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Žitná 25, 115 67 Praha 1, Czech Republic

Abstract

We consider a simplified model arising in radiation hydrodynamics
based on the incompressible Navier-Stokes-Fourier system describing the
macroscopic fluid motion, and a transport equation modeling the prop-
agation of radiative intensity. We establish global-in-time existence for
the associated initial-boundary value problem in the framework of weak
solutions.
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1 Introduction

The paper concerns the incompressible heat conduction radiation fluid. We
consider that the motion of the fluid is governed by the standard field equations
of classical continuum fluid mechanics describing the evolution of the velocity
field ~u = ~u(t, x), and the absolute temperature ϑ = ϑ(t, x) as functions of the
time t and the Eulerian spatial coordinate x ∈ Ω ⊂ R3. The effect of radiation,
represented by its quanta - massless particles called photons traveling at the
speed of light c - is incorporated in the radiative intensity I = I(t, x, ~ω, ν),
depending on the direction vector ~ω ∈ S2, where S2 ⊂ R3 denotes the unit
sphere, and the frequency ν ≥ 0. The collective effect of radiation is then

∗The work of Š.N. was supported by Grant P201-13-00522S of GA ČR in the general
framework of RVO:67985840
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expressed in terms of integral means with respect to the variables ~ω and ν of
quantities depending on I. In particular, the radiation energy ER is given as

ER(t, x) =
1
c

∫
S2

∫ ∞

0

I(t, x, ~ω, ν) d~ω dν. (1.1)

The time evolution of I is described by a transport equation with a source
term depending on the absolute temperature, while the effect of radiation on
the macroscopic motion of the fluid is represented by extra source terms in the
momentum and energy equations evaluated in terms of I.

More specifically, the system of equations to be studied reads as follows:

Equation of continuity:

divx~u = 0 in (0, T )× Ω; (1.2)

Momentum equation:

∂t~u+ divx(~u⊗ ~u) +∇xp = divxT− ~SF in (0, T )× Ω; (1.3)

Energy balance equation:

∂t

(
1
2
|~u|2 + ϑ

)
+ divx

((
1
2
|~u|2 + ϑ

)
~u

)
+ divx

(
p~u+ ~q − T~u

)
(1.4)

= −SE in (0, T )× Ω;

Radiation transport equation:

1
c
∂tI + ~ω · ∇xI = S in (0, T )× Ω× (0,∞)× S2. (1.5)

Furthermore, T is the viscous stress tensor determined by Newton’s rheolog-
ical law

T = µ
(
∇x~u+∇t

x~u
)
, (1.6)

where the shear viscosity coefficient µ = µ(ϑ) > 0 is effective function of the
absolute temperature. Similarly, ~q is the heat flux given by Fourier’s law

~q = −κ∇xϑ, (1.7)

with the heat conductivity coefficient κ = κ(ϑ) > 0.
Finally,

S = Sa,e + Ss, (1.8)

where

Sa,e = σa

(
B(ν, ϑ)− I

)
, Ss = σs

(
1
4π

∫
S2
I(·, ~ω) d~ω − I

)
, (1.9)
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and

SE =
∫
S2

∫ ∞

0

S(·, ν, ~ω) dν d~ω, ~SF =
1
c

∫
S2

∫ ∞

0

~ωS(·, ν, ~ω) dν d~ω, (1.10)

with the absorption coefficient σa = σs(ν, ϑ) ≥ 0, and the scattering coefficient
σs = σs(ν, ϑ) ≥ 0. More restrictions on the structural properties of constitutive
relations will be imposed in Section 2 below.

System (1.2 - 1.5) is supplemented with the boundary conditions:

slip condition, no-flux:

~u · ~n|∂Ω = 0, (T~n)τ = 0, ~q · ~n|∂Ω = 0; (1.11)

Transparency:

I(t, x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0, (1.12)

where ~n denotes the outer normal vector to ∂Ω.

