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ABSTRACT. In this work, we study the linearized Navier-Stokes equations in
R3, the Oseen equations. We are interested in the existence and the uniqueness
of generalized and strong solutions in LP-theory which makes analysis more
difficult. Our approach rests on the use of weighted Sobolev spaces.

1. Introduction. We consider the Oseen equations in R3 obtained formally by linearising of the
Navier-Stokes equations:

—Au+divo®u)+Vr=f and divu=h in R3, (1)

where, v is a given velocity field belonging to L?(R3) with divergence free. When (1) is posed
in the bounded domain €2, i.e with a boundary condition, the existence and uniqueness of weak
solutions of problem (1) are studied in the classical Sobolev spaces W™ P(Q), see [4], [9] for
instance. It is well known that it is not possible to extend this result to the case of unbounded
domains, for example the exterior domain or the whole space R? since the spaces W™P(Q) are not
appropriate. Therefore, a specific functional framework is necessary which also has to take into
account the behaviour of the functions at infinity. Our approach is based on the weighted Sobolev
spaces Wq P(R3) introduced by Hanouzet [10] and Cantor [5] (see section 2 for the details).
Another approach we can refer to Galdi [8] or Farwig [6, 7]. In the last years, different methods
have been devoloped to study the problem (1). One idea is to suppose in addition that the norm
of v in L3(R3) is controled by a positive constant:

vl g3 rsy <k, (2)
for more details see [2]. Observe that this condition of smallness is very strong. The basic idea of

our work consists on improving the work done by Amrouche and Consiglieri [2] by dropping the
condition (2).

2. Basic concepts on weighted Sobolev spaces. Throughout this paper, all functions and
distributions are defined on the 3-dimentional real Euclidean space R3. Let x = (x1,x2,x3) be
a typical point in R? and let r = |z| = (2} + 23 + 22)'/? denote its distance to the origin. In
order to control the behaviour at infinity of our functions and distributions we use for basic weight
the quantity p(z) = (1 4+ r2)1/2 which is equivalent to r at infinity, and to one on any bounded
subset of R3. We define D(R3) to be the linear space of infinite differentiable functions with
compact support on R2. Now, let D’(R3) denote the dual space of D(R?), ofen called the space
of distributions on R3. We denote by < .,. > the duality pairing between D’(R?) and D(R3). For
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2 LINEARIZED NAVIER-STOKES EQUATIONS IN R3:

each p € R and 1 < p < oo, the conjugate exponent p’ is given by the relation % + p—l, = 1. Then,
for any nonnegative integers m and real numbers p > 1 and «, setting
-1, if %+a¢{1,.,,7m}7

_ 3 _ if 3
m— 3 —a if p—l—oze{l,...,m}7

k=k(m,p,a) = {

we define the following space:
WP (R?) = {u € D' (R?);
YAENS: 0 <A<k, p* (01 + p) " DM € LP(RY);
VAENS: k+1< A <m,p* ™t DNy, € LP(R?)}.

It is a reflexive Banach space equipped with its natural norm:

lullwzresy = [ 2 1™ M n( 4 ) T Dl o)
0<|A|<k

1/p
+ >0 e AID |
E+1<[A[<m

p
LP(R3)

For m = 0, we set
WOP(RY) = {u € D/(R®); p®u € LP(RP)}.

We note that the logarithmic weight only appears if p =3 or p = % and all the local properties
of Wa"P(R3) coincide with those of the classical Sobolev space WP (R?). We set W5 'F(R3) as
the adherence of D(R3) for the norm || . lym» @sy- Then, the dual space of WEHP(R3), denoting

by W:;n’p/ (R3), is a space of distributions. On the other hand, these spaces obey the following
imbedding

W;"‘L;P(Ri’)) [N W(;"’:*:llwp(RS)
if and only if m >0 and 3/p+a#1orm <0and 3/p+ a # 3.

In addition, we have for a =0or a =1

3
WLP(R3) — WOP*(R3) where px = 371) and 1<p<3. (3)

Consequently, by duality, we have

Wg'g (R3) — W:;’p/ (R3)  where ¢ =

4 ’
34y and p’ >3/2.
Moreover, the Hardy inequality holds,
||UHW01L’F'(R3) SCHquwg’P(RS)v if 3/p+a> 17

Vu € WhHP(R?),

Ilu‘ ‘Wolfp(RB’)/'Po < CHVU‘ ‘ ngP(R3)7 otherwise,

where Py stands for the space of constant functions in W;’p(R?’) when 3/p + a < 1 with C
satisfying C' = C(p,a) > 0.

3. Generalized solutions in W(l)’p(]R3). We are interested in the existence and the uniqueness

of generalized solutions (u,7) € Wé’p(R3) x LP(R3), with 1 < p < oo, to the problem (1). We
will consider the following data:

Fe Wy P(R?), wveIl(R®) and he LP(R?).

