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Abstract. We study a linear system of equations arising from a fluid motion around a moving
rigid body. The aim of the present paper is the proof of the existence of a strong solution
in a weighted Lebesgue space. In particular, we prove the existence of a global pressure
gradient in L2.

Keywords: incompressible fluid, rotating rigid body, strong solution

MSC 2010: 35Q35

1. Mathematical formulation

In the present paper we study the initial-boundary value problem of the motion of
a viscous fluid around a moving rigid body. First we will give the mathematical
formulation of the problem.

Let B denote an open, connected and bounded C2 domain, representing a rigid
body in a fluid motion in D := R3 \ B. Clearly, D defines an exterior C2 domain in
R3 with boundary Σ = ∂D = ∂B.

The motion of the fluid and the body will be governed by the following system
of equations.
Equations of fluid

divw = 0

∂w

∂t
+ (w −U) · ∇w + ω ×w =

= div T(w, π) +Q> · F(x, t)

 in D × (0, T ),(1)
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where U = ξ + ω × y. Here by w we denote the velocity of the fluid and by U
the velocity of the body, where ξ stands for its translation and ω for its rotation.
Furthermore,

T(w, p) = 2νDw − Ip 1) the Cauchy stress tensor,

where the constant ν > 0 denotes the viscosity. In addition, the term Q>F rep-
resents a given external force, while the tensor Q> is related to ω in the following
way

(2)
dQ>

dt
= Ω(ω)Q>, Q>(0) = I, Ω(ω) =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 .

The above system will be completed by the following boundary and initial conditions

w = w∗ +U , on ∂D × (0, T ),(3)

lim
|y|→∞

w(y, t) = 0,(4)

w(0) = w0.(5)

Equations of body

mξ̇ + mω × ξ = Q · F −
∫

∂D

T(w, π) · n−w(w −U) · ndS,(6)

Jω̇ + ω × Jω = Q> ·MC −
∫

∂D

y × (T(w, π) · n−w(w −U) · n)dS,(7)

where F is the external force acting on the body and MC is the external torque,
while n stands for the outward unit normal on ∂D. Finally, J is the inertial tensor
with respect to the center of mass.

For the sake of simplicity we assume F = 0,F = 0,MC = 0 and w∗ = 0. The
above system of equations in a fixed exterior domain are obtained by applying the so-
called global transformation to the equations of the moving body in a fluid motion in
the whole space, which clearly coincides with the classical Navier-Stokes equation in
an time dependent exterior domain combined with appropriate boundary condition
and asymptotic condition as |x| → +∞. In particular, the conservation of energy
is invariant under this transformation. Thus, using the usual energy method global
existence of weak solutions and local existence of strong solutions to the above system
can be proved similar as in case of the Navier-Stokes equations. There are several
results in this direction. The existence of a global weak solution of the Leray-Hopf
type has been proved by Borchers see [1] (see also [18]). The asymptotic behaviour
in time of such solution was investigated by Chen and Miyakawa in [2]. The first
result of existence for more regular data is due to Hishida [11]. The generalization of
Hishida’s results in Lp spaces was done by Hieber, Heck and Geissert in [10]. They
proved the existence of a unique local mild solution to the Navier-Stokes problem.
The existence of a global strong solution under a smallness assumption on the data
with respect to the L2-norm has been studied by Galdi and Silvestre [6, 7] and by

1) Here I denotes the identity matrix (δij).
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Takahashi and Tucsnak [20] for a rigid body being a disk in the two-dimensional
situation. Local in time existence and uniqueness of the strong solution has been
proved by Cumsille and Tucsnak [3]. The global time existence and uniqueness was
investigated in work of Cumsille and Takahashi [4]. However in three dimensional
case the uniqueness is valid only under a smallness assumption of data.

Alternatively, the problem has been studied in [3, 19, 20, 5] by using the local
transformation introduced by Inue and Wakimoto in [13], and in domains depending
on time in [14, 15, 16, 17].

The aim of this paper will be the study of the corresponding linear system
by neglecting the nonlinear term (w · ∇)w in the momentum equation of (1) and
moving the term −U · ∇w + ω ×w to the right hand side. Our main result will be
the existence of global strong solution to this linear problem in a suitable weighted
Sobolev space together with estimates of the pressure and the pressure gradient as
well. This result will be used for the study of global strong solutions to the full
nonlinear problem which will be the subject of a forthcoming paper. In Section 2 we
introduce the notion of a weak solution belonging to an appropriate weighted Sobolev
space and state our main result (cf. Thm. 2.1). The proof of the main theorem will
be divided into two parts. The first part concerns the existence of a strong solution
to the linear problem coupled with a motion of body with a right hand side f in L2.
Second part deals with a weighted approach of the heat equation with right hand
side f in weighted L2 space.

2. The linearized problem

In this section we study the following linear problem which describes the movement
of a rigid body inside of a fluid, neglecting the nonlinear term (w · ∇)w and moving
the term U · ∇w + ω ×w to the right hand side. The equation of the fluid is given
by the following Stokes system

divu= 0

∂u

∂t
−∆u= f −∇p

 in D × (0, T ),(2.1)

with the boundary and initial conditions

u = U on ∂D × (0, T ),(2.2)

lim
|x|→∞

u(x, t) = 0,(2.3)

u(0) = u0,(2.4)

where U = ξ + ω × x. The equation of the movement of the body is given by

mξ̇ = γ1 −
∫

∂D

T(u, p) · ndS,(2.5)

Jω̇ = γ2 −
∫

∂D

x× (T(u, p) · n)dS.(2.6)

Here f(x, t),u0(x),γ1(t) and γ2(t) are given data, while u, p, ξ and ω 2) denote the
unknown quantities.