System (1.2 - 1.12) can be viewed as a simplified model in radiation hy-
drodynamics. Concerning physical motivation see works of Pomraning [32] and
Mihalas and Weibel-Mihalas. Similar systems have been investigated more re-
cently in astrophysics and laser applications (in the relativistic and inviscid case)
by Lowrie, Morel and Hittinger [24], Buet and Després [3].

Our goal in the present paper is to show that the existence theory for the
incompressible Navier-Stokes-Fourier system coupled with the radiation.

The paper is organized as follows.In section 2 we list the principal hypothesis,
notation,formulation of the problem and state the main result. Section 3 we
introduce the approximation scheme. Section 4 is devoted to uniform estimates.
In last two sections we are passing to the limits with epsilon and η.

2 Hypotheses and main results

The transport coefficients µ and κ are continuously differentiable functions of
the absolute temperature such that

0 < c1 ≤ µ(ϑ) < c2, (2.1)

0 < c1 ≤ κ(ϑ) ≤ c2 (2.2)

for any ϑ ≥ 0.
Finally, we assume that σa, σs, B are continuous functions of ν, ϑ such that

0 ≤ σa(ν, ϑ), σs(ν, ϑ) ≤ c1, 0 ≤ σa(ν, ϑ)B(ν, ϑ) ≤ c2, (2.3)

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), h ∈ L1(0,∞), (2.4)

and
σa(ν, ϑ), σs(ν, ϑ) ≤ cϑ (2.5)
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for all ν ≥ 0, ϑ ≥ 0. Relations (2.3 - 2.5) represent a rather crude “cut-off”
hypotheses neglecting the effect of radiation at large frequencies ν and low vales
of the temperature ϑ. Note, however, that relations similar to (2.5) were derived
by Ripoll et al. [33].

2.1 Notation

For arbitrary r > 0 by Lr(Ω) we denote the usual Lebesgue spaces equipped
with the norm ‖.‖r. We denote W 1,r(Ω) the usual Sobolev spaces with the norm
‖.‖1, r.

We define

W 1,r
n := {~v;~v ∈W 1,r(Ω)d, tr~v · n = 0 on ∂Ω}

W 1,r
n,div := {~v;~v ∈W 1,r

n (Ω)d; div ~v = 0}
Lr

n := {~v ∈W 1,r
n,div}.

(2.6)

2.2 Weak formulation

In the weak formulation of the Navier-Stokes-Fourier system, the momentum
equation (1.3) is replaced by∫ T

0

∫
Ω

(~u · ∂tϕ+ ~u⊗ ~u : ∇xϕ+ pdivxϕ) dx dt (2.7)

=
∫ T

0

∫
Ω

T : ∇xϕ+ ~SF · ϕ dx dt−
∫

Ω

(%~u)0 · ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω; R3). As the viscous stress contains first derivatives
of the velocity ~u, for (2.7) to make sense, the field ~u must belong to a certain
Sobolev space with respect to the spatial variable. We will specify it in definitin.

As a matter of fact, the total energy balance (1.4) is not suitable for the
weak formulation since, at least according to the recent state-of-art, the term
T~u is only weakly lower semicontinuous in ∇x. Following [12], we replace (1.4)
by the internal energy equation

∂te+ divx(e~u) + divx~q = T : ∇x~u− pdivx~u+ ~u · ~SF − SE . (2.8)

Furthermore, dividing (2.8) on ϑ , we may rewrite (2.9) as the entropy equation

∂ts+divx(%s~u)+divx

(
~q

ϑ

)
=

1
ϑ

(
T : ∇x~u−

~q · ∇xϑ

ϑ

)
+

1
ϑ

(
~u · ~SF −SE

)
. (2.9)

Finally, similarly to [9], equation (2.9) is replaced in the weak formulation by
an inequality, specifically,∫ T