On the one hand if u € W(l)’p(]RS)7 then we have u € ngo/f (R%) and thus v ®u belongs to Li _(R3).
It means that div(v ® u) is well defined as a distribution in R3. On the other hand, if p > 3/2,
we deduce that the term v - V u is well defined and we can write div(v ® u) = v - V u. Moreover,

if (u,m) € Wé’p(RS) x LP(R3) with p < 3 is a solution to (1), we have for any ¢ € D(R3):

[, (ut v u) : Vo= ndive) = (1, 0) s oy i’ ) (@)
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Observe that in this case, u € LP*(R?) with p—l* = % — %, so v ® u € LP(R3). Because D(R?) is
dense in Wé’p/ (R3), this last relation holds for any ¢ € W(l)'p/ (R3). As this last space contains

the constant vectors when p’ > 3, the force f must satisfies the following compatibility condition:

{fi, 1>W0’1’p(R3)><W01’p/ &) = 0 foranyi=1,2,3 if p<3/2 (5)

If p > 3, (1) is equivalent to the following variational problem:

/]Rg (Vu: Ve —mdive+v-Vu- @) =, @)y 10 g i’ gs) - ©)
Remark 1.

To simplify the study of problem (1), we can suppose at first that A = 0. Indeed, if h in LP(R3),
there exists x € Woz’p (R3) such that Ax = h (see [1]) and satisfying

19 X g1 gy < Ol e &)
Set wp, =V x € Wol’p(R3) and z = u — wy,. Then problem (1) becomes:
~Az+diviv®2)+Vr=Ff+Aw, —diviv ®wy,) and divz=0 in R3

If 1 < p < 3, we have w;, € LP*(R3?) and v ® wj, belongs to LP(R?). Consequently div(v @ wy,)
belongs to Wofl’p(]R?’). However when p > 3, div(v ® wy) = v - V wy, belongs to L"(R3), with
% = % + % and L"(R3) — Wal’p(R?’). This means that F := f + Awj — div(v ® wy,) belongs
to Wofl'p (R3). In addition, we have for any i = 1,2,3 and p < % the equivalence

<f’i7 1>W[;1’p(R3)><W01’p/ (R3) =0 <F’L7 1>W[;1’p(R3)><W01’p/ (R3) =0. (8)
This means that to solve (1), it is sufficient to solve the following problem:
—Autdivio@u)+Vr=f and divu=0 in R>. 9)

In the following theorem, we establishe the existence of generalized solutions to problem (1) in
the case 1 < p < 2. The uniqueness of the solutions will be studied later.
Theorem 3.1. Let 1 < p < 2. Assume that f € Wofl’p(]R?’) satisfies the compatibility condition

(5) and let v € L3(R?). Then the Oseen problem (9) has a solution (u, ) € W(l)’p(]RS) x LP(R?)
such that

1ol g5y + 1l ey < OO+ ol )|yt sy (10)
Proof. First, the case p = 2 is an immediate consequence of the following property
Vw e Wi (RY), / (v-V)w -w=0
R3

and Lax-Milgram’s lemma. Then we can suppose that 1 < p < 2.
The main idea of the proof is to observe that v € Lg (R3) can be approximated by a smooth
function 1 € Dy (R3). Given ¢, there is 9, € D, (R?) such that

llv = Pellsrs) <& (11)

where € > 0 is a constant which will be fixed as below. By (5) and [3], we have f = divF with
F € LP(R?). Let p € D(R?), be a smooth C> function with compact support in B(0, 1), such that
p >0, [gsp(x)dz =1. For t € (0,1), let p; denote the function & — (t%)p(%) Let ¢ € D(R3)
such that 0 < o(z) < 1 for any 2 € R3, and

1 if 0glz|<1,
p(z) = .
0 if |z|=2
We begin with applying the cut off functions ¢, defined on R3 for any k € N*, as oy (x) = (%)
Set Fj, = ¢ F. Thus we obtain
Gip=p*Fp € DR®) and lim lim Gyp =F in LP(R®). (12)

t—0k—oo

Now, observe that using Young inequality, we have

[t * Frllp2msy < llptl|pa(ws) | Frll Lo w3y (13)
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2
with ¢ = 3 Pi 5 Observe that ¢ > 1 is equivalent to p < 2. After an easy calculation, we obtain
that
4=
[t * Frllp2(rsy < 3Tt IFkl| Lo (r3)- (14)

We choose t = k= with a > 0 which will be precised later. We set f; = div Gy  for any k € N*.
Then we have

fr—f in WIMPERY)
It is clear that f, satisfies the condition (5).

Step 1. We suppose that v € D(R?). Thanks to Lemma 4.1 see [2], there exists a unique
solution

up € WoP(R3) N W2(R?), mp € L2(R®) N LP(R?)
satisfying
—Auy +div(v @ up) + Vg =fi, divugy=0 in RS (15)
Set Be = supp 4, then from the Stokes theory (see [1] Theorem 3.3), we obtain
sl 1.0 sy + el Lo ) < Co (IFull oo sy + 110 © wil o es) ) (16)
where C1 doesn’t depend on k, f;, and v. Using Hdlder inequality, we have
v ® ukllpo sy < |1(v — ) @ wpllpp@s) + 1% ® wkllpp @s)
Slv = ellps@s)llupl po sy + Vel s Byl vkl ze=(5.)-
Using the Sobolev inequality, we obtain
ol g gasy < Colloll i g ()

