INSTITUTE of MATHEMATICS

Olsen's problem and essentially power bounded operators

Vladimír Müller

Preprint No. 8-2014
PRAHA 2014

OLSEN'S PROBLEM AND ESSENTIALLY POWER BOUNDED OPERATORS

V. MÜLLER

Abstract

Let T be a non-Riesz operator on an infinite-dimensional Hilbert space. Then there exists a compact operator K such that $\left\|(T+K)^{n}\right\|=\left\|T^{n}\right\|_{e}$ for all n. In particular, every essentially power bounded operator is a compact perturbation of a power bounded operator.

1. Introduction

Let H be an infinite-dimensional Hilbert space. Denote by $B(H)$, $\mathcal{K}(H)$ and $\mathcal{F}(H)$ the set of all bounded, compact and finite-rank operators on H, respectively.

For $T \in B(H)$ denote by $\|T\|_{e}$ the essential norm of T, i.e., $\|T\|_{e}=$ $\inf \{\|T+K\|: K \in \mathcal{K}(H)\}$. Let $\sigma_{e}(T)$ and $r_{e}(T)$ denote the essential spectrum and essential spectral radius, respectively, i.e., the spectrum and the spectral radius of the class $T+\mathcal{K}(H)$ in the Calkin algebra $B(H) / \mathcal{K}(H)$. Recall that $T \in B(H)$ is called Riesz if $r_{e}(T)=0$.

For a subspace $M \subset H$ denote by P_{M} the orthogonal projection onto M.

Properties of an operator $T \in B(H)$ can be frequently improved by a suitable compact perturbation. By [W], any Riesz operator $T \in B(H)$ can be written as a sum $T=Q+K$ where K is a compact and Q quasinilpotent operator. More generally, by $[\mathrm{S}]$, for any $T \in B(H)$ there exists $K \in \mathcal{K}(H)$ such that $\sigma(T+K)$ is equal to the Weyl spectrum of T,

$$
\sigma_{W}(T)=\bigcap\{\sigma(T+K): K \in \mathcal{K}(H)\} .
$$

By [CSSW], for any $T \in B(H)$ there exists a compact operator $K \in \mathcal{K}(H)$ such that the closure of the numerical range $\overline{W(T+K)}$ is equal to the essential numerical range $W_{e}(T)$.

By [O1], if $T \in B(H)$ is polynomially compact, i.e., $p(T) \in \mathcal{K}(H)$ for some polynomial p, then there exists $K \in \mathcal{K}(H)$ such that $T+K$ is algebraic, $p(T+K)=0$ (with the same polynomial p).

The following problem was raised by C. Olsen [O2], cf. also [O1], [OP]:

Problem. Let $T \in B(H)$. Does there exist a compact operator $K \in$ $\mathcal{K}(H)$ such that $\|p(T+K)\|=\|p(T)\|_{e}$ for all polynomials p ? Less ambitiously, if T and p are both given, is there a compact operator K_{p} such that $\left\|p\left(T+K_{p}\right)\right\|=\|p(T)\|_{e}$?

Even the more modest formulation of the problem is surprisingly difficult. A positive answer was given in [O2] for the polynomials $p(z)=$ z, z^{2}, z^{3} and in [CLSW] for all linear polynomials. In [M], a positive answer was given for any power $p(z)=z^{n}$.

In the present paper we refine the estimates of $[\mathrm{M}]$ and show that for any non-Riesz operator $T \in B(H)$ there exists a compact operator $K \in \mathcal{K}(H)$ such that $\left\|(T+K)^{n}\right\|=\left\|T^{n}\right\|_{e}$ for all n simultaneously.

In particular, this implies that for any essentially power bounded operator $T \in B(H)$, (i.e., $\sup _{n}\left\|T^{n}\right\|_{e}<\infty$) there exists a compact operator K such that $T+K$ is power bounded, $\sup _{n}\left\|(T+K)^{n}\right\|<\infty$.

2. Main Result

We need several lemmas that were proved in [CLSW] and [M].
Proposition 1. (see [M], Proposition 6) Let H be a separable infinitedimensional Hilbert space, let $\left(e_{1}, e_{2}, \ldots\right)$ be an orthonormal basis in H. Let $S \in B(H)$. Then

$$
\|S\|_{e}=\lim _{k \rightarrow \infty}\left\|P_{H_{k}^{\perp}} S P_{H_{k}^{\perp}}\right\|,
$$

where $H_{k}=\bigvee_{j=1}^{k} e_{j} \quad(k \in \mathbb{N})$.
The next lemma is a slight modification of $[\mathrm{M}]$, Lemma 8, cf. also [CLSW], Lemma 5. For the sake of convenience we give a proof here.

