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ARTICLE INFO ABSTRACT

Article history: In this Note, for vector functions defined on unbounded domainRf
Received we consider continuous embeddings of weighted homogeneous Sobolev
Accepted spaces into weighted Lebesgue spaces. Sufficient conditions on power-type
Available online weights for the validity of the inequalities are investigated. Moreover, the

related properties of the suitable approximation by smooth functions with a
bounded support can be proved.

RESUME

Dans cette Note, pour des fonctions vectorielléBrides sur des domaines

non borrés deR?, nous consiérons des iggaliés d'injection d’espaces de
Sobolev homognes avec poids dans des espaces de Lebesgue avec poids.
Des conditions suffisantes pour justifier cegégali€s sontétablies dans

le cas de poids de type puissance. En outre n@usions les propétes
d’approximation par des fonctions igfiniment diférentiablesa support
borre.

1. Introduction and formulation of the main results

The homogeneous Sobolev spaces of vector funciidfyé(2) are appropriate for the analysis of systems
of partial differential equations and boundary-value problems in unbounded exterior dénaifie’, like the
complementary set of one or more compact $Eten R3. The control of a suitable behavior at large distances
is required for the solution vector fields. So a fundamental role in our treatment is played by the choice of
admissible radial weights in the ¢-class of Muckenhoupt weights.

We are inspired by Galdi's presentation of Sobolev classical embedding inequalities (see his book [3] chapter
Il section 5) to provide the weighted embedding inequalities. Another approach by using full Sobolev spaces
with radial weights can be found in the works of Amrouche, Girault and their collaborators see e.g. [2]; a
generalization of Lemma 11.5.2 of [3] in this functional setting is given by Alliot [1], see Proposition 3.8. Let
us mention that there are several results on weighted full Sobolev spaces and embeddings, or even weighted
embedding of homogeneous Sobolev spaces but with different weights. See [7, 4, 8, 10].

The following conditiong A¢'),, and(A$), are preparatory and adapted to our analysis:

)- R, forsomea >0, for 1<qg<3

r dp q—1
(AT)q (/ 2111> < g, k) for ¢ =3
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o [-Prame(n] - )79 €Ly, (), 1<g¢<3
(A2>q 2
|- [Pmete(In]- )79 e Ly,(Q), ¢>3

The conditiong A%*) we introduce above do not impose serious restriction on radial weights ipdlaess of
Muckenhoupt weights. For instance, when the weight is assumed to be a power type fundtief) :=

(14 |x|)" for somex > 0, condition(A{)1<4<3 is always true forx = 3;?{“.

Let us fix some notations : for ang € R? all used parameter® > 0 will have the property)¢ C Br(xo),
where By (x,) denotes thecy-centered ball of radiu®; we now set Q% (xq) := Q\ Br(x0), Qr(xo) :=
QN Br(xp), andQg -(xo) := Q-(x0) \ Qr(x0) for a spherical shell with < §(2°) < R < r.

Our objective is to establish the following results, where we assume concrete radial weights of thie form

Theorem 1. (on a weighted embedding inequality Let 2 C R? be an exterior domain. Assume thais
given inDL4(Q), 1 < ¢ < 3, with the weightv = w,, andx < 32;;‘ Let the constant vectar, be defined in
Lemma 1.

Then, for anyx, € R? and forall R > 0, (u(:) — ug)(| - —xo|7%) € L% (Q2%(x)). Moreover, there exists
K= Kl(q7X0) > 0 such that

u(x) —ug |¢ 1/a
) dx ) < Kol one o @
OR(x0) ' X~ Xo
If Q is locally lipschitzian, denoting by(q) = 3‘%‘2 the Sobolev exponent, there exi&lis = K5(q) > 0 such

that
Hu_uons(q),ﬂ;w < K2|u|1,q79§w' (2)

Theorem 2. (another form of weighted embedding inequality LetQ) ¢ R3 be an exterior domain. Assume
thatu is given inD;%(Q) N LL, (), 1 < ¢ < 3, with the weightv = w,, andx < 3;(1‘1 Let the constant
vectorug be defined in Lemma 1.

Then, for anyx, € R3 and for all R > 0, (u(-) — up)(] - —xo|™1) € L% (Q%(z0)). Moreover, there exists
K5 = K3(q,%0) > 0 such that

1/q
u(x) —ug |9
(/QR( : ‘5()_7)(00‘ w([x|) dX) < K3 (Ju—=1ol1,0.0m060); w + [0 = Wollg0r(xo); vel) - (3)
X0
If Qislocally lipschitzian, denoting by(q) the same value as in Theorem 1, there exi§fs= K4(q) > 0such

that
[u = olls(q).0; w < Ka (Jul1,g.0:w + [[u = wollg0; vu|)- (4)

Theorem 3. (on the approximation by smooth functions,1 < q < 3) LetQ C R? be a locally lipschitzian
exterior domainu € DL9(Q), 1 < ¢ < 3, where the weighty = w,; satisfies the conditionsA{); <3, and
(A$)1<¢<3. Letug be the constant vector given by Lemma 1.