By the assumption (11), and from (16), (17) and (17) it follows that

(1= 1ol 1. sy + il Lo sy < Ol el 1y + el oy bl 5 5 (1)
Taking 0 < € < 1/2C1C2, we obtain
Nkl o gs)y +l17kllLe@s) <200 kllyo1e gy + 1¥ellis (5o llukl o (5.))-
(19)
From (19), we prove that there exists C' > 0 not depending of k and v such that for any k € N*
we have
iz (5.) < ClMFell -1 gay: (20)
Indeed, assuming, per absurdum, the invalidity of (20). Then for any m € N* there exists £y, € N,
fo,, € Wi bP(R3) N Wi "2(R?) and vy € Dy (R3) such that, if (ug,,,m,,) € (WP (R3) N
Wé’2(R3)) x (LP(R3) N L?(R3)) denotes the corresponding solution to the following problem:

—Awuy, +div(vm @ ug,,)+ Vg, =Ff, , divu,, =0 in R? (21)
the inequality
IluemIILP*(BG) >m||meHng’p(R3)’ (22)
would hold. Note that f, = div(p: *Fy, ) with Fp =@, F. Set
Wi = Ul O = Tl and R,, = $, Then for any m € N* we
llwe,, [l o= (Bo) [lwe,, o (B.) [lwe,, ||+ (B2
have
—Awp +div(vm @ wm) + Vn =Ry and divw, =0 in R3. (23)

Now, using (23) and the fact that div(vm ® wm) = vm - V W, we obtain for any m € N* and

t>0
1

/ |V'wm\2dx=—7/ pt*Fo YV wydo.
R3 [lwe,, ||+ (B.) JRS

Using (22) and Cauchy Schwartz inequality, we have

IV wmlg2rs) < llpt * Fo,p, || g2 (ms) - (24)

m||fem HWELP(JR:;)
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1
Using (14) and choosing t = — with 0 < a < %/, we deduce that
m

IV Wil < — 5z e, 20 s (25)
3m- Hffmllwgle(RS)
Because the semi-norm ||V - || 2 (gs) is equivalent to the full norm || HWé,z(Rg) and the right hand
side of the last inequality tends to zero when m goes to oo, we deduce that
wp — 0in W{2(R). (26)

Then, wy, — 0in L%(R3) and in particular in LP*(Be). On the other hand, we have
[lwm||zp+(B.) = 1, leading to a contradiction. Inequality (20) is therefore established. From (19),
(20) and (11) we obtain for any k € N*

0kl 1.0 ey + 17kl Lo a3y < 2010+ Cllol s gy Ikl 1 s (27)
Thus we can extract subsequences of u; and 7, still denoted by wj and 7, such that
up = u in W(l)’p(R?’) and 7, =7 in  LP(R3),

where (u,7) € W(lj'p (R3) x LP(R3) verify (9) and the following estimate

lull e gsy + 117l Lo@s) < 201+ Cllvllgs@s)IF Il -1 gs)- (28)
Step 2. We suppose that v belongs only to L3 (R3). Let vy € Dy(R3) such that
vy — v in L3(R3). (29)
Using the first step, there exists (ux,my) € Wé’p(R?’) x LP(R3) satisfying
—Auy+div(vy ®@uy)+Vay=f and divuy=0 in R3, (30)
and satisfying the estimate
luallwirgs) + 1Tl Le@s) <2010+ Clloallp@s)lIf 1y -1 @s)- (31)

We can finally extract a subsequence converging to (u,m) € Wé’p(R3) x LP(R?) which is a solution
of the Oseen problem (9) and verifying the estimate (10) when 1 < p < 2. For p = 2, estimate
(10) was proved in Theorem 3.4 of [2]. |

Remark 2.

1) If h belongs to LP(R?) with 1 < p < 2 4.e. we are in the case of problem (1) and the
estimate (10) becomes:

ully1.p gy T 17l Lr@s) < CO+ vl @s) (11l =10 sy + A+ 0l @s) 1Rl e @s)) - (32)

The proof of (32) when 1 < p < 2 is a simple consequence of Remark 1 (7). Note that the
proof of (32) when p = 2 is done in Theorem 3.3 of [2].
2) For p =2 and h = 0, the velocity u of the Oseen problem (9) satisfies the estimate

HUH Wé’2(]R3) < CH-fHWELQ(RS)7

and the energy equality

2 —
/]‘{3 [V ul”dx = (f,u) WJI’Z(R3)><W(1,’2(R3) :
In addition, the pressure 7 of the Oseen problem (9) satisfies the following estimate:
lI7llL2@s) < CQ+11ollgs @3)lIf gy -1.2 gs)-

See Theorem 3.3 of [2] for more details.
We will prove now some regularity results, when the external forces belong to the intersection
of negative weighted Sobolev spaces. The first result is given by the following theorem.
Theorem 3.2. Let1 < p < 2. Let f belong to Wofl’p(RS)ﬂ Wofl’z(RS) satisfying the compatibility
condition (5) and let v € L3(R3). Then the Oseen problem (9) has a unique solution (u,7) €
(WP (R3) N W2 (R3)) x (LP(R3) N L2(R3)) such that
19y gy 1100 1.2 gy 1l ey + Dl 2 sy