Lemma 2. Let H be a separable infinite-dimensional Hilbert space, $S_{1}, \ldots, S_{n} \in B(H)$. Let $F_{0} \subset H$ be a finite-dimensional subspace. Then there exist mutually orthogonal finite-dimensional subspaces $F_{k} \subset$ H such that $H=\bigoplus_{k=0}^{\infty} F_{k}$ and $P_{F_{r}} S_{j} P_{F_{s}}=0$ for all $r, s \in \mathbb{N},|r-s| \geq 2$ and $j=1, \ldots, n$ (i.e., the operators $S_{1} \ldots, S_{n}$ are simultaneously block 3 -diagonal).
Proof. Let $\left(e_{1}, e_{2}, \ldots\right)$ be an orthonormal basis in H.

We construct the subspaces F_{k} inductively. If $k \geq 1$ and the subspaces F_{0}, \ldots, F_{k-1} have already been constructed, then set

$$
G_{k}=\bigvee\left\{F_{0}, \ldots, F_{k-1}, S_{j} F_{k-1}, S_{j}^{*} F_{k-1} \quad(j=1, \ldots, n), e_{k}\right\}
$$

and $F_{k}=G_{k} \ominus\left(F_{0} \oplus \cdots \oplus F_{k-1}\right)$. Then $\operatorname{dim} F_{k}<\infty, S_{j} F_{k-1} \subset$ $F_{0} \oplus \cdots \oplus F_{k}$ and $S_{j}^{*} F_{k-1} \subset F_{0} \oplus \cdots \oplus F_{k}$ for all $j=1, \ldots, n$.

If we continue this construction for all $k \in \mathbb{N}$ then we get the required decomposition. Note that $\bigoplus_{k=0}^{\infty} F_{k}=H$ since $e_{k} \in F_{0} \oplus \cdots \oplus F_{k}$ for each k.

Let $r, s \geq 0,|r-s| \geq 2$. If $r>s$ then $P_{F_{r}} S_{j} P_{F_{s}}=0$. If $r<s$ then $P_{F_{s}} S_{j}^{*} P_{F_{r}}=0$, and so $P_{F_{r}} S_{j} P_{F_{s}}=0$.

Lemma 3. (see [M], Lemma 9, cf. also [CLSW], Lemma 6) Let $S \in$ $B(H)$ be block 3 -diagonal, i.e., there are mutually orthogonal finitedimensional subspaces F_{j} such that $H=\bigoplus_{j=0}^{\infty} F_{j}$ and $P_{F_{r}} S P_{F_{s}}=0$ whenever $|r-s| \geq 2$. Denote by Q_{k} the orthogonal projection onto $\bigoplus_{j=k+1}^{\infty} F_{j}$.

Let $l, d \in \mathbb{N}, k=l+2 d$ and let $V \in B(H)$ satisfy $V=Q_{k} V Q_{k}$. Then $\|S+V\| \leq \max \left\{\|S\|,\left\|Q_{l}(S+V) Q_{l}\right\|\right\}+\frac{\|S\|}{\sqrt{d}}$.

The next result is a modification of $[\mathrm{M}]$, Theorem 16 .
Theorem 4. Let H be an infinite-dimensional separable Hilbert space, $S \in B(H), m \in \mathbb{N},\left\|S^{m}\right\|_{e} \neq 0,0 \leq r<r^{\prime}<1$. Let $T \in B(H)$ satisfy $\left\|T^{j}\right\|<\left\|S^{j}\right\|_{e} \quad(j=1, \ldots, m)$ and $T-r S \in \mathcal{F}(H)$. Then there exists $T^{\prime} \in B(H)$ such that

$$
\begin{gathered}
\left\|T-T^{\prime}\right\| \leq\left(r^{\prime}-r\right)\|S\|, \\
T^{\prime}-r^{\prime} S \in \mathcal{F}(H)
\end{gathered}
$$

and

$$
\left\|T^{\prime j}\right\|<\left\|S^{j}\right\|_{e} \quad(j=1, \ldots, m)
$$

Proof. Without loss of generality we may assume that $\|S\|=1$.
Let $F_{0}=R(T-r S) \vee R\left(T^{*}-r S^{*}\right)$. By Lemma 2, there exist mutually orthogonal finite-dimensional subspaces F_{1}, F_{2}, \ldots such that $H=\bigoplus_{i=0}^{\infty} F_{i}$ and S, S^{2}, \ldots, S^{m} are simultanously block 3-diagonal with respect to this decomposition. Denote by Q_{l} the orthogonal projection onto $\bigoplus_{i=l+1}^{\infty} F_{i}$. We have $Q_{0}(T-r S) Q_{0}=0$.

