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OLSEN’S PROBLEM AND ESSENTIALLY POWER
BOUNDED OPERATORS

V. MULLER

ABSTRACT. Let T be a non-Riesz operator on an infinite-dimensio-
nal Hilbert space. Then there exists a compact operator K such
that ||(T+ K)™|| = ||T™]| for all n. In particular, every essentially
power bounded operator is a compact perturbation of a power
bounded operator.

1. INTRODUCTION

Let H be an infinite-dimensional Hilbert space. Denote by B(H),
K(H) and F(H) the set of all bounded, compact and finite-rank oper-
ators on H, respectively.

For T' € B(H) denote by ||T||. the essential norm of T, i.e., || T||. =
inf{||T+ K| : K € K(H)}. Let 0.(T) and r.(T') denote the essential
spectrum and essential spectral radius, respectively, i.e., the spectrum
and the spectral radius of the class 7'+ K(H) in the Calkin algebra
B(H)/K(H). Recall that T' € B(H) is called Riesz if r.(T") = 0.

For a subspace M C H denote by Pj; the orthogonal projection onto
M.

Properties of an operator T' € B(H) can be frequently improved by a
suitable compact perturbation. By [W], any Riesz operator T € B(H)
can be written as a sum T = () + K where K is a compact and ()
quasinilpotent operator. More generally, by [S], for any T € B(H) there
exists K € IC(H) such that (7T + K) is equal to the Weyl spectrum of
T

ow(T) = {o(T + K) : K € K(H)}.

By [CSSW], for any T' € B(H) there exists a compact operator
K € K(H) such that the closure of the numerical range W (T + K) is
equal to the essential numerical range W, (7).
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2 V. MULLER

By [O1], if T € B(H) is polynomially compact, i.e., p(T) € K(H)
for some polynomial p, then there exists K € K(H) such that T+ K
is algebraic, p(T + K) = 0 (with the same polynomial p).

The following problem was raised by C. Olsen [O2], cf. also [O1],
[OP]:

Problem. Let T' € B(H). Does there exist a compact operator K €
KC(H) such that ||p(T + K)|| = ||p(T)]|e for all polynomials p? Less
ambitiously, if T and p are both given, is there a compact operator K,
such that [|p(T + Kp)|| = [[p(T)]l?

Even the more modest formulation of the problem is surprisingly
difficult. A positive answer was given in [O2] for the polynomials p(z) =
z,2%,2% and in [CLSW] for all linear polynomials. In [M], a positive
answer was given for any power p(z) = 2.

In the present paper we refine the estimates of [M] and show that
for any non-Riesz operator T' € B(H) there exists a compact operator
K € K(H) such that ||(T + K)"|| = ||T™||. for all n simultaneously.

In particular, this implies that for any essentially power bounded
operator T' € B(H), (i.e., sup, ||[T"]|. < oo) there exists a compact
operator K such that T'+ K is power bounded, sup,, ||(T 4+ K)"|| < oc.

2. MAIN RESULT

We need several lemmas that were proved in [CLSW] and [M].

Proposition 1. (see [M], Proposition 6) Let H be a separable infinite-
dimensional Hilbert space, let (ej,es,...) be an orthonormal basis in

H. Let S € B(H). Then
1S]le = kh_{ilo ||PH,§SPH,§||7

where Hj, = \/%

j=1

€ (]C c N)

The next lemma is a slight modification of [M], Lemma 8, cf. also
[CLSW], Lemma 5. For the sake of convenience we give a proof here.

Lemma 2. Let H be a separable infinite-dimensional Hilbert space,
Si,...,S, € B(H). Let Fy, C H be a finite-dimensional subspace.
Then there exist mutually orthogonal finite-dimensional subspaces F} C
H such that H = @, F) and Py, S;Pr, =0forallr,s e N, [r—s| > 2
and j = 1,...,n (i.e., the operators 9] ..., .S, are simultaneously block
3-diagonal).

Proof. Let (e, es,...) be an orthonormal basis in H.
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We construct the subspaces Fj, inductively. If & > 1 and the sub-
spaces Fy, ..., Fy_1 have already been constructed, then set

Ge=\/{Fo,....Feer, SiFer, S;Fen (j=1,...,n),e1}

and F, = G, © (FO DD Fk,1>. Then dim F), < o0, Sij,1 C
Fo®---@F,and S7F, 1 Cly@--- @ Fforallj=1,...,n.

