
IN
ST

IT
UT

Eof
MATHEMATICS

A
ca

de
m

yo
f S

ci
en

ce
s

C
ze

ch
R

ep
ub

lic INSTITUTE of MATHEMATICS
A
CA

D
EM

Y
of

SC
IE
N
CE

S
of

th
e
CZ
EC

H
RE

PU
BL
IC Olsen’s problem and essentially power

bounded operators

VladimírMüller

Preprint No. 8-2014

PRAHA 2014





OLSEN’S PROBLEM AND ESSENTIALLY POWER
BOUNDED OPERATORS

V. MÜLLER

Abstract. Let T be a non-Riesz operator on an infinite-dimensio-
nal Hilbert space. Then there exists a compact operator K such
that ‖(T +K)n‖ = ‖Tn‖e for all n. In particular, every essentially
power bounded operator is a compact perturbation of a power
bounded operator.

1. Introduction

Let H be an infinite-dimensional Hilbert space. Denote by B(H),
K(H) and F(H) the set of all bounded, compact and finite-rank oper-
ators on H, respectively.

For T ∈ B(H) denote by ‖T‖e the essential norm of T , i.e., ‖T‖e =
inf{‖T + K‖ : K ∈ K(H)}. Let σe(T ) and re(T ) denote the essential
spectrum and essential spectral radius, respectively, i.e., the spectrum
and the spectral radius of the class T + K(H) in the Calkin algebra
B(H)/K(H). Recall that T ∈ B(H) is called Riesz if re(T ) = 0.

For a subspace M ⊂ H denote by PM the orthogonal projection onto
M .

Properties of an operator T ∈ B(H) can be frequently improved by a
suitable compact perturbation. By [W], any Riesz operator T ∈ B(H)
can be written as a sum T = Q + K where K is a compact and Q
quasinilpotent operator. More generally, by [S], for any T ∈ B(H) there
exists K ∈ K(H) such that σ(T + K) is equal to the Weyl spectrum of
T ,

σW (T ) =
⋂
{σ(T + K) : K ∈ K(H)}.

By [CSSW], for any T ∈ B(H) there exists a compact operator

K ∈ K(H) such that the closure of the numerical range W (T + K) is
equal to the essential numerical range We(T ).
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By [O1], if T ∈ B(H) is polynomially compact, i.e., p(T ) ∈ K(H)
for some polynomial p, then there exists K ∈ K(H) such that T + K
is algebraic, p(T + K) = 0 (with the same polynomial p).

The following problem was raised by C. Olsen [O2], cf. also [O1],
[OP]:

Problem. Let T ∈ B(H). Does there exist a compact operator K ∈
K(H) such that ‖p(T + K)‖ = ‖p(T )‖e for all polynomials p? Less
ambitiously, if T and p are both given, is there a compact operator Kp

such that ‖p(T + Kp)‖ = ‖p(T )‖e?

Even the more modest formulation of the problem is surprisingly
difficult. A positive answer was given in [O2] for the polynomials p(z) =
z, z2, z3 and in [CLSW] for all linear polynomials. In [M], a positive
answer was given for any power p(z) = zn.

In the present paper we refine the estimates of [M] and show that
for any non-Riesz operator T ∈ B(H) there exists a compact operator
K ∈ K(H) such that ‖(T + K)n‖ = ‖T n‖e for all n simultaneously.

In particular, this implies that for any essentially power bounded
operator T ∈ B(H), (i.e., supn ‖T n‖e < ∞) there exists a compact
operator K such that T +K is power bounded, supn ‖(T +K)n‖ < ∞.

2. Main result

We need several lemmas that were proved in [CLSW] and [M].

Proposition 1. (see [M], Proposition 6) Let H be a separable infinite-
dimensional Hilbert space, let (e1, e2, . . . ) be an orthonormal basis in
H. Let S ∈ B(H). Then

‖S‖e = lim
k→∞

‖PH⊥
k
SPH⊥

k
‖,

where Hk =
∨k

j=1 ej (k ∈ N).

The next lemma is a slight modification of [M], Lemma 8, cf. also
[CLSW], Lemma 5. For the sake of convenience we give a proof here.

Lemma 2. Let H be a separable infinite-dimensional Hilbert space,
S1, . . . , Sn ∈ B(H). Let F0 ⊂ H be a finite-dimensional subspace.
Then there exist mutually orthogonal finite-dimensional subspaces Fk ⊂
H such that H =

⊕∞
k=0 Fk and PFrSjPFs = 0 for all r, s ∈ N, |r−s| ≥ 2

and j = 1, . . . , n (i.e., the operators S1 . . . , Sn are simultaneously block
3-diagonal).