2) Recall that ξ stands for the translation and ω stands for the rotation of the body.
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Our aim is to study the above system for a right hand side f = rot(rota× b),
where a denotes a smooth vector field such that |a(x)| behaves like |x|2 (x ∈ R3).

Remark 2.1 In order to treat the nonlinear system we may move the term (w−U) ·
∇w +ω ×w of equation (1) to the right hand side. Neglecting the convective term
w · ∇w we end up with a linearized system with f = U · ∇w −ω ×w. Calculating

ω ×w = wiω × ei = wi
∂

∂xi
(ω × x) = w · ∇U

U = ξ + ω × x = rotψ, where ψ =
1
2
(ξ × x− ω|x|2), x ∈ R3,

we see that

(2.7) U · ∇w − ω ×w = U · ∇w −w · ∇U = rot(rotψ ×w),

which has the desired form.
Clearly, for such forces f we cannot expect the existence of weak solutions in the

usual Sobolev spaces rather then in appropriated weighted Sobolev spaces. For the
notion of such weak solutions we will introduce the following weight function

η(x) = (1 + |x|2)−1/2, x ∈ R3.

Then we define the spaces

L2
η(D) = {v ∈ L2

loc(D) | ηv ∈ L2(D)},

W 1, 2
η (D) = {v ∈W 1, 2

loc (D) | ηv ∈W 1, 2(D)}.

In addition, by C(D) we denote the space of all solenoidal smooth vector fields ϕ ∈
C∞

0,σ(R3) for which there exist constant vectors Φ1 and Φ2, such that

ϕ = Φ1 + Φ2 × x in a neighbourhood of ∂D.

Then we define V(D) and Vη(D) as closure of C(D) with respect to the norm in
W 1, 2(D) and W 1, 2

η (D) respectively.

Definition 2.1 (Weak solution) Let u0 ∈ V(D) with u0 = ξ0 +ω0×x on ∂D. We
assume f = rot g, where g ∈ L2(0, T ;W 1, 2

η (D)). A triple (u, ξ,ω) is called a weak
solution to (2.1)-(2.6) if

(i) u ∈ L2(0, T ;Vη(D)) ∩ Cw([0, T );L2
η(D)),

(ii) ξ,ω ∈ C([0, T ]),
(iii) for every ϕ ∈ C∞(0, T ; C(D)) there holds the identity

t∫
0

∫
D

−u · ∂ϕ

∂t
+Du : Dϕ dx ds

+
∫
D

u(t) ·ϕ(t) dx + ξ(t) ·Φ1(t) + Jω(t) ·Φ2(t)

=

t∫
0

mξ · Φ̇1 − γ1 ·Φ1 + Jω · Φ̇2 − γ2 ·Φ2ds

+
∫
D

u0 ·ϕ(0)dx + ξ0 ·Φ1(0) + Jω0 ·Φ2(0)dx +

t∫
0

∫
D

f ·ϕ dx ds(2.8)
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for all 0 < t < T .
Our main result is the following

Theorem 2.1. Let u0 ∈ V(D) with u0 = ξ0 + ω0 × x on ∂D. Let f = rot g, such
that g ∈ L2(0, T ;W 1, 2

η (D)). Then there exists a weak solution (u, ξ,ω) to (2.1)-(2.6)
according to Def. 2.1, such that

(2.9)
∂u

∂t
,

∂2u

∂xi∂xj
∈ L2(0, T ;L2

η(D)), (i, j = 1, 2, 3)

and there exists a pressure p ∈ L2(0, T ;L2
loc(D)) with

(2.10) ∇p ∈ L2(0, T ;L2(D)).

Furthermore, there holds∥∥∥∂u

∂t

∥∥∥
L2(0,T ;L2

η)
+ ‖u‖L2(0,T ;W 2,2

η ) + ‖∇u‖L∞(0,T ;L2
η)+

+ ‖ξ‖W 1,2(0,T ) + ‖ω‖W 1,2(0,T ) + ‖∇p‖L2(0,T ;L2) ≤ cK0,(2.11)

where K0 := ‖u0‖W 1,2 + ‖f‖L2(0,T ;L2
η) + |ω0|+ |ξ0|+ ‖γ1‖L2(0,T ) + ‖γ2‖L2(0,T ) and

c = const depending on D only.

Remark 2.2 Since f /∈ L2 we are not allowed to test equation (2.1)2 with the
solution u. Therefore an estimate based on the usual energy method is not possible.
To overcome this difficulties we divide the problem into a Stokes like problem in the
whole space with non decaying right hand side and a linear problem (2.1)–(2.6) with
a right hand side belonging to L2(0, T ;L2(D)).

3. Estimates for auxiliary problems

Our first result is related to the a-priori estimate of weak solutions of the Stokes like
system in weighted Sobolev space with solenoidal right hand side. As we will see
below such system coincides with the system of heat equations. Therefore it will be
sufficient to consider the case of the heat equation.