Thenu can be approximated in the semi-nofm|; 4 o. ., by functions fronC5°(2)? if and only ifu has zero
trace on the boundarg? andugy = 0.

Corollary 1. (the unweighted case]l < q < 3) LetQ C R? be a locally lipschitzian exterior domain. The
unconditional version of Lemma 1 whare= 1 anda = % gives the constant vectar.
Then functions1 € D¢(Q), 1 < ¢ < 3, can be approximated in the semi-nofm|; , o. 1 by functions from
Cg°(£2)? if and only ifu has zero trace on the boundad§? andu, = 0.

Remark 1. The corollary just shown improves the corresponding theorem in ([3], Theorem I1.7.1), indeed that
propertiesu|gpo = 0 anduy = 0 are not only sufficient but also necessary for approximating functions from
D'4(Q) by smooth functions with compact support. As it is explained in [3], one can also replace the zero
traceu|sq, = 0 by the conditionju € Wé’q(ﬂ) for all ¢ € C§°(R?) without assuming any regularity aic.



Theorem 4. (on the approximation by smooth functions,q > 3) Let Q C R? be a locally lipschitzian
exterior domainu € D19(2), ¢ > 3 where the weighty = w,, satisfies condition§A$),>3, and (A%) >3-
Thenu can be approximated in the semi-nofim||; 4 o. . by functions fronC5° (2)? if and only ifu|sq = 0.

2. Relevant preliminaries

We assumev a radial weight function in the-class of Muckenhoupt weights, andc D19(Q) ,1 < ¢ < 3,
a given vector field.S? is the unit sphere oR?. Let us begin with the following lemma, which is crucial to
estimate all surface integrals, and which gives explicitly this constant vecdiorwe denote byiy. This lemma
can be considered as a generalization of Lemma 11.5.2 [3] for radial weights.

Lemmal. (1 < ¢ < 3) Under the conditiof{ A$);<,<3, there exists a unique, € R* such that

| Iu(R0) ol de < €y R [Vull] g, (5) [eql

Proof. We consider the given functiamsmooth enough. For > R > §(£2¢), using Hblder inequality we have

[ ooy < ([ oioarrtuan) - ([ pjfp)) ©) [I1

Therefore, under the conditiqi{ )1 <4<3 and from the annexe (formula (17)), we obtain

lu(r,.) —u(R, )|* =

[ 1) —u(o)tde < R [Tl g,

Now, asR — oo, u(R, .) strongly converges ik?(S?) tou*(.). Putug := u* = ﬁ S5z u* () dep, then from
the annexe (formula (18)) we gefu(r) — ugl/,,s2 — 0 asr — oo at least for a sequence of radial values
{rm}m that tends tax.

Remark 2. Wheng = 1, the same result holds : Indeed, from formula (6) we directlyfg@'qu(r, v) —
u(R,p)|de < Cr||Vuli a8 w ,wherem < Cp also tending to zero aB — oo.

Remark 3. For anyx, € R3, taking R > 0 large enough, we can prove th%{f;—o“lo € L% (QF(xp)). This
result with the associated Sobolev-type inequalities is treated in Section 3.

3. Proofs of Theorems 1 and 2

Technically we follow the proof given in [3] whem = 1. So, let us consideg,(x) := (x — x)|x — Xo| ¢
andU := u— uy, u being a smooth functiolBy means of easy differential calculations and using a transparent
notation for the integralg .v|u« «,,» We obtain both formulas

[ avemmueinea - a-g [ |90
Qr,r(z0) (o)

q .
| W) dx I v (D)
~ ([ +[ e wwmasie,  ©

aBR(CU()) 8BT(10)

wherelg,, := — ‘/\QR,7'($O) g¢(x) |U(x)]? Vw(|x]) dx.
The first integraU’aBR(m) --- is non-positive; let us denote the second integfg%lr(mo) -+ by Ipp, : We apply
Lemma 1 to see how its contribution tends to zerq; as oo, even ifg = 1,

‘IaBrl S Tliqw(r) Cq TﬁaHqu?},Q"(mg); w (9)
We now estimate .v|uj«., Using Young inequality in the forma.b < y,a?+ (¢ — 1)7;1/(‘1’1)51/(’1—1) with