Proof. Let (e1, e2, . . . ) be an orthonormal basis in H.
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We construct the subspaces Fk inductively. If k ≥ 1 and the sub-
spaces F0, . . . , Fk−1 have already been constructed, then set

Gk =
∨
{F0, . . . , Fk−1, SjFk−1, S

∗
j Fk−1 (j = 1, . . . , n), ek}

and Fk = Gk 	 (F0 ⊕ · · · ⊕ Fk−1). Then dim Fk < ∞, SjFk−1 ⊂
F0 ⊕ · · · ⊕ Fk and S∗j Fk−1 ⊂ F0 ⊕ · · · ⊕ Fk for all j = 1, . . . , n.

If we continue this construction for all k ∈ N then we get the required
decomposition. Note that

⊕∞
k=0 Fk = H since ek ∈ F0 ⊕ · · · ⊕ Fk for

each k.
Let r, s ≥ 0, |r − s| ≥ 2. If r > s then PFrSjPFs = 0. If r < s then

PFsS
∗
j PFr = 0, and so PFrSjPFs = 0. �

Lemma 3. (see [M], Lemma 9, cf. also [CLSW], Lemma 6) Let S ∈
B(H) be block 3-diagonal, i.e., there are mutually orthogonal finite-
dimensional subspaces Fj such that H =

⊕∞
j=0 Fj and PFrSPFs = 0

whenever |r − s| ≥ 2. Denote by Qk the orthogonal projection onto⊕∞
j=k+1 Fj.

Let l, d ∈ N, k = l+2d and let V ∈ B(H) satisfy V = QkV Qk. Then

‖S + V ‖ ≤ max
{
‖S‖, ‖Ql(S + V )Ql‖

}
+ ‖S‖√

d
.

The next result is a modification of [M], Theorem 16.

Theorem 4. Let H be an infinite-dimensional separable Hilbert space,
S ∈ B(H), m ∈ N, ‖Sm‖e 6= 0, 0 ≤ r < r′ < 1. Let T ∈ B(H) satisfy
‖T j‖ < ‖Sj‖e (j = 1, . . . ,m) and T − rS ∈ F(H). Then there exists
T ′ ∈ B(H) such that

‖T − T ′‖ ≤ (r′ − r)‖S‖,

T ′ − r′S ∈ F(H)

and
‖T ′j‖ < ‖Sj‖e (j = 1, . . . ,m).

Proof. Without loss of generality we may assume that ‖S‖ = 1.
Let F0 = R(T − rS) ∨ R(T ∗ − rS∗). By Lemma 2, there exist

mutually orthogonal finite-dimensional subspaces F1, F2, . . . such that
H =

⊕∞
i=0 Fi and S, S2, . . . , Sm are simultanously block 3-diagonal

with respect to this decomposition. Denote by Ql the orthogonal pro-
jection onto

⊕∞
i=l+1 Fi. We have Q0(T − rS)Q0 = 0.

Choose ε such that

0 < ε <
1

3
min

{
‖Sj‖e − ‖T j‖, (1− r′)‖Sj‖e (j = 1, . . . ,m)

}
.
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Choose n ∈ N such that

(2m − 1)(r′ − r)

n
< ε

and d ∈ N such that
1√
d

<
ε

n
.

By Proposition 1, there exists k0 such that ‖QlS
jQl‖ < ‖Sj‖e + ε

for all l ≥ k0 and j = 1, . . . ,m.

For t = 0, . . . , n let st = r + t(r′−r)
n

. So s0 = r and sn = r′. Choose
numbers k1, . . . , kn ∈ N such that kt+1 > kt + 2d + 1.

Define inductively operators S0, . . . , Sn by S0 = T and

St+1 = St + (st+1 − st)Qkt+1SQkt+1 .

Let T ′ = Sn.
Clearly ‖St+1 − St‖ ≤ (st+1 − st)‖S‖ ≤ r′−r

n
. So

‖T ′ − T‖ ≤ ‖Sn − Sn−1‖+ · · ·+ ‖S1 − S0‖ ≤ r′ − r.

For each t we have Qkt(St − stS)Qkt = 0. In particular, Qkn(T ′ −
r′S)Qkn = 0, and so T ′ − r′S ∈ F(H).