0

∫
Ω

(s∂tϕ+ ~u · ∇xϕ+ ~qϑ · ∇xϕ) dx dt (2.10)
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≤ −
∫

Ω

s0ϕ(0, ·) dx

−
∫ T

0

∫
Ω

1
ϑ

(
T : ∇x~u−

~q · ∇xϑ

ϑ

)
ϕ dx dt−

∫ T

0

∫
Ω

1
ϑ

(
~u · ~SF − SE

)
ϕ dx dt

for any ϕ ∈ C∞c ([0, T )× Ω), ϕ ≥ 0.
Since replacing equation (1.4) by inequality (2.10) would certainly result in a

formally under-determined problem, system (2.7), (2.10) must be supplemented
with the total energy balance∫

Ω

(
1
2
|~u|2 + ϑ+ ER

)
(τ, ·) dx (2.11)

+
∫ τ

0

∫ ∫
∂Ω×S2, ~ω·~n≥0

∫ ∞

0

~ω · ~nI(t, x, ~ω, ν) dν d~ω dSx dt

=
∫

Ω

(
1
2
|~u0|2 + ϑ0 + ER,0

)
dx,

where ER is given by (1.1), and

ER,0 =
∫
S2

∫ ∞

0

I0(·, ~ω, ν) d~ω dν.

The transport equation (1.5) can be extended to the whole physical space
R3 provided we set

σa(x, ν, ϑ) = 1Ωσa(ν, ϑ), σs(x, ν, ϑ) = 1Ωσs(ν, ϑ)

and take the initial distribution I0(x, ~ω, ν) to be zero for x ∈ R3\Ω. Accordingly,
for any fixed ~ω ∈ S2, equation (1.5) can be viewed as a linear transport equation
defined in (0, T ) × R3, with a right-hand side S. With the above mentioned
convention, extending ~u to be zero outside Ω, we may therefore assume that
both % and I are defined on the whole physical space R3.

We define the functionals

E(t, ϕ) = (ϑ(t, .) +
1
2
|~u(t, .)|2 + ER, ϕ), E0 = (ϑ0 +

1
2
|~u0(t, .)|2 + ER,0, ϕ)

Definition 2.1 We say that (~u, ϑ, p, I) is a weak solution of problem (1.2 -
1.12) if

ϑ > 0 for a.a. (t, x)× Ω, I ≥ 0 a.a. in (0, T )× Ω× S2 × (0,∞),

~u ∈ C(0, T ;L2
weak(Ω; R3)) ∩ L2(0, T ;W 1,2

n,div(Ω; R3)),

~ut ∈  L
5
3 (0, T ;W−1, 5

3 ),
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p ∈ L 5
3 (0, T ;L

5
3 (Ω)),

ϑ ∈ L∞(0, T ;L1(Ω)) ∩ L∞(0, T ;W 1,n(Ω)), for all n ∈ [1, 5/4),

I ∈ L∞((0, T )× Ω× S2 × (0,∞)), I(t, ·) ∈ L∞(0, T ;L1(Ω× S2 × (0,∞)),

E(t, ϕ) ∈ C([(0, T ]) and lim
t→0+

E(t, ϕ) = E0(ϕ),

lim
t→0+

‖~u(t)− ~u0‖2 = 0,

∫ T

0

∫
Ω

(~u · ∂tϕ+ ~u⊗ ~u : ∇xϕ+ pdivxϕ) dx dt (2.12)

=
∫ T

0

∫
Ω

T : ∇xϕ+ ~SF · ϕ dx dt−
∫

Ω

~u0 · ϕ(0, ·) dx

for any ϕ ∈ L∞(0, T ;W 1,∞
n ),∫ T

0

(
−(ϑ, ψt)−(~uϑ,∇ψ)+(k(ϑ)∇ϑ,∇ψ)−(µ(ϑ)|D(~u)|2, ψ

)
dt+

(
~u·~SF−SE , ψ

)
≥ (ϑ0, ψ(0))

for all ψ ∈ D(−∞, T ; C∞(Ω̄)).

