1s the modal logic reading.

However, there is another natural meaning of JA(x), namely,
that ‘z = 0’ 1s provable as a syntactical object. Under this

meaning, JA(z) does not depend on a specific value of z, and is
just false as a statement about provability in PA. since ‘z = 0’
1s not provable. In such situations, we call a variable z local
since its scope does not extend beyond the provability operator.
This ‘local’” reading of variables is not allowed in the traditional

modal languages, but is principally needed for the first-order
logic of proofs.

31

Proof assertions in FOLP

In the language of FOLP, the proof predicate is represented by
formulas of the form
t: ;{A

where X 1is a finite set of individual variables that are consid-
ered global parameters and free variables of this formula. All
occurrences of variables from X that are free in A are also free
in t:xA. All other free variables of A are considered local and
hence bound in t:x A. For example, if A(x,y) is an atomic for-
mula, then in p:r1A(z,y), variable z is free and variable y is
bound. Likewise, in pi, ,1A(z,y) both variables are free and in
pgA(x,y), neither z nor y is free.

Proots are represented by proof terms which do not contain in-
dividual variables.

32

LLanguage of FOLP - proot terms

FOLP is the extension of the first-order logic by means to rep-
resent proots and prootf assertions:

e proof variables py, p1, po. ... and constants cgy, 1, c9, . . .
e functional symbols for operations on proofs:

— those of LP: binary +, -, and unary !,

— unary gen,. for each individual variable z;

e an operational symbol (-):x(-) for each finite set X of indi-
vidual variables.

Proof terms are constructed from proot variables and constants
by operations +, -, !, and gen.. Proof terms do not contain in-
dividual variables. Note also that in gen_, variable z is merely
a syntactic label of this operation and is not considered an oc-
currence of a variable.

33

Language of FOLP - formulas

Formulas are defined in the standard way with an additional
clause for the proof operator. Namely,

e If ¢ is a proof term, X a finite set of individual variables,
and A is a formula, then

t:;{ﬂ

1s a formula. In this formula, all variables from X, and only
from X. are free. All free occurrences of variables from X
in A are also free.

The set of free variables of a formula A is denoted by FVar(A).
We use the abbreviation #:A for ;) A.

34

FOLP - axioms and rules

The basic first-order logic of proots FOLP{ has axioms and rules:

Al classical axioms of first-order logic
A2 tix,A—txA, y&FVar(A)
A3 f:;{ﬂ — fi;{y}l

Bl tyA— A

B2 sx(A—B)ANtxyA—(s-t)xB

B3 txA—(t+s)xA, sxyA—(t+s)xA
B4 fI;{A—F !t:;{fixﬂ

B txyA—gen (t)xVrA, x & X

Rl —AA— B = + B modus ponens
R2 —A = FVvzA generalization

As betore, FOLP~¢ denotes FOLP with a constant specification
CS. FOLP corresponds to the total constant specification.

35

FOLP - axioms and rules

Here 1s the same set of postulates for FOLPy with subscripts X
suppressed for better readability:

A1l classical arioms of first-order logic
A2 t,A—tA yé&FVar(A)
A3 tA—1,A

Bl tA—A

B2 s(A—B)AtA—(s-t)B

B3 tA—(t+s)A, sA—(t+s)A
B4 tA—ltt:A

B5 tA—gen (t)VzA, z & X

Rl —AA— B = B modus ponens
R2 A = FVvzA generalization

1.

2.
. e (VzA — A) - from 2, by axiom A3;

e

9.

Derivation example

Let us derive in FOLP an explicit counterpart of the converse
Barcan Formula vrA — YxOA.
vrA — A - logical axiom:

c(VrA — A) - axiom necessitation;

i (VoA — A) — (w VoA — (c-u)y,A) - axiom B2;
U VTA — (c-u)iy A - from 3, 4, by Modus Ponens;

. WYTA — wypn VA - by axiom A3;

uVrA — (c-u)ynA - from 5, 6;

Vr|wvVrA — (c-u)y Al - from 7, by generalization;

wvrA — Vr(c-u)i A - from 8, since the antecedent of 8

does not contain x tree.

37

Internalization

Internalization: Let py.....p. be proof variables, Xy, ..., X;

be sets of individual variables, and X = Xy U X{ U ... U X},
Suppose that in FOLP

pox, Ao, .-, Prix, Ak F.

Then there exists a proof term t(pg, p1....,pr) such that

4

38

Realization of FOS4 and HPC

Let A be a first-order modal formula. By realization of a formula
A we mean a formula A" of the language of FOLP that is obtained
from A by replacing all occurrences ot subformulas of A ot the
form OB by t:x B for some proof terms ¢t and such that X =
FVar(B). A realization is normal if all negative occurrences of
are assigned proof variables.