We prove by induction on t that

‖Sj
t ‖ < ‖Sj‖e −

ε(n− t)

n
(j = 1, . . . ,m). (1)

For t = 0 this follows by the definition of ε. Suppose that (1) is true
for some t, 0 ≤ t ≤ n− 1. Fix j ∈ {1, . . . ,m}. By Lemma 3,

‖Sj
t+1‖ ≤ max

{
‖Sj

t ‖,
∥∥Qkt+1−2dS

j
t+1Qkt+1−2d

∥∥}
+
‖S‖√

d
,

where ‖Sj
t ‖ < ‖Sj‖e− ε(n−t)

n
by the induction assumption and ‖S‖√

d
< ε

n
.

So it is sufficient to show that∥∥Qkt+1−2dS
j
t+1Qkt+1−2d

∥∥ < ‖Sj‖e −
ε(n− t)

n
.

Write V = St+1 − St = (st+1 − st)‖Qkt+1S
jQkt+1‖. Clearly ‖V ‖ ≤

(st+1−st)‖S‖ = r′−r
n

. Since Sj
t+1−Sj

t = (St+V )j−Sj
t can be expressed

as a sum of 2j − 1 products, each of them containing V , we have

‖Sj
t+1 − Sj

t ‖ ≤ (2j − 1)
r′ − r

n
≤ (2m − 1)(r′ − r)

n
< ε.

For x ∈
⊕∞

i=kt+1−2d+1 Fi we have Sx, S2x, . . . , Sjx ∈
⊕∞

i=kt+1−2d Fi ⊂⊕∞
i=kt+2 Fi. Moreover, St behaves on

⊕∞
i=kt+2 Fi as stS. Thus Sj

t x =
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sj
tS

jx. Hence∥∥Qkt+1−2dS
j
t+1Qkt+1−2d

∥∥ ≤ ∥∥Qkt+1−2dS
j
t Qkt+1−2d

∥∥ + ε

= sj
t

∥∥Qkt+1−2dS
jQkt+1−2d

∥∥ + ε ≤ st(‖Sj‖e + ε) + ε

≤ st‖Sj‖e + 2ε ≤ ‖Sj‖e + 2ε− (1− r′)‖Sj‖e ≤ ‖Sj‖e − ε.

This proves (1).
In particular, for t = n we get ‖T ′j‖ < ‖Sj‖e (j = 1, . . . ,m). �

Let (cj) be a submultiplicative sequence of positive numbers, i.e.,

ci+j ≤ cicj for all i, j ∈ N. It is well known that the limit limj→∞ c
1/j
j

exists and it is equal to infj c
1/j
j .

We need the following lemma.

Lemma 5. Let (cj) be a submultiplicative sequence of positive num-

bers such that limj→∞ c
1/j
j = 1. Let 0 < r < r′ < 1. Then there

exists k ∈ N with the following property: if (dj) is a submultiplicative
sequence satisfying

0 ≤ dj ≤ cj (j = 1, 2, . . . )

and
dj < rjcj (1 ≤ j ≤ k)

then
dj < r′jcj (j = 1, 2, . . . ).

Proof. Choose r′′, r < r′′ < r′. Find k0 such that ck0 <
(

r′′

r

)k0

.

Let M = max{1, c1, . . . , ck0−1} and L = M
r′′k0

. Then there exists

k ≥ k0 such that Lr′′k < r′k.
Let (dj) be a submultiplicative sequence satisfying dj ≤ cj (j ∈ N)

and dj < rjcj (1 ≤ j ≤ k). For 1 ≤ j ≤ k we have dj < rjcj < r′jcj.
Let j > k. Then j = sk0+z for some s ∈ N and z ∈ {0, 1, . . . , k0−1}.

Then

dj ≤ ds
k0
· dz < (rk0ck0)

s · cz < M · r′′k0s =
Mr′′j

r′′z
≤ Lr′′j < r′j ≤ r′jcj.

�

Theorem 6. Let H be an infinite-dimensional Hilbert space. Let
S ∈ B(H) satisfy re(S) 6= 0. Then there exists a compact operator
K ∈ B(H) such that

‖(S + K)j‖ = ‖Sj‖e
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for all j = 1, 2, . . . .

