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Abstract:
We study a dynamic contact problem for a thermoelastic von Kármán plate vibrating against a rigid
obstacle. Dynamics is described by a hyperbolic variational inequality for deflections. The plate is
subjected to a perpendicular force and to a heat source. The parabolic equation for a thermal strain
resultant contains the time derivative of the deflection. We formulate a weak solution of the system and
verify its existence using the penalization method.
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1 Introduction and notation

The dynamic contact problems are not frequently solved in the framework of variational in-
equalities. For the elastic problems there is only a very limited amount of results available
(cf. [5] and there cited literature). We have solved these problems for geometrically nonlinear
plates and shells in [2] and [3] respectively. We concentrate here not only on purely mechanical
impact to the plate being under some load and possibly contacting an rigid obstacle, we also
take in mind the heat balance of this process. We shall use the model derived in [7] under
the assumption of a small change of temperature compared with its reference temperature. In
contrast to it the hyperbolic equation for the deflections is substituted here by the variational
inequality, involving the geometrical nonlinearities in deflections.

For convenience of readers we describe the genesis of the model solved more in detail. The
simplifications made don’t allow the model to be fully rate-independent as it is e.g. in [9].

A thin isotropic elastic plate occupies the domain

G = {(x, z) ∈ R3 : x = (x1, x2) ∈ Ω, |x3| < h/2}.

Its middle plane Ω ⊂ R2 is a bounded domain with a C2,1 boundary Γ . Further we set
I ≡ (0, T ) a bounded time interval, Q = I × Ω, S = I × Γ. The unit outer normal vector is
denoted by n = (n1, n2). The displacement is denoted by u ≡ (ui). The strain tensor is defined
as

εij =
1
2
(∂iuj + ∂jui + ∂iu3∂ju3)− x3∂iju3, i, j = 1, 2; εi3 ≡ 0, i = 1, 2, 3.

The constants E > 0 and ν ∈ [0, 1
2) are the Young modulus of elasticity and the Poisson ratio,

respectively. We set

a =
h2

12
, b =

Eh2

12%(1− ν2)
,

where h is the the plate thickness and % is the density of the material. We denote

[u, v] ≡ ∂11u∂22v + ∂22u∂11v − 2∂12u∂12v.

1E-mail address:igor.bock@stuba.sk
2E-mail address:jarusek@math.cas.cz



We assume that the plate is thermally isotropic and is is subjected not only to mechanical loads
but also to an unknown temperature distribution τ implying a thermal strain. Due to thermal
isotropy the thermal strains have the form ετij = ετδij . Employing the Einstein summation
convention the constitutional law has then the form

σij =
E

1− ν2

(
(1− ν)εij + νεkkδij − (1 + ν)ετδij

)
, i, j = 1, 2; σij = 0, i = 1, 2, 3.

With respect to a heat conduction we introduce following constants. The specific heat of the
body c > 0, the coefficients of thermal conductivity λ > 0. Further we set α the coefficient of
thermal expanding and Υ > 0 the reference temperature of the plate. The key role in deriving
the linear equation for a temperature plays the hypotheses | τΥ | � 1 i.e. the change τ of the
temperature is small compared to the reference temperature Υ of the plate and then ετ = ατ .
The thermal entropy of the plate can expressed due to an elastic and thermal isotropy in a
linearized form ([8] Chapter 1)

S =
Eα

1− 2ν
εkk +

ρc

Υ
τ.

In order to eliminate the x3 variable from a temperature equation we introduce the thermal
strain resultant function θ by

θ(t, x) =
12α
h3

∫ h/2

−h/2
τ dx.

After formulation of the original problem in the next chapter we formulate and solve the pe-
nalized initial-boundary value problem first. Using the a priori estimates and fine interpolation
and imbedding technique we achieve the sequence converging to a weak solution of the original
problem.

We shall employ the following notations for space and time derivatives

∂

∂s
≡ ∂s,

∂2

∂s∂r
≡ ∂sr, ∂i = ∂xi , i = 1, 2; v̇ =

∂v

∂t
, v̈ =

∂2v

∂t2
, v : Q 7→ R.