Lemma 3.1. Let f ∈ L2(0, T ;L2
η(R3)). Then there exists a weak solution

z ∈ L2(0, T ;W 1, 2
η (R3)) ∩ L∞(0, T ;L2

η(R3))

to the heat equation

∂z

∂t
−∆z = f in R3 × (0, T ),(3.1)

z(0) = 0.(3.2)

In addition, there holds ∂z
∂t , ∂2z

∂xi∂xj
∈ L2(0, T ;L2

η(R3)), (i, j = 1, 2, 3) together with

the estimate

(3.3)
∥∥∥∂z

∂t

∥∥∥
L2(0,T ;L2

η)
+ ‖z‖L2(0,T ;W 2, 2

η ) ≤ c‖f‖L2(0,T ;L2
η)

3) .
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Proof. We divide the proof into two steps. First, we consider the case f ∈
L2(0, T ;L2(R3)) and prove the a-priori estimate (3.3). Secondly, for general f

we get an approximate weak solution zm for the truncated right hand side fm and
pass to the limit m →∞ by using a-priori estimate (3.3).

1◦ Let f ∈ L2(0, T ;L2(R3)). Clearly, there exists a weak solution

z ∈ L2(0, T ;W 1, 2(R3)) ∩ C([0, T ];L2(R3)),

such that
∂z

∂t
,

∂2z

∂xi∂xj
∈ L2(0, T ;L2(R3)), (i, j = 1, 2, 3).

Setting h(x, t) = z(x, t)η(x) using the product rule the equation (3.1) turns into

(3.4)
∂h

∂t
−∆h = ηf − 2∇z · ∇η − z∆η in R3 × (0, T ).

By an elementary calculus, the equation (3.4) can be rewritten as

(3.5)
∂h

∂t
−∆h = ηf + 2x · η2∇h + (η4 + 2η2)h in R3 × (0, T ).

Next, we multiply both sides of (3.5) by h, integrate the obtained equation over
R3 × (0, t) (t ∈ (0, T )) and apply integration by parts. This yields

1
2
‖h(t)‖2L2 +

t∫
0

∫
R3

|∇h|2dxds =

t∫
0

∫
R3

ηfhdxds +

t∫
0

∫
R3

(η2 − η4)|h|2dxds

for a. e. t ∈ (0, T ). Using Young’s inequality and Gronwall’s lemma we obtain the
following a-priori estimate

(3.6) ‖h‖L∞(0,T ;L2) + ‖∇h‖L2(0,T ;L2) ≤ c‖ηf‖L2(0,T ;L2).

Recalling the definition of h from (3.6) we immediately obtain

(3.7) ‖z‖L∞(0,T ;L2
η) + ‖∇z‖L2(0,T ;L2

η) ≤ c‖ηf‖L2(0,T ;L2).

On the other hand, multiplying equation (3.5) by ∂h
∂t and with ∆h respectively,

applying integration by parts, observing (3.6) and (3.7) we get

(3.8)
∥∥∥∂z

∂t

∥∥∥
L2(0,T ;L2

η)
+ ‖z‖L2(0,T ;W 2, 2

η ) ≤ c‖ηf‖L2(0,T ;L2).

2◦ Now, let f ∈ L2(0, T ;L2
η(R3)). We define

fε(x) = (1 + ε|x|)−1f, x ∈ R3, ε > 0.

Clearly, fε ∈ L2(0, T ;L2(R3)) and ‖fε‖L2(0,T ;L2
η) ≤ ‖f‖L2(0,T ;L2

η) for all ε > 0.
As it has been shown in 1◦ for each ε > 0 there exists a weak solution zε ∈

3) Here by W 2, 2
η (R3) we denote the space of all v ∈ W 2, 2

loc (R3) such that ηDαv ∈ L2(R3) for

every multi-index α ≤ 2.
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L2(0, T ;W 1, 2(R3))∩C([0, T ];L2(R3)) to (3.1), (3.2) replacing f by fε therein. In ad-
dition, we have ∂zε

∂t ∈ L2(0, T ;L2(R3)) and ∂2zε

∂xi∂xj
∈ L2(0, T ;L2(R3)) (i, j = 1, 2, 3).

From (3.7) and (3.8) it follows that∥∥∥∂zε

∂t

∥∥∥
L2(0,T ;L2

η)
+ ‖zε‖L2(0,T ;W 2, 2

η ) ≤ c‖ηfε‖L2(0,T ;L2) ≤ c‖f‖L2(0,T ;L2
η).(3.9)

By means of reflexivity of L2(0, T ;W 2,2
η ) there exists a sequence (εk) with εk → 0+

as k →∞ and z ∈ L2(0, T ;W 2,2
η ) with ∂z

∂t ∈ L2(0, T ;L2
η) such that

zεk
→ z weakly in L2(0, T ;W 2,2

η ) as k →∞.

In the equation for zεk
taking the passage to the limit εk → 0+ on both sides we see

that z solves (3.1), (3.2) in weak sense. Finally, by virtue of (3.9) using the lower
semi continuity of the norm we get (3.3). �

Next, let us consider the problem (2.1)–(2.6) with f ∈ L2(0, T ;L2(D)). In this
case we have the following existence result.