Choose ε such that

$$
0<\varepsilon<\frac{1}{3} \min \left\{\left\|S^{j}\right\|_{e}-\left\|T^{j}\right\|,\left(1-r^{\prime}\right)\left\|S^{j}\right\|_{e} \quad(j=1, \ldots, m)\right\} .
$$

Choose $n \in \mathbb{N}$ such that

$$
\frac{\left(2^{m}-1\right)\left(r^{\prime}-r\right)}{n}<\varepsilon
$$

and $d \in \mathbb{N}$ such that

$$
\frac{1}{\sqrt{d}}<\frac{\varepsilon}{n} .
$$

By Proposition 1, there exists k_{0} such that $\left\|Q_{l} S^{j} Q_{l}\right\|<\left\|S^{j}\right\|_{e}+\varepsilon$ for all $l \geq k_{0}$ and $j=1, \ldots, m$.

For $t=0, \ldots, n$ let $s_{t}=r+\frac{t\left(r^{\prime}-r\right)}{n}$. So $s_{0}=r$ and $s_{n}=r^{\prime}$. Choose numbers $k_{1}, \ldots, k_{n} \in \mathbb{N}$ such that $k_{t+1}>k_{t}+2 d+1$.

Define inductively operators S_{0}, \ldots, S_{n} by $S_{0}=T$ and

$$
S_{t+1}=S_{t}+\left(s_{t+1}-s_{t}\right) Q_{k_{t+1}} S Q_{k_{t+1}}
$$

Let $T^{\prime}=S_{n}$.
Clearly $\left\|S_{t+1}-S_{t}\right\| \leq\left(s_{t+1}-s_{t}\right)\|S\| \leq \frac{r^{\prime}-r}{n}$. So

$$
\left\|T^{\prime}-T\right\| \leq\left\|S_{n}-S_{n-1}\right\|+\cdots+\left\|S_{1}-S_{0}\right\| \leq r^{\prime}-r .
$$

For each t we have $Q_{k_{t}}\left(S_{t}-s_{t} S\right) Q_{k_{t}}=0$. In particular, $Q_{k_{n}}\left(T^{\prime}-\right.$ $\left.r^{\prime} S\right) Q_{k_{n}}=0$, and so $T^{\prime}-r^{\prime} S \in \mathcal{F}(H)$.

We prove by induction on t that

$$
\begin{equation*}
\left\|S_{t}^{j}\right\|<\left\|S^{j}\right\|_{e}-\frac{\varepsilon(n-t)}{n} \quad(j=1, \ldots, m) \tag{1}
\end{equation*}
$$

For $t=0$ this follows by the definition of ε. Suppose that (1) is true for some $t, 0 \leq t \leq n-1$. Fix $j \in\{1, \ldots, m\}$. By Lemma 3,

$$
\left\|S_{t+1}^{j}\right\| \leq \max \left\{\left\|S_{t}^{j}\right\|,\left\|Q_{k_{t+1}-2 d} S_{t+1}^{j} Q_{k_{t+1}-2 d}\right\|\right\}+\frac{\|S\|}{\sqrt{d}}
$$

where $\left\|S_{t}^{j}\right\|<\left\|S^{j}\right\|_{e}-\frac{\varepsilon(n-t)}{n}$ by the induction assumption and $\frac{\|S\|}{\sqrt{d}}<\frac{\varepsilon}{n}$. So it is sufficient to show that

$$
\left\|Q_{k_{t+1}-2 d} S_{t+1}^{j} Q_{k_{t+1}-2 d}\right\|<\left\|S^{j}\right\|_{e}-\frac{\varepsilon(n-t)}{n}
$$