Realization Theorem I[If FOS4 = A, then there is a normal
realization A" such that FOLP — A".

Corollary F' is derivable in HPC if and only if its Godel trans-
lation s realizable in FOLP.

39

Parametric interpretation

I'he role of X 1n t:xF is to provide a substitutional access to
derivation ¢t and formula F' for all variables from X. For this we
define ‘free variables of a derivation’ in such a way that

if a derivation D(x) with a free variable x proves formula

F(x), then for each n, D(n) is a derivation of F'(n).

Fix a natural Godel proof predicate Proof(x,y) and operations
+, -, I, and gen, which satisfy axioms of FOLP. A parametric
arithmetical interpretation i1s an evaluation * that maps

e proof variables and constants to arithmetical proofs:

e predicate symbols of arity n to arithmetical formulas with
n free variables.

We suppose that * commutes with the renaming of individual
variables. Boolean connectives and quantifiers, and

(t:x F')* = Proof (t*(X), F*(X))

40

Soundness

Arithmetical soundness

If FOLP = A with a constant specification CS, then for every
interpretation = respecting CS, PA = A*.

Corollary

If FOS4 proves F', then there exists a realization of F in FOLP
which 1s a parametric provability tautology.

Corollary

If HPC proves F', then
a) the Godel translation of F', tr(F'), is provable in FOS4,

h) there exists a realization of tr(F') in FOLP which is a para-
metric provability tautology.

41

Invariant interpretation

To capture self-referentiality, we consider the class of all proot
predicates that are provably equivalent to the standard proot
predicate but allow different numeration of proofs.

A proof predicate is a provably Ai-formula Prf(z,y) for which
there are provably total computable translators from proofs in
Prf to proofs of the same theorems in the standard prootf pred-
icate Proof, and vice versa. Operations on proofs are induced

by that of the standard proof predicate.

Soundness Theorem:
If FOLP = A with a constant specification CS, then for every
invariant interpretation * respecting CS, PA = A*.

42

Most general: generic semantics

A generic proof predicate is a provably A-formula Prf(z,y) such
that for every arithmetical formula .

PA-y < forsomen e w, Prf(n,"¢") holds

along with some general effectiveness conditions, e.g.., open vari-
ables in derivations are emulated by appropriate provably recur-
sive functions.

This 1s the most general and abstract provability semantics of
the three and the closest to the informal understanding of first-
order provability logic.

Soundness Theorem:
If FOLP = A with a constant specification CS, then for every
generic interpretation * respecting CS, PA F A*.

43

Completeness 1s not attainable

To simplity formulations without a loss of generality, we con-
sider the languages of LP and FOLP without proof constants
and logics LP, FOLP without the axiom necessitation rule. Let
PAR, INV. and GEN be sets of FOLP-formulas valid under the
parametric, invariant parametric, and generic semantics corre-
spondingly. Then

FOLP € GEN C INV C PAR

Theorem Neither GEN, PAR, or INV is recursively enumerable.

Corollary FOLP is not complete with respect to any of the afore-
mentioned provability semantics: parametric, invariant para-
metric, or generic.

44

To what extent FOLP 1s BHK?

We argue that the first-order logic of proots, in combination with
Godel’s translation.

1. is BHK compliant in the original formulation of the latter.
with BHK proofs interpreted as proof objects in Peano Arith-
metic;

2. naturally straightens known omissions of BHK in implica-
tion/negation and ‘for all’ clauses.

Indeed, first, we note that the proof objects in FOLP have
natural provability interpretations as PA-proofs. Assuming a
certain amount of good will from the listener, we will check that
FOLP complies with BHK clauses.

45

Conjunction
A proof of A N B consists of a proof of A and a proof of B.

An intuitionistic conjunction A A B is realized in FOLP as
t:(A A B)
where A and B are, as before, FOLP-versions of A and B. Thist

contains sufficient information to recover both a proof of A and

a proot of B. Indeed, given such ¢ and commonly known proofs
a and b such that

a:((ANB)—A) and b((AAB)—B),

one can find a proof of ﬁ a-t, and a proof of B . b-t. Likewise,
having a proot of A and a proot of B, one can construct a proot

of AN B within FOLP.

46

Disjunction
A proof of AV B 1is given by presenting either a proof of A or a
proof of B.

Argue in FOLP. Suppose u:A or u:B. We have to construct a
proof term t(u) such that t(u):(AV B). Consider the internalized

disjunction principles
a:(A—(AV B)) and b:(B— (A V B)),

both obviously provable in FOLP. Using application axiom B2,
we conclude that either |a-ul:(AV B) or [b-ul|:(AV B). In either
case,

a-u+bul:(AV B),

and we can set t(u) to [a-u + b-ul.