Lemma 3.2. Let f ∈ L2(0, T ;L2(D)) and let u0 ∈ V(D) with u0 = ξ0 + ω0 × x

on ∂D, where ξ0,ω0 ∈ R are given. In addition, let γ1,γ2 ∈ L
2(0, T ). Then there

exists a weak solution (u, ξ,ω) to (2.1)–(2.6), such that

‖∇u‖L2 + ‖u‖L∞(0,T ;L2) + ‖ξ‖L∞(0,T ) + ‖ω‖L∞(0,T )

≤ c‖u0‖L2 + ‖f‖L2 + |ξ0|+ |ω0|+ |γ1|L2(0,T ) + |γ2|L2(0,T ).(3.10)

In addition, we have

∂u

∂t
,

∂2u

∂xi∂xj
,∇p ∈ L2(0, T ;L2(D)) (i, j = 1, 2, 3), ξ̇, ω̇ ∈ L2(0, T )

and there holds∥∥∥∂u

∂t

∥∥∥
L2

+ ‖∇2u‖L2 + ‖∇p‖L2 + ‖ξ̇‖L2(0,T ) + ‖ω̇‖L2(0,T )

≤ c‖u0‖W 1,2 + ‖f‖L2 + |ξ0|+ |ω0|+ ‖γ̇1‖L2(0,T ) + ‖γ̇2‖L2(0,T ).(3.11)

Proof. 1◦ The existence and uniqueness of a weak solution (u, ξ,ω) can be shown
easily by applying the linear theory of evolutionary equations in Hilbert spaces (e. g.
see in [8]).

2◦ Assume u0 = 0. Let (u, ξ,ω) be a weak solution to (2.1)–(2.6). Firstly, we
assume

(3.12)
∂u

∂t
∈ L2(0, T ;L2(D)), ξ̇, ω̇ ∈ L2(0, T ).

Next, let ζ ∈ C∞
0 (R3) such that ζ ≡ 1 in a neighborhood of B. Set

Ψ(x, t) :=
1
2

rot((ξ(t)× x− ω(t)|x|2)ζ(x)), (x, t) ∈ R3 × (0, T ).

Since
1
2

rot(ξ × x− ω|x|2) = ξ + ω × x ∀x ∈ R3

7



it follows that u − Ψ = 0 on ∂D. Thus, for almost all t ∈ (0, T ) the function
v := u(·, t)−Ψ(·, t) is a solution to the Stokes system

div v = 0 in D,

−∆v = f(t) + ∆Ψ(t)− ∂u

∂t
(t)−∇p(t) in D,

v|∂D = 0, lim
|x|→∞

v(x) = 0.

By the well-known theory of the Stokes equation one gets ∇p(t) ∈ L2(D) together
with the estimate

(3.13) ‖∇p(t)‖L2 ≤ c
(
‖f(t)‖L2 +

∥∥∥∂u

∂t
(t)

∥∥∥
L2

+ |ξ(t)|+ |ω(t)|
)
,

where c = const independent of t ∈ (0, T ). Hence, from (3.13), the equation (2.1)2
and the assumption ∂u

∂t ∈ L2(0, T ;L2(D)) it follows that ∇p, ∆u ∈ L2(0, T ;L2(D)).
Moreover there holds

‖∇p‖L2(0,T ;L2) + ‖∇2u‖L2(0,T ;L2) ≤

≤ c
(
‖f‖L2(0,T ;L2) +

∥∥∥∂u

∂t

∥∥∥
L2(0,T ;L2)

+ ‖ξ‖L∞ + ‖ω‖L∞

)
.(3.14)

Then, multiplying both sides of (2.1)2 with ∂u
∂t , integrating the result over D ×

(0, t) (t ∈ (0, T )) and applying integration by parts we are led to

t∫
0

∫
D

∣∣∣∂u
∂t

∣∣∣2dxds +
1
2

∫
D

|∇u(t)|2dx =

=

t∫
0

∫
∂D

(T(u, p) · n) · (ξ̇ + ω̇ × x)dSds +

t∫
0

∫
D

f · ∂u

∂t
dxds. 4)(3.15)

Next, from (2.5) we induce∫
∂D

(T(u, p) · n) · ξ̇(s)dS = γ1(s) · ξ̇(s)−m|ξ̇(s)|2 for a. e. s ∈ (0, T ).

Moreover, from (2.6) we obtain∫
∂D

(T(u, p) · n) · ω̇(s)× x)dS =
∫

∂D

x× (T(u, p) · n)dS · ω̇(s)

= (γ2(s)− Jω̇(s)) · ω̇(s)

for a. e. s ∈ (0, T ). Inserting these identities into (3.15) and applying integration by
parts we see that

t∫
0

∫
D

∣∣∣∂u
∂t

∣∣∣2dxds +
1
2

∫
D

|∇u(t)|2dx +

t∫
0

m|ξ̇|2 + |Rω̇|2ds

=

t∫
0

ξ̇ · γ1 + ω̇ · γ2ds +

t∫
0

∫
D

f · ∂u

∂t
dxds

4) Note that by virtue of (3.13) the trace of T(u, p) upon ∂D is well defined.
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for a. e. t ∈ (0, T ). Here R denotes the square root of J , i. e R2 = J = J>. By the
aid of Cauchy-Schwarz’s inequality and Young’s inequality one finds∥∥∥∂u