The total energy balance is satisfied∫
Ω

(
1
2
|~u|2 + ϑ+ ER

)
(τ, ·) dx (2.13)

+
∫ τ

0

∫ ∫
∂Ω×S2, ~ω·~n≥0

∫ ∞

0

~ω · ~nI(t, x, ~ω, ν) dν d~ω dSx dt

=
∫

Ω

(
1
2
|~u0|2 + ϑ0 + ER,0

)
dx,

and I satisfied the integral identity (1.5).

2.3 Main result

The main result of the present paper can be stated as follows.

Theorem 2.1 Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that the
transport coefficients µ, κ, σa, and σs comply with (2.1 - 2.5). Then there
exists a weak solution to (1.2 - 1.12).
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3 Approximation scheme

We consider the quasicompressible approximation

ε∆p = div ~u in Ω× (0, T ),
∂p
∂n = 0 on ∂Ω× (0, T ),∫

Ω
pdx = 0.

(3.1)

We regularized ~u by using the mollifying operators γη such that for any
function ~u : R3 → R3 with compact support

• γη(~u) ∈ C∞c (R3), supp (γη(~u)) ⊂ supp(~u),

• if ∇ · ~u = 0 then ∇ · γη(~u) = 0,

• for all p ∈ [1,∞), there exists a constant c such that for all η

γη(~u)Lp(R3) ≤ c‖u‖Lp(R3),

γη(~u)W 1,p(R3) ≤ c‖u‖W 1,p(R3).

• if u ∈W 1,p(R3) with p ∈ [1,∞), then

γη(~u) → ~u in W 1,p(R3) as η → 0.

Definition 2.2 We say that (~uε,η, ϑε,η, pε,η, Iε,η) is a weak solution of the
(ε, η)-approximation of problem (1.2 - 1.12) if

ϑ > 0 for a.a. (t, x)× Ω, I ≥ 0 a.a. in (0, T )× Ω× S2 × (0,∞),

~u ∈ C(0, T ;L2(Ω; R3)) ∩ L2(0, T ;W 1,2
n (Ω; R3)),

~ut ∈ L2(0, T ;W−1,2),

p ∈ L2(0, T ;W 1,2(Ω)),

ϑ ∈ L∞(0, T ;L1(Ω)),

ϑ
1+λ
2 ∈ L2(0, T ;W 1,2(Ω)), for all λ ∈ (−1, 0),

I ∈ L∞((0, T )× Ω× S2 × (0,∞)), I(t, ·) ∈ L∞(0, T ;L1(Ω× S2 × (0,∞)),

lim
t→0+

‖~u(t)− ~u0‖2 = 0 and lim
t→0+

‖ϑ(t)− ϑ0‖1 = 0,

7



−ε(∇p(t),∇φ) = (φ, div ~u(t)), for all φ ∈W 1,2(Ω) a.a. t ∈ (0, T ), (3.2)

∫ T

0
(< ~u,t, ϕ > − < ~uη ⊗ ~u,∇xϕ > + < T,∇xϕ >) dt =∫ T

0
(p,divxϕ) + (~SF , ·ϕ) dt−

∫
Ω
~u0 · ϕ(0, ·) dx

for any ϕ ∈ L2(0, T ;W 1,2
n ),

(3.3)

∫ T

0

(
− (ϑ, ψt)− (~uηϑ,∇ψ) + (k(ϑ)∇ϑ,∇ψ)− (µ(ϑ)|D(~u)|2, ψ

)
dt+

(
~u · ~SF − SE , ψ

)
= (ϑ0, ψ(0))

(3.4)
for all ψ ∈ D(−∞, T ; C∞(Ω̄)).
I satisfied the integral identity (1.5).

Theorem 3.1 Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that the
transport coefficients µ, κ, σa, and σs comply with (2.1 - 2.5). Then there
exists a weak solution to (ε, η)-approximation of problem (1.2 - 1.12).