(33)
<O+ 11ollgaqes)) (Al 1.2 oy + Il o ) )-
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Proof. As in Theorem 3.1, we can suppose that v € D,(R3). Let f belongs to Wofl’p(R?’) n
Wofl’z(R3) satisfying the compatibility condition (5). Then f can be written as f = divF with
F ¢ LP(R3) N L?(R?). Take the same sequence f, as in Theorem 3.1, which converges to f in
Wofl'p (R3) N W071’2(R3). Proceeding as in the first step of Theorem 3.1, we deduce that there
exists a unique solution
up € WeP(R3) N WP (R®),  mp € LP(R®) N L2(R%)

satisfying

—Auy +diviv @ up) + Vrp =fi, divugp=0 in R3 (34)

and with the following estimate
k1. gy + 1kl sy < OO+ ol s )il 10m gy (35)
where C' doesn’t depend on k. On the other hand, multiplying by u, we have also the following
estimate
k]l 1.2 oy + 1Tl 2a9) < CllF sl 12 g (36)

Finally, (uy,7y) is bounded in (W(l)'p(R3) n Wé’2(R3)) x (LP(R3) N L?(R3)) and we can extract
a subsequence denoted again by (u, ) and satisfying

up = u in WYPR) N WHPR®) and 7, =7 in LP(R®) N L2(R®). (37)
We then verify that (u,7) is solution of (9) and we have the estimate (33). To finish we observe
that the uniqueness is immediate because (u, ) € Wé’z(RS) x L2(R3) . O

In Theorem 3.1, we have studied the existence of weak solution of the Oseen problem when
1 < p < 2. Now the question that will be discussed: If the solution given by Theorem 3.1 is unique?
If it is unique, is it for all 1 < p < 27 The first answer is given in the following proposition:

Proposition 1. Let 6/5 < p < 2. Let f€ Wofl'p (R3) satisfy the compatibility condition (5) and
v € L3(R3). Then the solution (u, ) € Wé’p(R?’) x LP(R3) given by Theorem 8.1 is unique.

Proof. Suppose that there exist two solutions (w1,71) and (u2,72) belonging to W(l)’p(R?’) X
LP(R?) and verifying Problem (9). Set w = u1 — u2 and 7 = 71 — 72 then we have
—Au+divlv@u)+Vr=0 and dive=0 in RZ (38)
Our aim is to prove that (u,7) = (0,0). Observe that for any € > 0, v can be decomposed as:
v = v1 + vo with
v1 € LZ(R?), ||villpmsy <&  and va € Do(R?). (39)
The parameter € will be fixed at the end of the proof.
Note that vy € L' (R3) N L (R3). Now, since u € W(l)'p(R3) — LP*(R3) we prove that va ® u
belongs to LP*(R3) N L' (R3). As 6/5 < p < 2, then 2 < px < 6 and thus div(ve ® u) = v2 - Vu
belongs to Wofl'p (R3)N W071'2(R3) and satisfies the compatibilty condition (5). Then it follows

from Theorem 3.2 that there exists a unique z € Wé'p (RN Wé’2(R3) and 0 € LP(R3) N L?(R3)
such that

—Az+div(v1®2)+VO=—v2-Vu and divz=0 in R (40)
Because of (38) and (40), the functions w = z — u and ¢ = 0 — 7 satisfy:
—Aw+div(v1 @w) +Vg=0 and divw =0 in R3 (41)

From the Stokes theory see ([1]) and Sobolev imbeddings, we obtain
lwll 10 (gsy < Cllvr @ wl|ppgs) < Cllvallgs@s) llwllo- es)
< OClvallgs s)llwll 2

< CC e[l

VP(RS)
,P(RS)'

Taking 0 < ¢ < 1/(CC*), we conclude that w = O and so ¢ = 0. Thus (u,w) belongs to
W(l)’2(]R3) x L?(R3) and we can write that div(v ® u) = v - Vu. Using (38), we deduce that

(FAutv - Vu+Vmu)y 1255, iz gs) =0,
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and so
IV ul| g2 (gs) +/ v-Vu-udr=0.
R3

1
Since [pzv-Vu-ude = 5 Jgs v - V|u?|dz = 0, we prove that ||V u||j2(zs) = 0 and thus u = 0
and so m = 0. Finally, we have proved that (u,7) = (0,0) for any 6/5 < p < 2. O

The second regularity result is stated in the following theorem.

Theorem 3.3. Let 1 < p < r < 2. Suppose that f belongs to Wofl’p(RS) N Wofl’T(RS) satisfying

the compatibility condition (5) with respect to p and r and let v € L3(R®). Then the Oseen

problem (9) has a solution (u, ) € (W(l)’p(]RS) N W(l)’T(R?’)) x (LP(R?) N L™ (R?)) such that
1ol gy 19 gy Il sy + el sy

(42)
<O+ 0l ) My 10y + 1l o)