For a domain or an appropriate manifold M and p ≥ 1 we define the Banach space Lp(M) of
real valued measurable functions with integrable power of p. The space L∞(M) is the Banach
space of essentially bounded functions. By Hk(M) ⊂ L2(M) with k ≥ 0 we denote the Hilbert–
type Sobolev (for a noninteger k the Sobolev-Slobodetskii) spaces of functions defined on M .
For the anisotropic spaces Hk(M), k = (k1, k2) ∈ R2

+, k1 is related with the time while k2 with
the space variables provided M is a time-space domain.

By H̊1(Ω) we denote the subspace of functions from H1(Ω) with zero traces on Γ and set
V = H2(Ω)∩ H̊1(Ω). Further we introduce the spaces H̊ = L∞(I; H̊1(Ω)) and V = L∞(I;V ).
The dual to H̊1(Ω) is denoted by H−1(Ω) with 〈·, ·〉 the duality pairing between H−1(Ω) and
H̊1(Ω).

2 Formulation of the problem

A triple {u, g, θ} expresses an unknown deflection of the middle plane, an unknown contact
force between the plate and the rigid obstacle and an unknown thermal strain resultant. We
shall use the thermal constants

κ =
λ

ρc
> 0, d =

κ12
h2

> 0, e =
κα2ΥE

λ(1− 2ν)
> 0.

Classical formulation for the plate simply supported, with the zero change of the temperature
on the boundary and acting under a perpendicular load f and the heat source p is then composed
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of the system

ü− a∆ü+ b(42u+ 1+ν
2 4θ)− [u, v] = f + g,

u ≥ 0, g ≥ 0, ug = 0,

42v + E[u, u] = 0,

θ̇ − κ4θ + dθ − e4u̇ = p

 on Q, (1)

the boundary conditions

u = w, v = ∂nv = θ = M(u) = 0, u ≥ 0, g ≥ 0, ug = 0 on S, (2)

M(u) ≡ b
(
4u+ (1− ν)(2n1n2∂12u− n2

1∂22u− n2
2∂11u)

)
and the initial conditions

u(0, ·) = u0, u̇(0, ·) = v0, θ(0, ·) = θ0 on Ω. (3)

For u, y ∈ L2(I;H2(Ω)) we define the following bilinear form

A : (u, y) 7→ b
(
∂11u∂11y + ∂22u∂22y + ν(∂11u∂22y + ∂22u∂11y) + 2(1− ν)∂12u∂12y

)
(4)

almost everywhere on Q, introduce for a fixed function w : Ω 7→ R a shifted cone

K := {y ∈ w + V ; y ≥ 0 on Q}, (5)

and denote by 〈〈·, ·〉〉 the duality between (L∞(I;L2(Ω)))∗ and L∞(I;L2(Ω)). Then the varia-
tional formulation of (1–3) has the following form:

Look for {u, v, θ} ∈ K × L2(I; H̊2(Ω)))× (L∞(I;L2(Ω)) ∩ L2(I; H̊1(Ω)) such that ü ∈ (L∞(I;
L2(Ω)))∗, θ̇ ∈ L2(I;H−1(Ω)), the relations

〈〈ü, y − u− a4(y − u)〉〉+
∫
Q

(
A(u, y − u)− b1+ν

2 ∇θ · ∇(y − u)− [u, v](y − u)
)
dx dt

≥
∫
Q
f(y − u) dx dt,

(6)

∫
Ω

(
4v4ϕ+ E[u, u]ϕ

)
dx = 0, (7)∫

I
〈θ̇, z〉 dt+

∫
Q

(dθz + κ∇θ · ∇z + e∇u̇ · ∇z) dx dt =
∫
Q
pz dx dt (8)

hold for any {y, ϕ, z} ∈ K × L2(I; H̊2(Ω)) × L2(I; H̊1(Ω)) and the initial conditions (3) are
fulfilled.