1 — — _
e = [35]" . 1< q<3,50(q— 1) V= — (g - 1)2-%, we have




g upe ul < / ¢ 184U [Vu] w dx (10)
Qr,r(zo0)

-1 U
L T et

. - )|X_X0|qw(|x|)dx (12)
R,r(Z0

Note that the obtained inequality holds whee- 1.
Then from (7)(8) and the previous inequality, we obtain

q
| wllx)ax < |Tos, |+ % 190 g, oy + ol (12)

U(x)

X — Xp

3—q

q QR17V($0)

We estimatdy,, as follows

Ux)

X — Xp

q

w([x]) dx,

[ mlUl V(i) dx| < 2601+ fao) |
QR,T(‘/EO) Q

Rr,r(z0)

where we use that the power type weight is such %’éfi\x — 20| < k(1 + |xo|). Then, from (12) as — o,

we obtain Ut
X q ~ |
/QR( )‘ ‘ w(x))dx < L IVUIT oy, (13)
o q

X — X

the first part of Theorem 1 is established. The constante obtain is precisel{(i‘;ﬁ—q)q(1 b ) (1+ | o).
e ~3%%

The proof of the second inequality in Theorem 1 also is largely based on [3}: Bo2R > 6(02°), we will split

the proof into two steps, considerifidl]|.(q) oo, w < (1= @r/2)Ullstay: w+ 2Rl = @)Ul w,
always for U = u — ug, and asking for the limit when — co. We have denotedr(x) = ¢(|x|/R), where
¢ € C*(R) is a convenient nondecreasing function such ¢{@) = 0if |¢| < 1 andp(&) = 1if |¢] > 2.

For simplicity, we sefU# (x) := ¢pr(x)(1 — ¢,(x)) U(x) andU’(x) := (1 — pp/2(x))U(x), so U# ¢
Wéfu(QR,gr) and U® € WL1(Qg). Applying the usual Sobolev inequality, we have

c HVU# q,Q2R, 205 W

c ( HU”q,QR,zﬁ.; w + HU | . |_1||q,ﬂr,zr; w T HVU

4,2R 27} w) (14)
c[IVU||g. 00 w
C ( HU”‘LQR/z,R? w + ||VU||Q,QR; ,w) (15)

Over the two bounded spherical shell3,r 2or, With a = % or 1, weighted or unweighted inequalities
are the same, then we can use the classical inequality in the form given by [[3], (4.14)] to bound the norm

I g 020m20m; w BY |- 110,08 0 + (Jog onn |- |qu)1/q, then we apply Lemma 1 for all surface integrals.

HU#HS(Q)QR,%; w

10 |s(q). 25 w

ININ N IA

The second term in (14) tends to zeroras> oo, to this end we first apply inequality (13) wifl". In the first
term it remains only Ul , or. .. Then from (14) we gefU#||,(,) ar, » < ¢||VU||,qr, . From (15) we
also obtain|U®||s(g).0x: w < ¢[VU||g,0x; w- This completes the proof of (2).

The proof of Theorem 2 follows the same line as in the proof of Theorem 1 except théggrm

roal<n [ [P et [ [UG1ITuxh
Qr,r(z0) ' X~ X0 QR r(xo0)
Then
3—q </ U(x) ‘q > /
— K w(lx)dx | < vUu||? o+ U (x)|?Vw(|x])|dx.
(%" ~) oy g | D) < % VU gy + [ UGV ()]



3. Proofs of Theorems 3 and 4

To justify the sufficiency, we follow Sobolev’s ideas [9] for approximating functianfsom D%:7(2) by
compactly supported smooth functions. In order to createifiarge enough, a truncated functigiu having
a bounded support if?, we considefr = {x € Q : exp(vVInR) < |x| < R} and

Inln|x|

o ~ .1 Inln|x]|
Yr(x) = w( NI R ) forx € Qg, clearly chosen Wlthi <

InlnR ’

wherey € C*(R) is a convenient non increasing function withi¢) = 1 if [¢| < 1 andy (&) = 0if [¢] > 1.

Note that, whem|sq = 0, pu € W{'4(Q) with the property) < Vg (x)| < for x € Qp.
As a consequence

c? R 1
\Y% a < — —_— )]9p%dS d
IV0m g < e | e ) [ g S

Then, if1 < ¢ < 3, from Lemma 1 withuy = 0, it follows that

_c 1
Inin R |x|In x|

C R pfozp27q
Viprul|? < = L — dp.
IV¢rulll g~ < (nnR)7 /ex;,(m) In )7 w(p) dp
Under the condition (A$)1<4<3 (|-12797*)(In|-])~7 € LL(Q), we get||Vyrull;» — 0asR — oo
since 7S~ — 0.