∂t

∥∥∥
L2(0,T ;L2)

+ ‖ξ̇‖L2(0,T ) + ‖ω̇‖L2(0,T ) + ‖∇u‖L∞(0,T ;L2) ≤

≤ 2
(
‖f‖L2(0,T ;L2) + ‖γ1‖L2(0,T ) + ‖γ2‖L2(0,T )

)
.(3.16)

Finally, combining (3.14) and (3.16) we obtain the a-priori estimate

‖∇p‖L2(0,T ;L2) + ‖∇2u‖L2(0,T ;L2)

≤ c
(
‖f‖L2(0,T ;L2) + ‖γ1‖L2(0,T ) + ‖γ2‖L2(0,T )

)
.(3.17)

Secondly, let us consider the general case, without assuming (3.12). To begin
with we introduce the Steklov mean as follows. Let f ∈ L1(0, T ;L1(D)). Define,

fλ(x, t) = − 1
λ

t∫
max{t+λ,0}

f(x, s)ds, (x, s) ∈ D × (0, T ), λ < 0.

Applying the Steklov mean to both sides of the equations (2.1)2, (2.5) and (2.6)
recalling that u(0) = 0 we see that (uλ, ξλ,ωλ) is a weak solution to (2.1)–(2.6)
with fλ,γ1,λ,γ2,λ,ωλ(0), ξλ(0) instead of f ,γ1,γ2,ω0, ξ0. In addition, this weak
solution satisfies (3.12). Thus, from (3.16) and (3.17) it follows that∥∥∥∂uλ

∂t

∥∥∥
L2(0,T ;L2)

+ ‖∇2uλ‖L2(0,T ;L2) + ‖∇uλ‖L∞(0,T ;L2)+

+ ‖∇pλ‖L2(0,T ;L2) + ‖ξ̇λ‖L2(0,T ) + ‖ω̇λ‖L2(0,T )

≤ 2
(
‖f‖L2(0,T ;L2) + ‖γ1‖L2(0,T ) + ‖γ2‖L2(0,T )

)
.(3.18)

Here c = const > 0 depending on the geometry D only. Thus, by means of reflexivity
of L2(0, T ;L2(D)) and L2(0, T ) from (3.18) the assertion of the lemma follows.

3◦ Let u0 ∈ V(D) ∩W 2, 2(D). Let (u, ξ,ω) be a weak solution to (2.1)–(2.6).
Clearly, u − u0 solves the system (2.1)–(2.6) too, with vanishing initial data and
right hand side in L2(0, T ;L2(D)). Hence, applying the result of step 2◦, wee see
that

∂u

∂t
,∆u,∇p ∈ L2(0, T ;L2(D)), ξ̇, ω̇ ∈ L2(0, T ).

Now, we are in a position to multiply the equation (2.1)2 by ∂u
∂t and integrate both

sides over D× (0, t) (t ∈ (0, T )). Then arguing similar as in step 2◦ by using integra-
tion by parts we achieve the identity

t∫
0

∫
D

∣∣∣∂u
∂t

∣∣∣2dxds +
1
2

∫
D

|∇u(t)|2dx +

t∫
0

|ξ̇|2 + |Rω̇|2ds

=
1
2

∫
D

|∇u0|2dx +

t∫
0

∫
D

f · ∂u

∂t
dxds +

t∫
0

ξ̇ · γ1 + ω̇ · γ2ds.

for a. e. t ∈ (0, T ). As above from this identity the assertion easily follows.
4◦ Finally, in case u0 ∈ V(D) the proof will be completed by a standard density

argument using the a-priori estimate obtained in 3◦. �
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4. Proof of Main Theorem

We divide the proof into two steps. First, we prove the assertion for the case when f
belongs to L2(0, T ;L2(D)). Then, we will complete the proof by applying a standard
approximation argument, passing to the limit on the basis of the a-priori estimate
obtained by the first step.

1◦ Let f = rot g, with g ∈ L2(0, T ;W 1, 2(D)), u0 ∈ V(D) with u0 = ξ +
ω × x a. e. on ∂D and γ1,γ2 ∈ L

2(0, T ). According to Lemma 3.2 there exists a
weak solution (u, ξ,ω) to (2.1)–(2.6) which is strong in the sense that ∂u

∂t ,∆u,∇p ∈
L2(0, T ;L2(D)) and ξ̇, ω̇ ∈ L2(0, T ).

Fix 0 < R0 < ∞, such that B ⊂ BR0/2(0). Let ζ ∈ C∞
0 (R3) denote a cut off

function with supp(ζ) ⊂ BR0 , such that ζ ≡ 1 in a neighborhood of B. We write f
as the sum f1 +f2, where f1 = rot(ζg), f2 = rot((1− ζ)g) a. e. in D× (0, T ).
Once more applying Lemma 3.2 there exists a strong solution (u1, ξ1,ω1) to the
system (2.1)–(2.6) with right hand side f1 in place of f . In particular, we have the
a-priori estimate∥∥∥∂u1

∂t

∥∥∥
L2(0,T ;L2)