Proof:

We consider a linear mapping F : W1,2
n → W2,2 which for any ~u ∈ W1,2

n

F(~u) = p ∈ W 2,2 solve the problem (3.1). From the regularity theory for the
Neumann problem the mapping is continuous.

Now, we define {wj}∞j=1 be an orthogonal basis in W1,2
n and orthonornal in

L2 . Then for given SF (J), SE(J) we construct the Galerking approximation
{~uN} with

~uN :=
∑N

i=1 cN
i (t)wj (3.5)

and pN := F(~uN ) where cN
i := (cN,

1 ..., cNN ) solve the system of ordinary differ-
ential equation

d
dt (~u

N ,wj)− (~uN
η ⊗ ~uN ,∇xwj) + (T(~uN ),∇xwj) =

−(F(~uN ),divxwj) + (~SF ,wj) dt,j = 1, ..., N.
(3.6)

ϑN , IN are determined through the system of equations

∂tϑ
N + divx(ϑN~uN ) + divx~q = T(~uN ) : ∇x~u

N −F(~uN )divx~u
N + ~uN · ~SF − SE .

1
c∂tI + ~ω · ∇xI = S(ϑN )

(3.7)
We consider the following initial conditions

~uN (., 0) = ~uN
0 , ϑ

N
0 (0, .) = ϑN

0 , I
N
0 (0, .) = IN

0
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where ~uN
0 :=

∑N
j=1 c

N
0 wj are the projections of ~u0 onto linear hulls of {wj}N

j=1.
With ϑN

0 ∈ C∞ such that

inf n∈N,x∈Ωϑ
N
0 > 0, ϑN

0 → ϑ0 in L1 (3.8)

By standard argument following the Galerkin method and classical parabolic
equation we can show the uniform estimates independent on N and then pass
to the limit in N .

4 Uniform bounds

We interest in the uniform (a priori) bounds for (~u, ϑ, p, I) = (~uε,η, ϑε,η, pε,η, Iε,η).

4.1 Estimates of the radiation intensity

At this stage we focus on the transport equation (1.5). Since the quantity Iε is
non-negative, we have

1
c
∂tIε + ~ω · ∇xIε ≤ σs(ν, ϑε)B(ν, ϑε) + σa(ν, ϑε)

1
4π

∫
S2
Iε(·, ~ω) d~ω (4.1)

as the coefficients σs, σa are non-negative. Moreover, making use of the “cut-
off” hypothesis (2.3), we deduce a uniform bound

0 ≤ Iε(t, x, ν, ~ω) ≤ c(T )(1 + sup
x∈Ω, ν≥0,~ω∈S2

I0,ε) ≤ c(T )(1 + I0) for any t ∈ [0, T ].

(4.2)
Finally, hypothesis (2.4), together with (4.2), yield

‖SE,ε‖L∞((0,T )×Ω) + ‖~SF,ε‖L∞((0,T )×Ω;R3) ≤ c, (4.3)

4.2 Energy estimates

¿From (3.2-3.4) we obtain

ess sup
t∈(0,T )

‖~u‖L2(Ω;R3) ≤ c, (4.4)

ess sup
t∈(0,T )

‖ϑ‖L1(Ω) ≤ c, (4.5)

ess sup
t∈(0,T )

‖∇ϑ
λ+1
2 ‖L2(Ω) ≤ c, (4.6)

Since the viscosity coefficients satisfy (2.1), we get∫ T

0

∫
Ω

Tε : ∇x~uε dx dt ≥ c1
∥∥∇x~uε +∇t

x~uε

∥∥2

L2((0,T )×Ω;R3×3)

≥ c2‖~uε‖2L2(0,T ;W 1,2
0 (Ω;R3))

,
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4.3 Pressure estimates

We consider the auxiliary Neumann problem for h = hε,η:

∆h = |p|β−2p− 1
|Ω|

∫
Ω
|p|β−2p in Ω

∇h · n = 0 on ∂Ω,
∫
Ω
h = 0.