In order to express the Airy stress function v in (6), (7) we define the bilinear operator
Φ : H2(Ω)2 → H̊2(Ω) by means of the variational equation∫

Ω
4Φ(u, v)4ϕdx =

∫
Ω

[u, v]ϕdx, ∀ ϕ ∈ H̊2(Ω). (9)

The equation (9) has a unique solution, because [u, v] ∈ L1(Ω) ↪→ H2(Ω)∗. The well-defined
operator Φ is evidently compact and symmetric. The domain Ω fulfils the assumptions enabling
to apply Lemma 1 from [6] due to which Φ : H2(Ω)2 →W 2

p (Ω), 2 < p <∞ and

‖Φ(u, v)‖W 2
p (Ω) ≤ c‖u‖H2(Ω)‖v‖W 1

p (Ω) ∀u ∈ H2(Ω), v ∈W 1
p (Ω). (10)

With its help we reformulate the system (6-8) into the following problem:
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Problem P. Look for {u, θ} ∈ K × (L∞(I;L2(Ω)) ∩ L2(I; H̊1(Ω)) such that ü ∈ (L∞(I;
L2(Ω)))∗, θ̇ ∈ L2(I;H−1(Ω)), the relations

〈〈ü, y − u− a4(y − u)〉〉+
∫
Q

(
(A(u, y − u)− b1+ν

2 ∇θ · ∇(y − u)

− E[u, Φ(u, u)](y − u)
)
dx dt ≥

∫
Q
f(y − u) dx dt,

(11)

∫
I
〈θ̇, z〉 dt+

∫
Q

(dθz + κ∇θ · ∇z + e∇u̇ · ∇z) dx dt =
∫
Q
pz dx dt (12)

hold for any {y, z} ∈ K × L2(I; H̊1(Ω)) and the initial conditions (3) are fulfilled.

Problem P will be solved under the following assumptions

w ∈ H2(Ω), w ≥ w0 > 0 on Ω; w|Γ = u0|Γ ,

u0 ∈ H2(Ω), u0 ≥ 0 on Ω; v0 ∈ H̊1(Ω), θ0 ∈ L2(Ω), {f, p} ∈ L2(Q)2,
(13)

where w0 is a given constant.

3 Penalized problem

For any η > 0 we formulate the penalized problem

ü− a4ü+ b(42u+ 1+ν
2 4θ)− [u, v] = f + η−1u−,

42v + E[u, u] = 0,

θ̇ − κ4θ + dθ − e4u̇ = p

 on Q, (14)

u = w, v = ∂n = θ = M(u) = 0 on S (15)

and the initial conditions (3) hold.

It has the following variational formulation after applying the bilinear operator Φ in the
same way as above.

Problem Pη. Look for {u, θ} ∈ (w+V )×L2(I; H̊1(Ω)) such that {u̇, θ̇} ∈ H̊ ×L2(I;H−1(Ω)),
ü ∈ L2(Q), the equations∫

Q

(
ü(y − a4y) +A(u, y)− b1+ν

2 ∇θ · ∇y + E[u, Φ(u, u)]y − η−1u−y
)
dx dt

=
∫
Q
fy dx dt,

(16)

∫
I
〈θ̇, z〉 dt+

∫
Q

(dθz + κ∇θ · ∇z + e∇u̇ · ∇z) dx dt =
∫
Q
pz dx dt (17)

hold for any {y, z} ∈ L2(I;V )× L2(I; H̊1(Ω)) and the initial conditions (3) remain.

We shall verify the existence of a solution to the penalized problem.

Theorem 3.1 For every η > 0 there exists a solution {u, θ} of the problem Pη.

Proof. Let us denote by {vi ∈ V ; i ∈ N} a basis of V orthonormal with respect to the inner
product

(u, v)a =
∫
Ω

(uv + a∇u · ∇v) dx, u, v ∈ H̊1(Ω)

and by {wi ∈ H̊1(Ω); i ∈ N} an orthonormal in L2(Ω) basis of H̊1(Ω).
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We construct the Galerkin approximation {um, θm} of a solution in the form

um(t) = w +
m∑
j=1

αj(t)vj , θm(t) =
m∑
j=1

βj(t)wj ; {αj(t), βj(t)} ∈ R2, t ∈ I, j = 1, ...,m;

to satisfy the following system of equations∫
Ω

(
ümvi + a∇üm · ∇vi +A(um, vi) + E[um, vi]Φ(um, um)− b1+ν

2 ∇θm · ∇vi
)
dx

=
∫
Ω

(η−1u−m + f) vi dx,
(18)

∫
Ω

(
θ̇mwi + κ∇θm · ∇wi + dθmwi + e∇u̇m · ∇wi

)
dx =

∫
Ω
pwi dx, i = 1, ...,m; (19)

and the initial conditions

um(0) = u0m, u0m → u0 in H2(Ω); u̇m(0) = v0m, v0m → v0 in H̊1(Ω);
θm(0) = θ0m, θ0m → θ0 in L2(Ω).