+ ‖∇2u1‖L2(0,T ;L2) + ‖∇p1‖L2(0,T ;L2) + ‖ξ̇1‖L2 + ‖ω̇1‖L2

≤ c
(
‖∇u0‖L2 + ‖f‖L2(0,T ;L2(DR0 )) + ‖γ1‖L2 + ‖γ2‖L2

)
.(4.1)

Additionally, by means of (3.10) we get

‖∇u1‖L2(0,T ;L2) + ‖u1‖L∞(0,T ;L2) + ‖ξ1‖L∞ + ‖ω1‖L∞

≤ c
(
‖u0‖L2 + ‖f‖L2(0,T ;L2(DR0 )) + |ξ0|+ |ω0|+ ‖γ1‖L2 + ‖γ2‖L2

)
.(4.2)

Next, let z ∈ L2(0, T ;W 2, 2(R3)) ∩ W 1, 2(0, T ;L2(R3)), such that zj is the strong
solution to the heat equation

∂zj

∂t
−∆zj = f2,j in R3 × (0, T ),

zj(0) = 0 in R3

(j = 1, 2, 3) (cf. Lemma 3.1). Owing to div f2 = 0 one sees that div z is a weak
solution to the heat equation with zero data. By a standard uniqueness argument
it follows that div z = 0 a. e. in R3 × (0, T ). Furthermore, applying Lemma 3.1 one
gets the estimate

(4.3)
∥∥∥∂z

∂t

∥∥∥
L2(0,T ;L2

η)
+ ‖z‖L2(0,T ;W 2, 2

η ) ≤ c‖f‖L2(0,T ;L2
η).

Setting u2 = u − u1 − z and p2 = p − p1 we see that u2 ∈ L2(0, T ;W 1, 2(D)) ∩
L∞(0, T ;L2(D)) solves the system

divu2 = 0

∂u2

∂t
−∆u2 = −∇p2

 in D × (0, T ),(4.4)

fulfilling the following boundary and initial condition

u2 = ξ − ξ1 + (ω − ω1)× x− z on ∂D × (0, T ),(4.5)

lim
|x|→∞

u2(x, t) = 0,(4.6)

u2(0) = 0.(4.7)
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We multiply the equation (4.4)2 by u2, integrate both sides over D×(0, t) (t ∈ (0, T ))
and apply integration by parts. This leads to

1
2
‖u2(t)‖22,D −

t∫
0

∫
D

div T(u2, p2) · u2ζdxds

−
t∫

0

∫
D

div T(u2, p2 − (p2)DR0
) · u2(1− ζ)dxds = 0(4.8)

for all t ∈ (0, T ). Recalling the definition of T we calculate

(4.9) −T(u2, p2) = −T(u, p) + T(u1, p1) +Dz.

Noticing u2 = u − u1 − z and taking into account div T(u, p) = ∂u
∂t − f (cf. (2.1)2

for u) the first integral on the left of (4.8) satisfies the following identity

−
t∫

0

∫
D

div T(u2, p2) · u2ζdxds

= −
t∫

0

∫
D

div T(u, p) · uζdxds +

t∫
0

∫
D

(∂u

∂t
− f

)
· (u1 + z)ζdxds

+

t∫
0

∫
D

(
div T(u1, p1) + ∆z

)
· u2ζdxds.(4.10)

Using integration by parts, observing equations (2.5) and (2.6) assigned to ξ and ω,
we infer

−
t∫

0

∫
D

div T(u, p) · uζdxds

=

t∫
0

∫
D

|∇u|2ζdxds +
1
2
(|ξ(t)|2 + |Rω(t)|2 − |ξ0|2 − |Rω0|2)

+

t∫
0

∫
D

T(u, p− pDR0
) : u⊗∇ζdxds 5) −

t∫
0

γ1 · ξ + γ2 · ωds.(4.11)

On the other hand, integration by parts gives

−
t∫

0

∫
D

div T(u2, p2) · u2(1− ζ)dxds =

t∫
0

∫
D

|∇u2|2(1− ζ)dxds

−
t∫

0

∫
D

T(u2, p2 − (p2)DR0
) : u2 ⊗∇ζdxds.(4.12)

5) Note that for every v ∈ V(D) there holds
R

D
v · ∇ζdx =

R

∂D
v · ndS = 0.
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Combining identities (4.10), (4.11), (4.12) and inserting the result into the left hand
side of (4.8) we get

1
2

(
‖u2(t)‖2L2 + |ξ(t)|2 + |Rω(t)|2

)
+

t∫
0

∫
D

|∇u|2ζ + |∇u2|2(1− ζ)dxds

=
1
2

(
‖u0‖2L2 + |ξ0|2 + |Rω0|2

)
+

t∫
0

γ1 · ξ + γ2 · ωds

+

t∫
0

∫
D

(
T(u2, p2 − (p2)DR0

) · u2 − T(u, p− pDR0
) · u

)
· ∇ζdxds

−
t∫

0

∫
D

(∂u

∂t
− f

)
· (u1 + z)ζdxds−

t∫
0

∫
D

(
div T(u1, p1) + ∆z

)
· u2ζdxds

=
1
2

(
‖u0‖2L2 + |ξ0|2 + |Rω0|2

)
+ I1 + I2 + I3 + I4(4.13)

for almost all t ∈ (0, T ).
(i) Using Cauchy-Schwarz’s inequality and Young’s inequality taking into account

(4.1), (4.2) and (4.3) we easily get

I1 + I4 ≤ cK2
0 +

1
8

(
‖u2‖2L∞(0,T ;L2) + ‖ω‖2L∞(0,T ) + ‖ξ‖2L∞(0,T )

)
6) .