(4.7)

Muliplying by ∇h the momentum equation we are getting by standard ap-
proach see [4] ∫ T

0

‖p‖
5
3
5
3
dt ≤ C. (4.8)

Moreover, from the momentum equation and the internal energy

‖~u,t‖L2(0,T ;W−1,2
n ) + ‖θt‖L1(0,T ;W−1,q′ ) ≤ cη−1 (4.9)

and

‖~u,t‖
L

5
3 (0,T ;W

−1, 5
3

n )
+ ‖θt‖L1(0,T ;W−1,q′ ) ≤ c. (4.10)

5 Limit in ε

¿From uniform estimates and using Aubin-Lions lemma we get (fixing η and
passing with ε→ 0)

• ~uε
,t → ~u,t weakly in L2(0, T ;W−1,2

n )

• ~uε → ~u weakly in L2(0, T ;W 1,2
n )

• ~uε → ~u weakly * in L∞(0, T ;L2(Ω)3)

• ~uε → ~u strongly in Lq(0, T ;Lq) for q ∈ [1, 10/3)

• ϑε → ϑ weakly in Ln(0, T ;W 1,n) for n [1, 5/4)

• ϑε → ϑ strongly in Lm(0, T ;Lm) for m ∈ [1, 5/3)

• (ϑε)
λ+1
2 → ϑ

λ+1
2 weakly in L2(0, T ;W 1,2) for λ ∈ (−1, 0)

• µ(ϑε)D(~uε) → µ(ϑ)D(~u) weakly in L2(0, T ;L2)

• pε → p weakly in L2(0, T ;L2)

∣∣ ∫ T

0
( div ~u, φ)dt

∣∣ = limε→0

∣∣ ∫ T

0
( div ~u,ε φ)dt

∣∣ =

limε→0

∣∣ ∫ T

0

∫
Ω
∇φ · ∇pεdt

∣∣ ≤
≤ limε→0

√
ε
( ∫

Q
|∇φ|2dxdt

) 1
2
( ∫

Ω
ε|∇pε|2

) 1
2

= 0.

(5.1)
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As in [4] we get ∫
Q

µ(ϑε)|D(~uε)|2 →
∫

Q

µ(ϑ)|D(~u)|2 (5.2)

Our next goal is to establish convergence of the quantities

~uε · ~SF,ε =
1
c
~uε ·

∫ ∞

0

σa(ν, ϑε)
(∫

S2
~ω (B(ν, ϑε)− Iε) d~ω

)
dν

+
1
c
~uε ·

∫ ∞

0

σs(ν, ϑε)
(∫

S2
~ω

((
1
4π

∫
S2
Iε d~ω

)
− Iε

)
d~ω

)
dν

and

SE,ε =
1
c

∫ ∞

0

σa(ν, ϑε)
(∫

S2
(B(ν, ϑε)− Iε) d~ω

)
dν.

Since ϑ→ ϑ strongly in Lm(0, T ;Lm(Ω)) for m ∈ [1, 5/3), and

~uε → ~u weakly in L2(0, T ;W 1,2
0 (Ω; R3))

the desired result follows from compactness of the velocity averages over the
sphere S2 established by Golse et al. [16, 17], see also Bournaveas and Perthame
[2], and hypothesis (2.4). Specifically, we use the following result (see [16]):

Proposition 5.1 Let I ∈ Lq([0, T ] × Rn+1 × S2), ∂tI + ω · ∇xI ∈ Lq([0, T ] ×
Rn+1 × S2) for a certain q > 1. In addition, let I0 ≡ I(0, ·) ∈ L∞(Rn+1 × S2).