Proof. Let f belongs to Wofl’p(]RS) n Wofl’r(]RS) and satisfying the compatibility condition (5)
with respect to p and with 7. Then f can be written as f = divF with F € LP(R3)NL"(R?). Take
the same sequence f;,, as in the proof of Theorem 3.1, which now converges to f in Wofl’p(]R3) N
Wofl'r(]R3). Proceeding as in the first step of Theorem 3.1, we can suppose that v € D, (R3) and

then there exists a unique solution
1,pm3 1,2/ 3 (3 2 (m3
up € Wy*(R?) N Wy*(R?), =, € LP(R®) N L*(R”)
such that
—Aup +diviv @ ug) + Vg = fr, divup =0 in R3 (43)
and satisfying the estimate
ikl gt gy + 17l ey < o0+ 1ol o) IIF el -t sy (44)

where Cp doesn’t depend on k. On the other hand, using an interpolation argument, we have also
uy € W(l)’r(]RS)7 because p < r < 2. Now proceeding as in Theorem 3.1, we prove that

lukllyir sy + 17ellr@s) < Cr(L+ 1ol g @)kl g -1 sy (45)

where C) doesn’t depend on k.
Finally, (uy, 7)) is bounded in (Wé’p(R3)ﬂ Wé’T(R:S)) x (LP(R3)NL"(R3)) and we can extract
a subsequence denoted again by (u, 7)) and satisfying

up —=u in WHPR)N WET(R?) and mp =7 in LP(R®) N L"(R?). (46)
We can verify that (u,7) is a solution of (9) and it impies that the estimate (52) is valid. |

Now, we study the uniqueness of generalized solution when 1 < p < 6/5:

Proposition 2. Let 1 <p <6/5. Let fe Wofl’p (R3) satisfy the compatibility condition (5) and
v € L3(R3). Then the solution (u,7) € Wé’p(R?’) x LP(R3) given by Theorem 3.1 is unique.
Proof. We proceed as in Proposition 1. Let (u, ) belongs to W(l)'p(R3) x LP(R3) and satisfying
(38). We know that vz ® u belongs to LP*(R3) N LP(R3), with 3/2 < px < 2 and thus div(ve ® u)
belongs to W(;l’p* (R3N Wofl’p (R3). Moreover div(v2 ® u) satisfies the compatibility condition
(5). Using Theorem 3.3, we deduce that there exists (&, ) € (W(l)’p* (R3)N W(l)’p(RS)) x (LP*(R3)N
LP(R3)) such that

— At +div(v1 ®€)+ V= —div(vae®u) and divé=0 in R3. (47)
Set A=€& —u and ¥ = ¢ — 7, we have
—AX+div(v1 @A)+ V=0 and divA=0 in R3.
As in Proposition 1, we prove that (X,¢) = (0,0). Then we deduce that (u,m) belongs to
W(l)’p* (R3) x LP*(R3). Using again Proposition 1, we prove that (u,r) = (0,0). |
We can now summarize our existence, uniqueness and regularity results as below.

Theorem 3.4. Assume that v € L3 (R3).
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i) Let 1 <p <2, heLPR? and f€ Wofl’p(]RS) satisfy the compatibility condition (5). Then
the Oseen problem (1) has a unique solution (u,m) € W(l)’p(]R3) x LP(R3) such that

Il it gy + 17l o sy < OO+ lollzaeoy) (Al o gasy + 1+ loll ey lIAll ey - (48)

1) Let 1 < p < r < 2. Suppose that f belongs to Wofl'p(]Ris) n WJI'T(R3) and satisfying the

compatibility condition (5) with respect to p and r. Then the Oseen problem (9) has a unique

solution (u,7) € (WP (R¥) N Wy (R3)) x (LP(R3) N L"(R?)) such that
o g1y 190 gy + 1l ey + el ey

49
< OO+ el My gy + Iy ) @

Finally the following existence result can be stated via a dual argument.

Theorem 3.5. Forp > 2, let f€ W, "P(R?), h € LP(R3) and v € L3(R3). Then, the Oseen
problem (1) has a unique solution (u,7) € W(l)'p(R3) x LP(R3) if p < 3 and if p > 3, u is unique
up to an additive constant vector. In addition, we have

ol gy sy, F IFlloes) < O+ lellzses)) (1110 gs) + 0l os) ) - (50)

Proof. On one hand, Green’s formula yields, for all w € W(l)’p/ (R%) and (u,7) € W(l)'p(R3) X
LP(R3)

(-Au+v-Vu+Vrmw) WP () x Wi ()

=(u,—Aw —div(v ® w)) — (m,div w)

wirEs) xw P (r3) LP(R3)x LP' (R3) *

Taking into account that if p > 2, we have w € W(l)’pl(]RS) — L37/(2r=3)(R3) and since v €

L3 (R3) we can conclude that v @ w € 7 (R3) and consequently div(v ® w) € Wofl’p, (R3). On
the other hand, for all n € LP’ (R3),

div u,n)

(u, V) Wé,p(RS)X W[;I’p/ (R3) =—{ Lp(R3)x LP' (R3)

Then problem (1) has the following equivalent variational formulation:
’
Find (u,7) € WP (R3) x LP(R?) such that for all (w,n) € W§* (R3) x L?' (R?),

(u, —Aw — div(v @ w) +V17>W (m, div w)

SPE)x WP (®3) T LP(R3)x LP' (R3)

(51)
= (f,w) Wi PR3 x wh P (R3) T (hm) o ) x 2’ e3)
According to Theorem 3.4, for each (f',h’') € Wofl’pl(R?’) x LP' (R3) satisfying