(20)

The initial value problem (18–20) fulfils the conditions for the local existence of solution
{um, θm} on some interval Im ≡ [0, tm], 0 < tm < T.

Let us set γ = b1+ν
2e . To derive the a priori estimates for solutions of (18)-(20) we multiply

the equations (18) by α̇i(t) and (19) by γβi(t) respectively, add with respect to i and integrate
on [0, tm]. Taking in mind ∫

Ω
[u, v]y dx =

∫
Ω

[u, y]v dx (21)

if at least one element of {u, v, y} belongs to H̊2(Ω) (cf. [4], Lemma 2.2.2, Chapter 2), we
obtain after integrating for Qm := Im × Ω the relation∫

Qm

[
1
2
∂t

(
u̇2
m + a|∇u̇m|2 +A(um, um) +

E

2
(4Φ(um, um))2 + γθ2

m + η−1(u−m)2
)

+ γ(κ|∇θm|2 + dθ2
m)

]
dx dt =

∫
Qm

(fu̇m + γ p θm) dx dt

which leads to the estimate

‖u̇m‖2
L∞(I;H̊1(Ω))

+ ‖um‖2
L∞(I;V ) + ‖Φ(um, um)‖2

L∞(I;H2(Ω)) + η−1‖u−m‖2
L∞(I;L2(Ω))

+ ‖θm‖2
L∞(I;L2(Ω)) + ‖θm‖2

L2(I;H̊1(Ω))
≤ C1 ≡ C1(f, p, u0, v0, θ0).

(22)

The prolongation to the whole interval I is due to the original estimate for Im not depending
on m. Moreover the estimate (10) implies

‖Φ(um, um)‖L∞(I;W 2
p (Ω)) ≤ cp ≡ cp(f, u0, u1)∀ p > 2. (23)

The estimate (23) further implies

[um, Φ(um, um)] ∈ L2(I;Lr(Ω)), r =
2p
p+ 2

,∥∥[um, Φ(um, um)]
∥∥
L2(I;Lr(Ω))

≤ cr ≡ cr(f, u0, u1).
(24)

From the equation (19) we obtain straightforwardly the estimate

‖θ̇m‖L2(I;Wm
∗) ≤ C2(f, p, u0, v0, θ0), m ∈ N, (25)

where Wm ⊂ H̊1(Ω) is the linear hull of {wi}mi=1.
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From (18) we obtain

‖üm − a4üm‖2
L2(I;Vm

∗) ≤ C3(η), m ∈ N, (26)

where Vm ⊂ H2(Ω) is the linear hull of {vi}mi=1.
We proceed with the convergence of the Galerkin approximation. Applying the estimate

(22), the compact imbedding theorem and interpolation in Sobolev spaces we obtain subse-
quences of {um}, {θm} (denoted again by {um}, {θm}), and functions u, θ with the conver-
gences

um ⇀∗ u in L∞(I;V ),

u̇m ⇀∗ u̇ in L∞(I; H̊1(Ω)),
θm ⇀∗ θ in L∞(I;L2(Ω)),

θm ⇀ θ in L2(I; H̊1(Ω)),

(27)

The estimates (25), (26) imply the convergence

θ̇m ⇀ θ̇ in L2(I;W ∗), (28)
(üm − a4üm) ⇀ (ü− a4ü) in L2(I;Y ∗), (29)

where W =
⋃
m∈NWm, W = H̊1(Ω) and Y =

⋃
m∈N Vm, Y = V. The convergences (28), (29)

imply

‖θ̇m‖L2(I;H−1(Ω)) ≤ C2(f, p, u0, v0, θ0), m ∈ N, (30)

θ̇m ⇀ θ̇ in L2(I;H−1(Ω)), (31)