(ii) In order to estimate I2 we first notice the following identity

T(u2, p2 − (p2)DR0
) · u2 − T(u, p− pDR0

) · u
= −(Du1 +Dz) · u2 −Du2 · (u1 + z)− (Du1 +Dz) · (u1 + z)

+ I(p1 − (p1)DR0
) · u2 − I(p1 − (p1)DR0

) · (u1 + z)

− I(p2 − (p2)DR0
) · (u1 + z).

Again using Cauchy-Schwarz’s, Young’s inequality and the Poincaré inequality for
the term involving the pressure p1 − (p1)DR0

together with (4.2) and (4.3) we get

I2 ≤ cK2
0 + c‖p2 − (p2)DR0

‖L2(0,T ;L2(DR0 ))K0 +
1
8
‖u2‖2L∞(0,T ;L2).

(iii) For the estimation of I3 we apply integration by parts. This gives

−
t∫

0

∫
D

∂u2

∂t
· (u1 + z)ζdxds

=

t∫
0

∫
D

u2 ·
∂

∂t
(u1 + z)ζdxds−

∫
D

u2(t) · (u1(t) + z(t))ζdx.

6) For the definition of K0 see p. 5.
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By the aid of Cauchy-Schwarz’s inequality and Young’s inequality again observing
(4.1), (4.1) and (4.3) we get

I3 ≤ cK2
0 +

1
8
‖u2‖2L∞(0,T ;L2).

Now, inserting the estimates of I1–I4 into (4.13) we obtain the estimate

‖u2‖2L∞(0,T ;L2) + ‖∇u2‖2L2(0,T ;L2) + ‖ξ‖2L2(0,T ) + ‖ω‖2L2(0,T )

≤ cK2
0 + c‖p2 − (p2)DR0

‖L2(0,T ;L2(DR0 )K0.(4.14)

Next, we are going to estimate the L2 norm of ∂u2
∂t . To begin with, we multiply

both sides of the equation (4.4)2 with ∂u2
∂t and integrate the obtained result over

D × (0, t) (t ∈ (0, T )). Then, using integration by parts we are led to

∥∥∥∂u2

∂t

∥∥∥2

L2(0,t;L2)
−

t∫
0

∫
D

div T(u2, p2) ·
∂u2

∂t
ζdxds +

1
2

∫
D

|∇u2(t)|2(1− ζ)dx

=

t∫
0

∫
D

T(u2, p2 − (p2)DR0
) · ∂u2

∂t
⊗∇ζdxds +

1
2

∫
D

|∇u0|2(1− ζ)dx(4.15)

for almost all t ∈ (0, T ). By an elementary calculus we see that

−
t∫

0

∫
D

div T(u2, p2) ·
∂u2

∂t
ζdxds = −

t∫
0

∫
D

div T(u, p) · ∂u

∂t
ζdxds

+

t∫
0

∫
D

(∂u

∂t
− f

)
· ∂(u1 + z)

∂t
ζdxds +

t∫
0

∫
D

(
div T(u1, p1) + ∆z

)
· ∂u2

∂t
ζdxds.

Observing (2.5) and (2.6) arguing as in the proof of Lemma 3.2 we infer

−
t∫

0

∫
D

div T(u, p) · ∂u

∂t
ζdxds =

t∫
0

|ξ̇|2 − ξ̇ · γ1 + |Rω̇|2 − ω̇ · γ2ds

+
1
2

∫
D

|∇u(t)|2dx− 1
2

∫
D

|∇u0|2dx +

t∫
0

∫
D

T(u, p− pDR0
) :

∂u

∂t
⊗∇ζdxds. 7)
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Combining the above identities together with (4.15) we obtain

∥∥∥∂u2

∂t

∥∥∥2

L2(0,t;L2)
+

1
2

∫
D

|∇u(t)|2ζ + |∇u2(t)|2(1− ζ)dx +

t∫
0

|ξ̇|2 + |Rω̇|2ds

=

t∫
0

∫
D

(
T(u2, p2 − (p2)DR0

) · ∂u2

∂t
− T(u, p− pDR0

) · ∂u

∂t

)
· ∇ζdxds

+

t∫
0

∫
D

(∂u

∂t
− f

)
· ∂(u1 + z)

∂t
ζ +

(
div T(u1, p1) + ∆z

)
· ∂u2

∂t
ζdxds

+
1
2
‖∇u0‖2L2 +

t∫
0

ξ̇ · γ1 + ω̇ · γ2ds.

(4.16)

Clearly, recalling u = u1 + u2 + z one calculates

T(u2, p2 − (p2)DR0
) · ∂u2

∂t
− T(u, p− pDR0

) · ∂u

∂t

= −(Du1 +Dz) · ∂u2

∂t
−Du2 ·

∂(u1 + z)
∂t

− (Du1 +Dz) · ∂(u1 + z)
∂t

+ I(p1 − (p1)DR0
) · ∂u2

∂t
− I(p1 − (p1)DR0

) · ∂(u1 + z)
∂t

− I(p2 − (p2)DR0
) · ∂(u1 + z)

∂t
.