Write $V=S_{t+1}-S_{t}=\left(s_{t+1}-s_{t}\right)\left\|Q_{k_{t+1}} S^{j} Q_{k_{t+1}}\right\|$. Clearly $\|V\| \leq$ $\left(s_{t+1}-s_{t}\right)\|S\|=\frac{r^{\prime}-r}{n}$. Since $S_{t+1}^{j}-S_{t}^{j}=\left(S_{t}+V\right)^{j}-S_{t}^{j}$ can be expressed as a sum of $2^{j}-1$ products, each of them containing V, we have

$$
\left\|S_{t+1}^{j}-S_{t}^{j}\right\| \leq\left(2^{j}-1\right) \frac{r^{\prime}-r}{n} \leq \frac{\left(2^{m}-1\right)\left(r^{\prime}-r\right)}{n}<\varepsilon
$$

For $x \in \bigoplus_{i=k_{t+1}-2 d+1}^{\infty} F_{i}$ we have $S x, S^{2} x, \ldots, S^{j} x \in \bigoplus_{i=k_{t+1}-2 d}^{\infty} F_{i} \subset$ $\bigoplus_{i=k_{t}+2}^{\infty} F_{i}$. Moreover, S_{t} behaves on $\bigoplus_{i=k_{t}+2}^{\infty} F_{i}$ as $s_{t} S$. Thus $S_{t}^{j} x=$
$s_{t}^{j} S^{j} x$. Hence

$$
\begin{gathered}
\left\|Q_{k_{t+1}-2 d} S_{t+1}^{j} Q_{k_{t+1}-2 d}\right\| \leq\left\|Q_{k_{t+1}-2 d} S_{t}^{j} Q_{k_{t+1}-2 d}\right\|+\varepsilon \\
\left.\quad=s_{t}^{j}\left\|Q_{k_{t+1}-2 d} S^{j} Q_{k_{t+1}-2 d}\right\|+\varepsilon \leq s_{t}\left\|S^{j}\right\|_{e}+\varepsilon\right)+\varepsilon \\
\leq s_{t}\left\|S^{j}\right\|_{e}+2 \varepsilon \leq\left\|S^{j}\right\|_{e}+2 \varepsilon-\left(1-r^{\prime}\right)\left\|S^{j}\right\|_{e} \leq\left\|S^{j}\right\|_{e}-\varepsilon .
\end{gathered}
$$

This proves (1).
In particular, for $t=n$ we get $\left\|T^{\prime j}\right\|<\left\|S^{j}\right\|_{e} \quad(j=1, \ldots, m)$.
Let $\left(c_{j}\right)$ be a submultiplicative sequence of positive numbers, i.e., $c_{i+j} \leq c_{i} c_{j}$ for all $i, j \in \mathbb{N}$. It is well known that the limit $\lim _{j \rightarrow \infty} c_{j}^{1 / j}$ exists and it is equal to $\inf _{j} c_{j}^{1 / j}$.

We need the following lemma.
Lemma 5. Let $\left(c_{j}\right)$ be a submultiplicative sequence of positive numbers such that $\lim _{j \rightarrow \infty} c_{j}^{1 / j}=1$. Let $0<r<r^{\prime}<1$. Then there exists $k \in \mathbb{N}$ with the following property: if $\left(d_{j}\right)$ is a submultiplicative sequence satisfying

$$
0 \leq d_{j} \leq c_{j} \quad(j=1,2, \ldots)
$$

and

$$
d_{j}<r^{j} c_{j} \quad(1 \leq j \leq k)
$$

then

$$
d_{j}<r^{\prime j} c_{j} \quad(j=1,2, \ldots) .
$$

Proof. Choose $r^{\prime \prime}, r<r^{\prime \prime}<r^{\prime}$. Find k_{0} such that $c_{k_{0}}<\left(\frac{r^{\prime \prime}}{r}\right)^{k_{0}}$.
Let $M=\max \left\{1, c_{1}, \ldots, c_{k_{0}-1}\right\}$ and $L=\frac{M}{r^{\prime \prime k_{0}}}$. Then there exists $k \geq k_{0}$ such that $L r^{\prime \prime k}<r^{\prime k}$.

Let $\left(d_{j}\right)$ be a submultiplicative sequence satisfying $d_{j} \leq c_{j} \quad(j \in \mathbb{N})$ and $d_{j}<r^{j} c_{j} \quad(1 \leq j \leq k)$. For $1 \leq j \leq k$ we have $d_{j}<r^{j} c_{j}<r^{\prime j} c_{j}$.