3
/ _ . / 2
iy 1! oy woeay =0 3 P/ <5

there exists a unique solution (w,n) € W(l)’pl(R?’) x LP' (R3) such that
—Aw—divlv@w)+Vn=f divw=hr" in R3
with the estimate
HwHW(l),p’(R3) 1l Lo msy < CA+ H'UHL3(R3))(HfI||WSI,P(RS) + (1 + vl s L g3)) -
Observe that the mapping
T: (flv hl) = <f7 w) ‘,I,-(;l,p(]R3)>< W(l),p/(]]@) - <h777>Lp(R3)XLp/(R3) )
is linear and continuous with

B < Ul gy oy 10l 17 gy + 1B oy o e

< €1+ [ollgoeoy)? (1611 -vr oy + Iellzocesy) (11 1o gy + 111 e )

Note that f’ belongs to Wofl'p/ (R3) and f’ L R3 if p > 3. Thus there exists of unique (u, ) €
WP (R3) x LP(R3) if 2 < p < 3, and a unique (u, ) € (W})'Z’(Ri”)/P[l,g/p]) x LP(R3)> ifp >3,
such that

’opry / /
T(f',h) = <u7-f >Wé’p(]R3)><W[;1‘pl(R3) - <7T’h >LP(R3)><LP/(R3) ’
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with
1ll o moy sy ,y + Fllzncesy < CA+ lollzagay)? (1l 1o aoy + Bl zoes)) -
By definition of T, it follows that

(f, w) WP R x WP (RS) T (h777>LP(R3)><LP'(R3) =

<u"f/>W(1,’p(R3)>< wo ' (®3) {m, h,>LP(R3)XLP’(R3) '

which is the variational formulation (51). |

Remark 3.

Suppose in the assumption of Theorem 3.5 that h = 0 and proceeding as in the proof of
Theorem 3.5. Then problem (1) has the following equivalent variational formulation: Find (u, ) €

W(l)’p(]RS) x LP(R?) such that for all w € V,/(R%) and n € 7 (R3),

(u,—Aw —div(v ® w) + Vn) WP (R3)x WO*I’P/(]]@) = (f,w) Wl () Wé’P/(RS)
According to Theorem 3.4, for each f’ € Wofl’p/ (R3) satisfying

3
/ _ : ’ 2
<fi71>W071,p’(R3)XW01,p(R3) =0 if p g 27
there exists a unique solution (w,n) € W(l)’p, (R3) x 7 (R3) satisfies the problem (1) with the
estimate

lullys
Observe that the mapping

,p'(RS) + ||77HLP/(R3) < C(l + ||v||L3(R3))||fIHWO*LP(RS)'

T f = () oy ! oy

is linear and continuous with

/ /
TG < WLy o191y gy S O 0Lyt g, 2 g
Thus there exists a unique velocity u in Wé’p(RS)/P[l,;;/p] of problem (1) satisfies the estimate:
lull oy < CO ol )1y -m g

In addition, we have —A u + div(v ® u) — f belongs to ng'p (R3) and satisfies

(A uFdivE®u) = F,w) i oy i ey = O

for all w in V ,/(R3). Thus we use Theorem 1 of [1] to deduce the existence of a unique pressure
m in LP(R3) of problem (1).

Now, we prove an other regularity result when 2 < r < p < oo:
Lemma 3.6. Supposing that f € W(;l'p(R?’)ﬂ WJI'T(RS), h € LP(R3)NL"(R?) and v € L3 (R3),
with 2 < r < p < oo the Oseen problem (1) has a unique solution
(u,m) € (W(l)’p(RS) n W(l)’r(]RS)) X (LP(R3) N L™ (R?)) satisfying the following estimate

el 2 oy 11l gyt oy + 17|y + Dl ey < O+ Hlollgaasy)?
(52)
(1A .0 a3y 191l . oy + Bl ooy + 1Al eay)

Proof. We suppose that v € Dy (R3). Let f € Wofl’p(R3) and h € LP(R3), from Theorem 3.5
there exists a unique solution (u,7) € Wé’p(R3)/P[1,3/p] x LP(R?) to the Oseen problem (1)
such that

IV ul|p sy + lI7l|Lp sy < OO+ ||v||L3(R3))2(||fHWU*LP(RB) + 17l e gs))- (53)

Note that P[;_3,p) is equal to zero if p < 3. Since v € D, (R3), we prove that v - V u belongs to
L' (R3) N LP(R3) and using the fact that © < p, we prove that v - V u belongs to L"(R?) and has
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a compact support. Then v -V u € W(;l’T(R?’) and according to Theorem 3.3 of [1], there exists
a unique solution (u/,7’) € W(l)’T(R3)/P[1,3/T] x L™(R3) such that

—Auv +Vr' =f—v-Vu and dive/=h in R3, (54)
taking into account that f belongs also to Wofl'r(R3) and h belongs to L™ (R3).
Set z =u — u’ and § = 7 — 7/, we obtain

—Az4+VO=0 and divz=0 in R3. (55)

The uniqueness argument implies first that the harmonic function 6 belonging to LP (R3)+L"(R3) is
necessarily equal to zero and with similar argument, we obtain also Vu = Vv’ € LP(R3)NL"(R3).