Proof. Without loss of generality we may assume that H is separable.
Indeed, there exists a decomposition H =

⊕
ν∈J Hν such that all the

subspaces Hν are separable and reducing for S. Write Sν = PHνSPHν .
For all n ∈ N and ε > 0 there are only finitely many ν ∈ J such that

‖Sn
ν ‖ > ‖Sn‖e + ε. So there are only countable many ν ∈ J such that

‖Sn
ν ‖ > ‖Sn‖e. Hence there exists a countable subset J0 ⊂ J such that

‖Sn
ν ‖ ≤ ‖Sn‖e for all ν /∈ J0 and n ∈ N. Let H0 =

⊕
ν∈J0

Hν . Then H0

is a separable subspace reducing for T and ‖PH	H0S
nPH	H0‖ ≤ ‖Sn‖e

for all n ∈ N. So we may consider only the operator PH0SPH0 .
Without loss of generality we may assume that re(S) = 1. Fix a

sequence (rn) such that 0 = r0 < r1 < · · · < 1 and limn→∞ rn = 1.
Consider the submultiplicative sequence cn = ‖Sn‖e. Then 1 =

re(S) = limj→∞ ‖Sj‖1/j
e = limj→∞ c

1/j
j .

For n = 1, 2, . . . , let kn be the number constructed in Lemma 5 for
the sequence (cj) and numbers rn, rn+1. Thus, if (dj) is a submultiplica-
tive sequence satisfying dj ≤ cj for all j and dj < rj

ncj (1 ≤ j ≤ kn)

then dj < rj
n+1cj for all j ∈ N.

Construct inductively a sequence (Tn) of operators such that

‖T j
n‖ < rj

n‖Sj‖e (j = 1, . . . , kn),

‖Tn+1 − Tn‖ ≤ (rn+1 − rn)‖S‖
and

Tn − rn−1S ∈ F(H).

Set T1 = 0. Suppose that n ≥ 1 and T1, . . . , Tn ∈ B(H) with the above
properties have already been constructed. Since ‖T j

n‖ < rj
n‖Sj‖e (1 ≤

j ≤ kn), we have ‖T j
n‖ < rj

n+1‖Sj‖e for all j ∈ N.
By Theorem 4 for the operator rn+1S and the pair of numbers

rn−1

rn+1
, rn

rn+1
, there exists Tn+1 ∈ B(H) such that

‖Tn+1 − Tn‖ ≤ (rn − rn−1)‖S‖,

Tn+1 − rnS ∈ F(H)

and

‖T j
n+1‖ < rj

n+1‖Sj‖e (1 ≤ j ≤ kn+1).

Let (Tn) be the sequence of operators satisfying the above properties.
Clearly (Tn) is a Cauchy sequence. Let T be the norm-limit of the
sequence (Tn) and K = T − S. For each j ∈ N we have

‖T j‖ = lim
n→∞

‖T j
n‖ ≤ lim

n→∞
rj
n‖Sj‖e ≤ ‖Sj‖e.
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Moreover,

K = lim
n→∞

Tn − S = lim
n→∞

(Tn − rn−1S),

where Tn − rn−1S ∈ F(H) for all n. So K is a compact operator and
‖T j‖ = ‖Sj‖e for all j. �

Problem 7. Is the statement of Theorem 6 true for Riesz operators?

Recall that T ∈ B(H) is called power bounded if supn ‖T n‖ < ∞. An
operator S ∈ B(H) is called essentially power bounded if supn ‖Sn‖e <
∞.

Essentially power bounded operators may serve as a source of in-
teresting examples of Hilbert space operators. Note that for example
the Read-type operator constructed by S. Grivaux and M. Roginskaya
[GR] is of this class.

Theorem 6 has the following simple consequence.

Corollary 8. An operator S ∈ B(H) is essentially power bounded if
and only if S = T + K for some power bounded operator T ∈ B(H)
and a compact operator K ∈ B(H).

Proof. If supn ‖T n‖ < ∞ and K ∈ B(H) is compact, then ‖(T +
K)n‖e ≤ ‖T n‖ for all n, and so T + K is essentially power bounded.

Let S ∈ B(H) be essentially power bounded. If re(S) 6= 0 then
S = T +K for some compact operator K and an operator T satisfying
‖T n‖ = ‖Sn‖e for all n ∈ N. So T is power bounded.

If re(s) = 0, then S = T + K for some K ∈ K(H) and a quasinilpo-
tent T ∈ B(H) by the West decomposition. Clearly then T is power
bounded. �
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