Let $j>k$. Then $j=s k_{0}+z$ for some $s \in \mathbb{N}$ and $z \in\left\{0,1, \ldots, k_{0}-1\right\}$. Then

$$
d_{j} \leq d_{k_{0}}^{s} \cdot d_{z}<\left(r^{k_{0}} c_{k_{0}}\right)^{s} \cdot c_{z}<M \cdot r^{\prime \prime k_{0} s}=\frac{M r^{\prime \prime j}}{r^{\prime \prime z}} \leq L r^{\prime \prime j}<r^{\prime j} \leq r^{\prime j} c_{j} .
$$

Theorem 6. Let H be an infinite-dimensional Hilbert space. Let $S \in B(H)$ satisfy $r_{e}(S) \neq 0$. Then there exists a compact operator $K \in B(H)$ such that

$$
\left\|(S+K)^{j}\right\|=\left\|S^{j}\right\|_{e}
$$

for all $j=1,2, \ldots$.
Proof. Without loss of generality we may assume that H is separable. Indeed, there exists a decomposition $H=\bigoplus_{\nu \in J} H_{\nu}$ such that all the subspaces H_{ν} are separable and reducing for S. Write $S_{\nu}=P_{H_{\nu}} S P_{H_{\nu}}$.

For all $n \in \mathbb{N}$ and $\varepsilon>0$ there are only finitely many $\nu \in J$ such that $\left\|S_{\nu}^{n}\right\|>\left\|S^{n}\right\|_{e}+\varepsilon$. So there are only countable many $\nu \in J$ such that $\left\|S_{\nu}^{n}\right\|>\left\|S^{n}\right\|_{e}$. Hence there exists a countable subset $J_{0} \subset J$ such that $\left\|S_{\nu}^{n}\right\| \leq\left\|S^{n}\right\|_{e}$ for all $\nu \notin J_{0}$ and $n \in \mathbb{N}$. Let $H_{0}=\bigoplus_{\nu \in J_{0}} H_{\nu}$. Then H_{0} is a separable subspace reducing for T and $\left\|P_{H \ominus H_{0}} S^{n} P_{H \ominus H_{0}}\right\| \leq\left\|S^{n}\right\|_{e}$ for all $n \in \mathbb{N}$. So we may consider only the operator $P_{H_{0}} S P_{H_{0}}$.

Without loss of generality we may assume that $r_{e}(S)=1$. Fix a sequence $\left(r_{n}\right)$ such that $0=r_{0}<r_{1}<\cdots<1$ and $\lim _{n \rightarrow \infty} r_{n}=1$.

Consider the submultiplicative sequence $c_{n}=\left\|S^{n}\right\|_{e}$. Then $1=$ $r_{e}(S)=\lim _{j \rightarrow \infty}\left\|S^{j}\right\|_{e}^{1 / j}=\lim _{j \rightarrow \infty} c_{j}^{1 / j}$.

For $n=1,2, \ldots$, let k_{n} be the number constructed in Lemma 5 for the sequence $\left(c_{j}\right)$ and numbers r_{n}, r_{n+1}. Thus, if $\left(d_{j}\right)$ is a submultiplicative sequence satisfying $d_{j} \leq c_{j}$ for all j and $d_{j}<r_{n}^{j} c_{j} \quad\left(1 \leq j \leq k_{n}\right)$ then $d_{j}<r_{n+1}^{j} c_{j}$ for all $j \in \mathbb{N}$.

Construct inductively a sequence $\left(T_{n}\right)$ of operators such that

$$
\begin{gathered}
\left\|T_{n}^{j}\right\|<r_{n}^{j}\left\|S^{j}\right\|_{e} \quad\left(j=1, \ldots, k_{n}\right) \\
\left\|T_{n+1}-T_{n}\right\| \leq\left(r_{n+1}-r_{n}\right)\|S\|
\end{gathered}
$$

and

$$
T_{n}-r_{n-1} S \in \mathcal{F}(H)
$$

Set $T_{1}=0$. Suppose that $n \geq 1$ and $T_{1}, \ldots, T_{n} \in B(H)$ with the above properties have already been constructed. Since $\left\|T_{n}^{j}\right\|<r_{n}^{j}\left\|S^{j}\right\|_{e} \quad(1 \leq$ $j \leq k_{n}$), we have $\left\|T_{n}^{j}\right\|<r_{n+1}^{j}\left\|S^{j}\right\|_{e}$ for all $j \in \mathbb{N}$.