Note that v/ = wif 2<r <p<3and u=u'+ke€ WiP(R?) with k € R3,if 2 <7 < 3 < p.
Then problem (54) becomes

— AW +Vr =f—v-Vu' and dive' =0 in R3 (56)
According to Theorem 3.5, we have
IV w[] gr sy + 17l rgsy < C1+ HUHL3(R3))2(||fHWofle(Rﬁ) + 1Al L gs))- (57)
Replacing V v’ with V « and 7/ with 7 in (57) and using (53), we deduce (52). O
Remark 4.

Reasoning as in Lemma 3.6, we prove that if f € Wofl'p(R3) N Wofl'r(R3) satisfies the
compatibility condition (5) if r < 3/2 and h € LP(R3)NL"(R3) with 1 < r < 2 < pand v € L3 (R?),
then there exists a unique solution (u,w) € (Wé’p(R3) N Wé’r(ﬂ@)) x (LP(R3) N L™ (R?)) to the
Oseen problem (1).

4. Strong solutions in W(z)’p(RS) and in W%’p(RS). We begin by proving the existence of a
unique strong solution in W(z)’p(ﬂ) X W(l)’p(Q) for1<p<3:

Theorem 4.1. For 1< p< 3, let f€ LP(R3), h € Wy P (R3) and v € L3(R?). Then problem (1)
has a unique solution (u,m) € Wg'p (R3)/P[2,3/p] X Wol’p(R3) such that

3
el oy, + 1Tt sy < CQF lellzges)® (Ao qes) + Mhllyogs)) - (58)

Proof. The proof is similar to that of Theorem 5.1 of [2]. Note that in Theorem 4.1 we don’t need
to suppose that v satisfies (2). Observe first that if 1 < p < 3 we have
LP(R3) — Wofl,Sp/(Sfp) (R3),

3p 1 1 1

-pp 3
Since h € L3?/(3=P)(R3) and f € W071’3p/(37p) (R3), Theorem 3.4 and Theorem 3.5 guarantees
the existence of a solution (u,w) € Wé’3p/(37p) (R3) x L32/(3=P)(R3) to the Oseen problem (1).
Moreover, we have

Lt (@3 "(R3) wi —
because W*" (R°) — LP (R’) with ¢t = Ep— and

lullyrse/ 6= g3 py, 0+ ITlLsp/ @) gs) <

2

C (14 11vlzss))” (IFzoes) + 1Al s, ) - (59)
Note that the compatibility condition (5) is not required because we have 3p/(3 —p) > 3/2. Using
the fact that div(v ® u) = v - V u belongs to LP(R3), we can apply the Stokes regularity theory,
see Theorem 3.8 of [1], to deduce the existence of (z,7n) € Wg’p(R3) X Wol’p(R3) unique up to an

element of P[a_3/p,] % {0} verifying:

—Az4+Vn=f—v-Vu and divz=~h inR>.
Moreover, we have
)\E'Pl[rglfg/p] ”z + A|| Wg’p(R?’) + ||77llwf}xP(R3)
< & (Wfllzoasy + 1ol g2 ) IV 8l oo ) + 1ol ey )
2

<€ (W llmiay + Callolzscasy (1 + Iolzscesy)” (Fllesy + Wbl usy) + Mblhgones) )
(60)
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with C' denoting a constant only dependent on p. Set w = z — w and § = n — 7, then we have
~Aw+VO=0 and divw=0 in R

Since V z € L31’/(371’)(]R3)7 there exists a constant k € R3, depending on z (k = 0 if p > 3/2),
such that z + k € W(l)’3p/(37p)(]R3) and thus w + k € W(l)’Bp/(37p)(R3), As A§ = 0 in R?
and 6 € L3/(3=P)(R3), then § = 0 and so w is a harmonic function belonging to Wg’p(R3) +
W(l)’Bp/(Bip) (R3). Then if p < 3/2, we would have 3p/(3 —p) < 3 and thus u = z € Wg’p(R3), If
p > 3/2, there exists a polynomial A € Pz_3/,) C Wg’p(]R3) such that u = z + A. Consequently,
u € Wg’p(R3) and 7 € Wol’p(]R3) and we obtain (58). |

Remark 5.

1) Under the assumptions of Theorem 4.1 and supposing that 1 < p < 2, the solution (u, )
satisfies the estimate:

<
”u” Wg’p(RS)/'P[zfs/p] + ||7r”W01’p(]R3) >

CL+ 1]l es)? (115 sy + (1 + ol ) Il 1o sy ) -

2) If we suppose in the assumption of Theorem 4.1 that h = 0, we prove that the solution
(u, ) satisfies the estimate:

2
el 2o sy iy s + Il sy < O+ 101153 )2 1 5o es)- (61)

Estimate (61) is an easy consequence of estimate (33) and Remark (3).