‖üm − a4üm‖2
L2(I;V ∗) ≤ C3(η), m ∈ N. (32)

Moreover we obtain from (32) a better acceleration estimate

‖üm‖L2(Q) ≤ C4(η) (33)

and the convergence
üm ⇀ ü in L2(Q) (34)

for a chosen subsequence denoted again by {üm}. We have applied also the surjectivity of the
elliptic operator v 7→ v − a4v, v ∈ V ; in the same way as in [1] setting

‖üm‖L2(Q) = sup
‖ψ‖L2(Q)≤1

∣∣∣∣∫
Q
üm ψ dx dt

∣∣∣∣ ≤ c sup
‖v‖L2(I;V )≤1

∣∣∣∣∫
Q
üm(v − a4v) dx dt

∣∣∣∣ ≤ C4(η).

The estimates (30), (33) imply after considering the convergences (27) the uniform convergences

um → u in C(Ī;H2−ε(Ω)),

u̇m → u̇ in C(Ī;H1−ε(Ω)),

θm → θ in C(Ī;H1−ε(Ω)) for any ε > 0

(35)

and

Φ(um, um) → Φ(u, u) in L2(I;H2(Ω)),

Φ(um, um) ⇀∗ Φ(u, u) in L∞(I;W 2
p (Ω)).

(36)
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Let µ ∈ N, yµ =
∑µ

i=1 φi(t)vi, zµ =
∑µ

i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., µ. We have for
arbitrary t ∈ I the relations∫

Ω

(
üm(yµ − a4yµ) +A(um, yµ) + E[um, yµ]Φ(um, um)− b1+ν

2 ∇θm · ∇yµ − η−1u−myµ)
)
dx

=
∫
Ω
fyµ dx,∫

Ω

(
θ̇mzµ + κ∇θm · ∇zµ + dθmzµ + e∇u̇m · ∇zµ

)
dx =

∫
Ω
pzµ dx, ∀ m ≥ µ, t ∈ I.

The convergences (27), (31), (34) imply that functions u, θ fulfil∫
Ω

(
ü(yµ − a4yµ) +A(u, yµ) + E[um, Φ(um, um)]yµ − b1+ν

2 ∇θ · ∇yµ − η−1u−yµ)
)
dx

=
∫
Ω
fyµ dx,

(37)

∫
Ω

(
θ̇zµ + κ∇θ · ∇zµ + dθzµ + e∇u̇ · ∇zµ

)
dx =

∫
Ω
pzµ dx. (38)

Functions {yµ}, {zµ} form a dense subsets of the spaces L2(I;V ) and L2(I; H̊1(Ω)) respectively.
Then we obtain from (37), (38) the relations (16), (17). which together with properties (20)
imply the initial conditions (3) and the proof of the existence of a solution is complete.

4 Solvability of the original problem

The estimates (22), (30) imply the following η independent estimates :

‖u̇η‖2
L∞(I;H̊1(Ω))

+ ‖uη‖2
L∞(I;V ) + ‖θη‖2

L∞(I;L2(Ω)) + ‖θη‖2
L2(I;H̊1(Ω))

+ ‖θ̇η‖2
L2(I;H−1(Ω))

+ η−1‖u−η ‖2
L∞(I;L2(Ω)) ≤ C5 ≡ C5(f, p, u0, v0, θ0).

(39)

for a solution {uη, θη}, η > 0 of the penalized problem. The acceleration term üη does not
appear in (39). It is then suitable to transform the penalized relation (16) using the integration
by parts with respect to t and the Green formula with respect to x. We obtain the system∫

Q

(
A(uη, y)− u̇ηẏ − a∇u̇η · ∇ẏ − b1+ν

2 ∇θη · ∇y
)
dx dt

+
∫
Ω

(u̇ηy + a∇u̇η · ∇y) (T, ·) dx

=
∫
Ω

(v0y(0, ·) + a∇v0 · ∇y(0, ·)) dx+
∫
Q

(f + η−1u−η )y dx dt,

(40)

∫
Q

(
θ̇ηz + κ∇θη · ∇z + dθηz + e∇u̇η · ∇z

)
dx dt =

∫
Q
py dx dt (41)

holding for any {y, z} ∈ L2(I;V )× L2(I; H̊1(Ω)) with ẏ ∈ L2(I; H̊1(Ω)).
We derive an η−independent estimate of the penalty term η−1u−η . Applying the assumptions

(13) and the definition of u−η we obtain

0 ≤ w0

∫
Q
η−1u−η dx dt ≤

∫
Q
η−1u−η w dxdt ≤

∫
Q
η−1u−η (w − uη) dx dt.