47

Universal quantifier

A proof of VxA(x) is a function converting c into a proof of A(c)
We known that it is not sufficiently precise and admits unaccept-
able ‘constructive proofs.” The provability BHK offers a natural
fix. To simplify the notations, assume that A(x) is atomic. An
intuitionistic statement VrA(z) is represented in FOS4 by

VrOA(z).
Its realization in FOLP i1s
wvz (v A(z)l.

Its arithmetical interpretation states that there is a uniform
proof u that for each c, the substitution of ¢ for x produces

a proof v(c) of A(c).

48

Corrected formulation

Here 1s the corrected reading of the BHK clause for vV suggested
by Godel's embedding and its subsequent realization in FOLP:

‘a constructive proof of VrA(x) is a pair (f,d) where f is a
function and d is a classical proof that for each x, f(x) is a
classical proof of A(x).’

This new version is non-circular, and 1s the one which naturally
comes to mind after inspecting the Schwichtenberg Paradox:
algorithm S fails this new BHK test since is does not provide a
required proof that for all u, S(u) is indeed a proof of F'(u).

49

Existential quantifier
A proof of dxA(x) is a pair (c,d) where d is a proof of A(c).

Consider an intuitionistic statement 3xA(z) for an atomic A(x).
It is represented in FOS4 as

JrOA(x)
Its realization in FOLP is
w3z | v A(z)).

Note that under any arithmetical interpretation, v: g A(z) is
provably decidable, hence 3z|v: 1 A(x)] is a provably Y.-formula.
From a proof u in PA of a YX-formula 3z F'(z) we can effectively
find ¢ and a PA proof d of F'(¢). Applying this method here, we
can obtain ¢ and d such that d is a (classical) proof of A(c).

50

Negation

The original BHK admitted anything as a ‘constructive proot’
of - A for an unprovable statement A. This is not right since
anything passes as a constructive proot of, say, —Consis PA.

Godel’s transtation of —A (assume that A is atomic, to keep
notations simpler) is O(—=0A). Its realization in the Logic of
Proots 1s

t(x):[—z:A

where t(z) is a proof term depending on z. In particular, a
‘constructive proot’ of —Consis PA provides a proof term t such
that for each z, t(x) is a PA-proof of —z:Consis PA. Using joint
logics of prootfs and provability developed by T. Yavorskaya and
E. Nogina, one can show that in the Logic of Prootfs there is no
such term t. Hence, in provability BHK. not every independent
sentence 1s automatically false and negation is not trivial.

51

Implication, revisited

Again, consider atomic A and B. The original BHK required a
constructive proof of A — B to be a construction (computable

function) f(z) such that for any proof = of A, f(x) is a proof of
B. Symbolically, z:A— f(x):B.

As we have seen, this led to problems with constructive seman-
tics of negation and needed a refinement. Provability BHK offers

a natural fix (we preserve the language of the original):

a constructive proof of A— B is a pair of constructions (f, g)
such that for each x, g(x) is a classical proof that x:A implies

f(x):B.

Symbolically this can be written as

g(z):|z:A— f(z):B].

52

Provability vs. computational BHK

1. The universal quantifier BHK clause is flawed (Schwichten-
berg Paradox); the negation clause in BHK is also flawed since
1t 1s neither constructive nor relevant. The computational BHK
catches neither, the provability BHK fixes both.

2. The provability BHK is intuitionistically acceptable since it
reduces constructive proots to classical proofs of simple formulas
of the sort F', VxF', and JdzF for some provably decidable formula
F'. The fact is that both the classical arithmetic PA, and the
intuitionistic arithmetic HA agree on such formulas.

3. An informal comment: when we start with proofs, we can
recover computable functions to formally represent the BHK
semantics. When we limit our considerations by computational
programs only, there 1s no generic way to recover proofs of their
correctness that appears to be needed for the BHK semantics.

53

Conclusions

Provability BHK can be traced to the early works by Godel, ap-
pears to fit the original BHK requirements and has a fast grow-
ing body of applications. In particular, in epistemology, it led
to a mathematical theory of justifications which adds the miss-
ing and long-anticipated justification component to the modal
account of knowledge.

There are two distinct classes of BHK-style semantics:

e computational BHK, originating from Kleene's discovery
(1945) of a computational content of intuitionistic logic.

e provability BHK, originating from Godel’s works and com-
pleted within the framework of the Logic of Proofs (propo-
sitional in 1995, first-order in 2011),

each having applications beyond their original foundational scope.

54