By Theorem 4 for the operator $r_{n+1} S$ and the pair of numbers $\frac{r_{n-1}}{r_{n+1}}, \frac{r_{n}}{r_{n+1}}$, there exists $T_{n+1} \in B(H)$ such that

$$
\begin{gathered}
\left\|T_{n+1}-T_{n}\right\| \leq\left(r_{n}-r_{n-1}\right)\|S\| \\
T_{n+1}-r_{n} S \in \mathcal{F}(H)
\end{gathered}
$$

and

$$
\left\|T_{n+1}^{j}\right\|<r_{n+1}^{j}\left\|S^{j}\right\|_{e} \quad\left(1 \leq j \leq k_{n+1}\right) .
$$

Let $\left(T_{n}\right)$ be the sequence of operators satisfying the above properties. Clearly $\left(T_{n}\right)$ is a Cauchy sequence. Let T be the norm-limit of the sequence $\left(T_{n}\right)$ and $K=T-S$. For each $j \in \mathbb{N}$ we have

$$
\left\|T^{j}\right\|=\lim _{n \rightarrow \infty}\left\|T_{n}^{j}\right\| \leq \lim _{n \rightarrow \infty} r_{n}^{j}\left\|S^{j}\right\|_{e} \leq\left\|S^{j}\right\|_{e}
$$

Moreover,

$$
K=\lim _{n \rightarrow \infty} T_{n}-S=\lim _{n \rightarrow \infty}\left(T_{n}-r_{n-1} S\right),
$$

where $T_{n}-r_{n-1} S \in \mathcal{F}(H)$ for all n. So K is a compact operator and $\left\|T^{j}\right\|=\left\|S^{j}\right\|_{e}$ for all j.

Problem 7. Is the statement of Theorem 6 true for Riesz operators?
Recall that $T \in B(H)$ is called power bounded if $\sup _{n}\left\|T^{n}\right\|<\infty$. An operator $S \in B(H)$ is called essentially power bounded if $\sup _{n}\left\|S^{n}\right\|_{e}<$ ∞.

Essentially power bounded operators may serve as a source of interesting examples of Hilbert space operators. Note that for example the Read-type operator constructed by S. Grivaux and M. Roginskaya $[\mathrm{GR}]$ is of this class.

Theorem 6 has the following simple consequence.
Corollary 8. An operator $S \in B(H)$ is essentially power bounded if and only if $S=T+K$ for some power bounded operator $T \in B(H)$ and a compact operator $K \in B(H)$.

Proof. If $\sup _{n}\left\|T^{n}\right\|<\infty$ and $K \in B(H)$ is compact, then $\|(T+$ $K)^{n}\left\|_{e} \leq\right\| T^{n} \|$ for all n, and so $T+K$ is essentially power bounded.

Let $S \in B(H)$ be essentially power bounded. If $r_{e}(S) \neq 0$ then $S=T+K$ for some compact operator K and an operator T satisfying $\left\|T^{n}\right\|=\left\|S^{n}\right\|_{e}$ for all $n \in \mathbb{N}$. So T is power bounded.

If $r_{e}(s)=0$, then $S=T+K$ for some $K \in \mathcal{K}(H)$ and a quasinilpotent $T \in B(H)$ by the West decomposition. Clearly then T is power bounded.

References

[CLSW] C.K. Chui, D.A. Legg, R.R. Smith, J.D. Ward: On a question of Olsen concerning compact perturbations of operators, Michigan Math. J. 24 (1977), 119-127.
[CSSW] C.K. Chui, P.W. Smith, R.R. Smith, J.D. Ward: L-ideals and numerical range preservation, Illinois J. Math. 21 (1977), 365-373.
[GR] S. Grivaux, M. Roginskaya: On Read's type operators on Hilbert spaces, Int. Mat. Res. Not. IMRN 2008.
[M] V. Müller: The joint essential numerical range, compact perturbations, and the Olsen problem, Studia Math. 197 (2010), 275-290.
[O1] C.L. Olsen: A structure theorem for polynomially compact operators, Amer. J. Math. 93 (1971), 686-698.
[O2] C.L. Olsen: Norms of compact perturbations of operators, Pacific J. Math. 68 (1977), 209-228.
[OP] C.L. Olsen, J.K. Plastiras: Quasialgebraic operators, compact perturbations, and the essential norm, Michigan Math. J. 21 (1974), 385-397.
[S] J.G. Stampfli: Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. 2 (1974), 165-175.
[W] T.T. West: The decomposition of Riesz operators, Proc. London Math. Soc. 16 (1966), 737-752.

Mathematical Institute, Czech Academy of Sciences, Zitna 25, 11567 Prague 1, Czech Republic

E-mail address: muller@math.cas.cz