After inserting y = w − uη in (40) we achieve using the estimates (39) the crucial estimate

‖η−1u−η ‖L1(Q) ≤ C6 ≡ C6(f, p, u0, v0, θ0). (42)
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In order to achieve the L1 estimate of the acceleration terms {üη} we express the identity
(40) in a form∫

Q
(üη(y − a4y) dx dt =

∫
Q

[
−A(uη, y) + b1+ν

2 ∇θη · ∇y + (η−1u−η + f)y
]
dx dt. (43)

Using the estimates (39) and (42) and the imbedding L1(Q) ↪→ L1(I;V ∗) ⊂ [L∞(I;V )]∗ we
obtain

‖üη − a4üη‖L1(I;V ) ≤ C7 ≡ C7(f, p, u0, v0, θ0).

Applying the relations

‖üη‖L1(I;L2(Ω)) = sup
‖ψ‖L∞(I;L2(Ω))≤1

∣∣∣∣∫
Q
üη ψ dx dt

∣∣∣∣ ≤ c sup
‖v‖L∞(I;V )≤1

∣∣∣∣∫
Q
üη(v − a4v) dx dt

∣∣∣∣
in the same way as above we obtain the η-independent estimate

‖üη‖L1(I;L2(Ω)) ≤ C8 ≡ C8(f, p, u0, v0, θ0). (44)

Hence there exists a sequence ηk ↘ 0, a couple of functions {u, θ} and a functional g such that
for {uk, ηk} ≡ {uηk

, θηk
} the following convergences hold:

uk ⇀
∗ u in L∞(I;V ),

u̇k ⇀
∗ u̇ in L∞(I; H̊1(Ω)),

ük ⇀
∗ ü in (L∞(I;L2(Ω)))∗,

uk → u in C(I;H2−ε(Ω)) for any ε > 0,

η−1u−k ⇀
∗ g in (L∞(Q))∗,

θk ⇀
∗ θ in L∞(I;L2(Ω)) ∩ L2(I; H̊1(Ω)),

θ̇k ⇀ θ̇ in L2(I;H−1(Ω)),

θm → θ in C(Ī;H1−ε(Ω)) for any ε > 0.

(45)

The above convergences together with the appropriate convergencies of the type (36), which
obviously remain true also for this sequence, prove the relation (12) and the initial conditions
u(0, ·) = u0, θ(0, ·) = θ0. The initial condition u̇(0, ·) = v0 is fulfilled in a weak sense due to the
estimates of the accelarations. The convergence in (45) together with (43) imply further

〈〈ü, y − a4y〉〉+
∫
Q

(
A(u, y)− b1+ν

2 ∇θ · ∇y
)
dx dt =

∫
Q
fy dx dt+ 〈〈g, y〉〉Q

for any y ∈ L∞(I;V ), where 〈〈·, ·〉〉Q is the duality pairing between (L∞(Q))∗ and L∞(Q).
We have the orthogonality

〈〈g, u〉〉 = 0

due to the relations
〈〈g, u〉〉 = lim

k→∞
η−1
k ‖u−k ‖

2
L2(Q) = 0.

The relations
〈〈g, y〉〉 = lim

k→∞

∫
Q
η−1
k u−k y dx dt ≥ 0 ∀ y ∈ K

imply together with the orthogonality proved above that the variational inequality (11) is
fulfilled and we have verified the existence theorem:

Theorem 4.1 Let the assumptions (13) hold. Then there exists a solution of Problem P.
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Remark 4.2 Boundary conditions (2) for simply supported plate and zero boundary thermal
stress resultant enable in an easy way to get the a priori estimates in the previous and this
chapter. It is possible to consider also another types of boundary conditions with a bit more
complicated deriving of a priori estimates inevitable for the convergence process.
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