3) For p > 3, the hypothesis of f € LP(R?), h € Wol’p(RS) and v € L3 (R3) is not sufficient to
ensure the existence of strong solutions for problem (1) in W(Z)’p (R3) x Wol’p(R?’). Indeed,
suppose that under this assumptions it would be possible to find u € Wg’p(]RS) and 7w €
Wol’p (R?) such that

v-Vu=Au—Vr+feLP(R®).
This is a contradiction, since v € L*(R3) and Vu ¢ L3/ (3=P)(R3). Thus, it is necessary
to suppose in addition that f € LI(R3), h € Wol'q(R3) and v € L3Pa/a(3+p)=3p(R3) for
some 3p/(3 + p) < g < 3. Under this assumptions, we deduce that the solution (u,m) €
Wg’q(RS) X Wol’q(RS) given by Theorem 4.1 belongs also to Wg’p(RS) X Wol’p (R3?) and it
satisfies

il 20 g, + I17ll1.0 oy < QU+ 9115089 (UF g oy + hll 1.0 )

Finally, we take f in weighted LP(R?), more precisely f € W(l)’p(RS)7 and the data h in the
corresponding weighted Sobolev space Wll’p(RS).

Theorem 4.2. Suppose that 1 < p <3 and p # 3/2. Let h € Wll’p(R3) and f € W{)'p(R3) such
that

fleyde=0 if p<3/2, (62)
R3

and let v € L3 (R3). Then the Oseen problem (1) has a unique solution (u,m) € le’p(RS) X
Wll’p(RS) satisfying the following estimate:

9l 2.0 0y + 1l gy < U Nellgages)® Ul o oy + Il ay)— (63)

Proof. First, note that we have W(l)’p(RS) — LY(R3) if p < 3/2 and thus Jrs F(x) dx is well
defined. On the other hand, observe that h € Wll’p(RS) — LP(R3) and for p # 3/2, we have
fe Wlo’p(R?’) — Wofl’p(RS). Then thanks to Theorem 3.4 and Theorem 3.5, there exists a
unique solution
uwe WiP(R3), weLP(R®)
satisfying
—Au+Vr=f—v-Vu and divu=h in R3

and we have

2
lull .o s + Il os) < © (14 1ollms@s)) (IFlly - 1o sy + 18l ogs)) (64)
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We suppose that v € D,(R3). Observe that v - V u belongs to W(l)’p(]RS) and reasoning as in
Theorem 4.1 we deduce that (u,n) € W?’p(ﬂ@) X Wll’p(]R3). After an easy calculation, we obtain
that the pair (pu,pm) € Wg’p(]R3) X Wol’p(R3) satisfies the following equations in R3:

—A(pu)+v-V(pu)+V(pm) :=x, and div(pu):=¢, in R3,
with
X, =pf—2Vp-Vu—(Ap)u+(Vp)r+(v-Vp)u and & =ph+Vp-u. (65)

Let us mention that p is the weight defined by p(x) = (1+]x|?)/2. It is clear that (X, &p) belongs
to LP(R3) x Wol’p(R3), and using Theorem 4.1 we obtain

||u||W?,p(R3) + ||7T||W11,P(R3) < C“pu”ngP(]RS) + ||p7r”W01’p(R3) (66)
< OO+ ol ) (I lm sy + Wpllyo gay) -

Using (64), and that Wol’p (R3) — LP*(R3) we deduce that

1o 20 g3y + 1€l 2.0 )
< C (Il o sy + WAl sy + 1l o gy + Il o ces) + 0l ges lull - )
< C (1l youp sy + 12l sy + 1ell g0 sy + 17l zogas) + 1011 sy 1l .o )
< C (11Fllyo.r oy + 1Al sy + (14 10l o)l o o e, + Il s))
3
< C (IFllyor sy + 1Al sy + (14 101153 @9)> Ul 10 sy + 1AllEn 23)) -
(67)

From (66) and (67) and using the fact that Wll’p(RS) — LP(R3) and W(l)’p (R3) — Wofl’p(R?’)
for p # 3/2, we deduce that

||ullwf’P(R3) + ||7T||W11aP(R3) S

3 3
CUI I 0.0 a3y + Ill 1.0 sy )0+ 10l g3 ) (14 (1 + [0l g3 esy)? ) -

Then (u,7) € W?'p (R3) x Wll'p (R3) satisfies the estimate (63).

To finish, observe that the uniqueness of the solution (u,7) € W?'p(R:S) X Wll'p(R3) is
immediate because W?’p(R3) X Wll’p(R3) C Wé’p(R3) x LP(R?) and that (u,) is unique in
WP (R3) x LP(R3). O

Remark 6.

1) For p = 3/2, the existence result of Theorem 4.2 holds if we suppose in addition that
0,3/2 —1,3/2
e wr2®3) 0w, 2R
2) Under the assumptions of Theorem 4.1 and supposing that 1 < p < 2, the solution (u,)
satisfies the estimate:

ll 2.0 gy + Il gy < O+ oLz ca)® (1100 g, + 0+ ol o)kl 1.0 g)) -

3) If we suppose in the assumption of Theorem 4.2 that h = 0, we prove that the solution
(u, ) satisfies the estimate:

ol . g + o gy < O ol )1 g - (63)
4) For p > 3, the hypothesis of f € W(l)’p([RS)7 h € Wll’p(RS) and v € L3 (R3) is not sufficient
to study the existence of strong solutions for problem (1) in W?’p(RS) X Wll’p (R3). Indeed,

suppose that under this assumptions it would be possible to find u € W?’p(RS) and 7w €
Wll’p (R?) such that

v-Vu=Au—-Vr+fe WIP(R?).
This is a contradiction, since v € L3(R3) and V u ¢ W(l)’p* (R3).
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