Then
Ĩ ≡

∫
S2
I(·, ν) d~ω

belongs to the space W s,q([0, T ] × Rn+1) for any s, 0 < s < inf{1/q, 1 − 1/q},
and

‖Ĩ‖W s,q ≤ c(I0)(‖I‖Lq + ‖∂tI + ω · ∇I‖Lq ).

As the radiation intensity Iε satisfies the transport equation (1.5), by virtue
of the cut - off hypothesis (2.9)-(2.11) where S is bounded in Lq ∩ L∞([0, T )×
Ω×R1×S2), a direct application of Proposition 5.1 yields the desired conclusion∫

S2
Iε(·, ν) d~ω →

∫
S2
I(·, ν) d~ω in L2((0, T )× Ω)

and ∫
S2
~ωIε(·, ν) d~ω →

∫
S2
~ωI(·, ν) d~ω in L2((0, T )× Ω)

for any fixed ν.
Consequently,

~uε · SF,ε → ~u · Fs

and, similarly,
SE,ε → SE

as required.
So, we can pass to the limit in the momentum equation and also in the

internal energy equation.
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6 Limit in η

We are passing with η → 0. We already have div ~uη = 0. ¿From uniform
estimates and using Aubin-lions lemma we get

• ~uη
,t → ~u,t weakly in L

5
3 (0, T ;W−1, 5

3
n )

• ~uη → ~u weakly in L2(0, T ;W 1,2
n,div)

• ~uη → ~u weakly * in L∞(0, T ;L2(Ω)3)

• ~uη → ~u strongly in Ln(0, T ;Ln) for n ∈ [1, 10/3)

• ϑη → ϑ weakly in Ls(0, T ;W 1,s) for s ∈ [1, 5/4)

• ϑη → ϑ strongly in Lm(0, T ;Lm) for m ∈ [1, 5/3)

• (ϑη)
λ+1
2 → ϑ

λ+1
2 weakly in L2(0, T ;W 1,2) for λ ∈ (−1, 0)

• µ(ϑη)D(~uη) → µ(ϑ)D(~u) weakly in L2(0, T ;L2)

• pη → p weakly in L
5
3 (0, T ;L

5
3 )

Using lower semicontinuity in the L2 norm implies that

∫ T

0

∫
Ω

µ(ϑη)|D(~uη|2ψdxdt ≤ lim infη→0+

∫ T

0

∫
Ω

µ(ϑ)|D(~u)|2ψdxdt (6.1)

Finally as in the previous section we get using [2] [16]

~uε · Sη
F → ~u · SF

and, similarly,
Sη

E → SE
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propre principale d’un opérateur de transport, C. R. Acad. Sci. Paris, 301
(1985) 341–344.

[18] F. Golse, G. Allaire, Transport et diffusion, Lecture Notes, Ecole polytech-
nique, 2010.

13



[19] P. Jiang, D. Wang, Formation of singularities of solutions of the radiative
transfer equations in a singular case, Preprint, March 11, 2009.

[20] P. Jiang, D. Wang, Global weak solutions to the Euler-Boltzmann equa-
tions in radiation hydrodynamics, Preprint, June 27, 2009.

[21] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uralceva, Linear and quasi-
linear equations of parabolic type, AMS Trans. Math. Monograph 23, Prov-
idence, 1968.

[22] C. Lin, Mathematical analysis of radiative transfer models, PhD Thesis,
2007.

[23] C. Lin, J. F. Coulombel, T. Goudon, Shock profiles for non-equilibrium
radiative gases, Physica D, 218 (2006) 83–94.

[24] R. B. Lowrie, J. E. Morel, J. A. Hittinger, The coupling of radiation and
hydrodynamics, The Astrophysical Journal, 521 (1999) 432–450.

[25] P.-L. Lions, Mathematical topics in fluid dynamics, Vol.2, Compressible
models, Oxford Science Publication, Oxford, 1998.

[26] P.-L. Lions, Bornes sur la densité pour les équations de Navier- Stokes
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