(InlnR)4
If ¢ = 1, applying Remark 4 with constanty replaced byC

ex
If ¢ > 3, from [3], Exercise 5.2, we get
C R pozp27q
\Y% a < — dp.
IVYrulll g =~ < (k)7 /exp(m) ()7 w(p) dp

Under our assumptiofd$ ), 3, we again obtaifi V¢ rul|4,.., — 0 @SR — oo.
Then, givere > 0, we can findR large enough andg . € C5°(12) such thatjug . — ¥rull1,4.0, w < €. SO,
taking into account also integrability & in LI (Q) :

p(vInR) We have the same result.

lu— uR7€|1,q,Q; w S =Yr)Vullgo; v+ ||vau||q79R; w T Ure —¥rUull1,4.0; w

< 2e+ | Vigul| < 3e.

¢,8r; w —

(16)

Remark 4. We need ConditiongA3) because we must control the estimatg|®f)zul|,., as R — oo :
Knowing that Condition( A{)1«<4<3 holds forw = w,, with o > 3;(1%1” and looking for(Ag) in the simplest
case we have + ¢ — 2 — xk > 1 and then we are in the same situation as in [3]

Vonl g, S s [ O :
Rl 0w = (InlnR)? Jexp/inw In(p)ip p= (¢—1(nlnR)? 1InR)*=

It remains to prove the necessity, firstly to show the zero trac&bof u € D1¢(Q) when approximated
in the norm||V - ||4.0. » by a sequencéu™},,~o with u™ € C§°(Q2), secondly to verify the relation, = 0.

The first point is obvious because thg 02; w)-norms of the traces af andu”™ are the same. To justify the

second point, we note th&ti"},,~o is a Cauchy sequence In(l)fu(Q) which converges Ti P (©2) by means

of Sobolev imbedding, and as the main technical ingredient we use the following convergence

1 R+6 )
lim —/ / u(r, p)ride dr = / u(R,p)dep, foradetailed proof see [5], [6]
6—0 25R2 R—§ §2 S2

Remark 5. As in [3] whenw = 1, the requirement that the constant vecigy from Lemma 1 i9 is not
necessary iff > 3. On the other hand, we can improve the results of Theorems 3 and 4 even if the ttace of
does not vanish, replacings° () by C5°(€2).



4. Annexe (classical properties)
We denote byD14(Q2) the following set of functions

D;4(Q) :={ulueLj, (), Vu € LL(Q) 1 < i< 3},

wherew is in theg-class of Muckenhoupt weights. As usually by factorization with respect to constants we get
the Banach spaces equipped with the topology 4.0. w := ||V - |l4.0; »- These Banach spaces of classes of
functions are sometimes denoted by the same notation. As it is clear from the context, in the previous sections
we used the symbdD’;4(9) for the set of functions. We recall th@tis unbounded in all directions, the global
summability ofu is lost and the behavior af at large distances. For eathéfv(Q) denotes the completion

of the space”s° ()2 under the norm|V - |

By W}l;q(QR),Wé:Z)(QR) we mean full Sobolev spaces with their usual norms, see [10].

Let V* be the gradient operator ¢tt, the unit sphere ii* : The following identity hold$V*u|? = 72[|Vu|?—
|0,ul?]. It means that eithgu|? > [9,u|? or [Vul? > 7=9|V*ul|? (1 < ¢ < o0).

From the first inequality, we get

IVl sy > 10015 0,0 = [ Dyuirlo)pas dp an

then the last integral is bounded where D19(Q2). Now, from the second inequality, we get

q,8% w

IVl sy = V00, = [ 719 ulmu(p)2as o
> e [ IVl gttt

T
> cc [ ja @l g Tulo)dp (19)
R

Here, forQ) regular enough, we have used a Friedrichs-Po@tygre inequality (so-called Wirtinger inequality)
which holds in the absence of a zero value at the boundary if we substractifitsrmean value. Then

[u—1u ||q,QR,r;w < CHquq,Q;w

The property does make sense Witlhu € L (92) only and forl < ¢ < oo.

loc,w

If 2 is locally Lipschitzian and/u € LY (9), thenu € L] () also near the bounda}f) = 9Q¢, see [8].

loc,w loc

Concluding Remark 1. Our purpose in [5] and [6] is to prove the existence of very weak solutions in weighted
L4-Spaces to the Stokes and Navier—Stokes Equations formulated to describe the motion of a flow around a
rotating rigid body. To deal with these problems, weight functions taken from the Muckemnhdaps (usually
denoted4,) of the formw, are convenient. Then we've had to define appropriate spaces and needed corre-
sponding embedding theorems, this is the reason why we have studied the present embeddings. We consider
these inequalities interesting by themselves.
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