By the aid of this identity using Young’s inequality taking into account estimates
(4.1), (4.2) and (4.3) we obtain∥∥∥∂u2

∂t

∥∥∥2

L2(0,T ;L2)
+ ‖∇u2‖2L∞(0,T ;L2) + ‖ξ̇‖2L2(0,T ) + ‖ω̇‖2L2(0,T )

≤ cK2
0 + c‖p2 − (p2)DR0

‖L2(0,T ;L2(DR0 ))K0.(4.17)

For the estimation of the pressure on the right hand side of (4.17) we make use
of (4.4)2. That is

−∇p2 =
∂u2

∂t
−∆u2 a. e. in DR0 × (0, T ).

Consulting, [9] (Th. III. 3.1, Th. III. 5.2) we obtain the estimate

‖p2 − (p2)L2(0,T ;L2(DR0 ))‖L2(0,T ;L2(DR0 )) ≤ c
(∥∥∥∂u2

∂t

∥∥∥
L2(0,T ;L2)

+ ‖∇u2‖L2(0,T ;L2)

)
.

Inserting this estimate into the right hand side of (4.17) using Young’s inequality
taking into account (4.14) we get

(4.18)
∥∥∥∂u2

∂t

∥∥∥
L2(0,T ;L2)

+ ‖u2‖L∞(0,T ;W 1,2) + ‖ξ‖W 1,2 + ‖ω‖W 1,2 ≤ cK0.

7) Remark, pDR0

R

D

∂u
∂t
· ∇ζdx = 0 (cf. also footnote 4).
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Finally, it remains to estimate ∇p2 and ∇2u2. Let t ∈ (0, T ) be fixed such that
∂u2
∂t (t), ∂2z

∂xi∂xj
(t) ∈ L2 (i, j = 1, 2, 3). We define

Ψ2(x) =
1
2

rot
(
ζ(ξ2(t)× x− ω2(t)|x|2)

)
, x ∈ R3, t ≥ 0,

where ξ2 = ξ − ξ1 and ω2 = ω − ω1. Then v = u2(·, t) −Ψ2(·, t) − ζz(·, t) solves
the steady problem

div v = −∇ζ · z(t) in D,

−∆v =
∂u2

∂t
(t) + ∆Ψ2(t) + ∆(ζz(t))−∇p2(t) in D,

v = 0 on ∂D.

Consulting [9] we see that ∂2v
∂xi∂xj

,∇p2 ∈ L2(D) together with the estimate

‖∇2v‖2L2 + ‖∇p2(t)‖2L2

≤ c
(∥∥∥∂u2

∂t
(t)

∥∥∥2

L2
+ ‖∆(ζz(t))‖2L2(DR0 ) + ‖∆Ψ2(t)‖2L2

)
.(4.19)

Integrating, both sides of (4.19) over (0, T ) using (4.18), (4.3) and (4.1) we see that

(4.20) ‖∇2u2‖L2(0,T ;L2) + ‖∇p2‖L2(0,T ;L2) ≤ cK0.

2◦ Proof of the theorem for general f = rot(g) for g ∈ L2(0, T ;W 1, 2
η (D)). For ε > 0

we define

gε(x, t) = (1 + ε|x|)−1g(x, t), (x, t) ∈ D × (0, T ), fε = rot(gε).

Clearly, gε ∈ L2(0, T ;W 1, 2(D)) and fε ∈ L2(0, T ;L2(D)) for all ε > 0. In addition,
we immediately see that for a. e. t ∈ (0, T )

‖gε(t)‖W 1, 2
η (D) ≤ 2‖g(t)‖W 1, 2

η (D) ∀ ε > 0.

By Lebesgue’s theorem of dominated convergence it follows that

fε → f in L2(0, T ;L2
η(D)) as ε → 0.

As it has been proved above in 1◦ there exists a strong solution (uε, ξε,ωε) to
the system (2.1)–(2.6) with fε in place of f . Furthermore, there exists a pressure
pε ∈ L2(0, T ;L2

loc(D)) with ∇pε ∈ L2(0, T ;L2(D)). Owing to (4.1), (4.2), (4.3),
(4.18) and (4.20) we get the a-priori bound∥∥∥∂uε

∂t

∥∥∥
L2(0,T ;L2

η)
+ ‖∇2uε‖L2(0,T ;L2

η) + ‖uε‖L∞(0,T ;W 1,2
η )+

+ ‖ξε‖W 1,2 + ‖ωε‖W 1,2 + ‖∇pε‖L2(0,T ;L2) ≤ cK0,(4.21)

where c denotes a constant depending on D only. Hence, by means of reflexivity we
may choose a sequence of positive numbers εj → 0 as j →∞, such that

uεj
→ u weakly in L2(0, T ;W 2, 2

η (D)),
∂uεj

∂t
→ ∂u

∂t
weakly in L2(0, T ;L2

η(D)),

ξεj
,ωεj

→ ξ,ω weakly in W 1, 2(0, T ),

∇pεj
→ ∇p weakly in L2(0, T ;L2(D)) as j →∞.
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As one easily checks the triple (u, ξ,ω) is a strong solution to the system (2.1)–(2.6)
with pressure p satisfying (2.9), (2.10).
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