If we continue this construction for all £ € N then we get the required
decomposition. Note that @ZOZO I, = H since ¢, € Fy ® --- P F}, for
each k.

Let r,s > 0, |[r —s| > 2. If r > s then Py, S;Pp, = 0. If r < s then
Pp,S;Pp, =0, and so P, S;Pr, = 0. O

Lemma 3. (see [M], Lemma 9, cf. also [CLSW], Lemma 6) Let S €
B(H) be block 3-diagonal, i.e., there are mutually orthogonal finite-
dimensional subspaces F; such that H = @;ion and Pp SPp, = 0
whenever |r — s| > 2. Denote by Qj the orthogonal projection onto
@;ikJrl Fj'

Let [,d € N, k =1+4+2d and let V € B(H) satisfy V = Q;V Q. Then
IS+ V|| < max{||S], [Qu(S + V)@l } + L.

The next result is a modification of [M], Theorem 16.

Theorem 4. Let H be an infinite-dimensional separable Hilbert space,
SeB(H),meN, ||S"||c#0,0<r <71 <1. Let T € B(H) satisfy
N7 < ISl (5=1,...,m) and T —rS € F(H). Then there exists
T" € B(H) such that

|T =T < (" = n)|IS],
T —r'S e F(H)

and
1T < ISl (G=1,...,m).

Proof. Without loss of generality we may assume that ||S|| = 1.

Let Fo = R(T —rS) Vv R(T* — rS*). By Lemma 2, there exist
mutually orthogonal finite-dimensional subspaces F}, F5, ... such that
H = @, F, and S,5%...,5™ are simultanously block 3-diagonal
with respect to this decomposition. Denote by (); the orthogonal pro-
jection onto @;°,; Fi. We have Qo(T —75)Qo = 0.

Choose ¢ such that

o | -
0<e < cminf{]| S| — 7], (L= )]l (G =1,....m)}.
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Choose n € N such that
- 1)

<€

and d € N such that

By Proposition 1, there exists ky such that ||Q;S7Q| < [|S7]e + ¢
forall l > ky and j =1,.

Fort =0,.. nletst—r—i—u So sg = r and s,, = r’. Choose
numbers ki, ..., k, € N such that ktﬂ >k 4+ 2d + 1.

Define inductlvely operators Sy, ...,S, by Sy =T and

Siv1 = St 4 (541 — 56) Quo s SQh -
Let TV = S, /
Clearly [[Sip1 — S|l < (5641 — s0)||S]] < =*. So
17" =TI < ([0 = Snall + -+ + 151 = Sol| < 7" =7
For each t we have Qy, (S; — 5:5)Qk, = 0. In particular, Qy, (7" —

"S)Qk, =0, and so T" — 'S € F(H).
We prove by induction on ¢ that

e(n—t)

1711 < 1157l — G=1L....,m) (1)

For t = 0 this follows by the definition of . Suppose that (1) is true
for some t, 0 <t <mn—1. Fix j € {1,...,m}. By Lemma 3,

I1S1l
|| +1|| <maX{||S]|| ||th+1 2dSi+1Qk’t+1 QdH}+ \/E
where ||S57]| < [|57]]. — £ by the induction assumption and | T <.

So it is sufficient to ShOW that
HthJrl—Qng+1th+1—2dH < HSj”e -

Write V' = Sp1 — S = (8141 — 3;)]|th+1Sijt+1H'. Clearly ||V <
(841 —5¢)||S]| = == Since S7,, —S] = (S¢+V)? =5/ can be expressed
as a sum of 2/ — 1 products, each of them containing V', we have

) ) ) r—r (2m - 1)(7’/ — 7‘)
R
For z € @7, | oas Fi we have Sz, S%x, ..., e € @, | 4 Fi C
D2, .o Fi- Moreover, S; behaves on @Z koo Fi as s:S. Thus Six =

e(n—t)
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51572, Hence
J J
Hth+1*2dSt+1th+lf2dH S ||th+172d5’t th+172dH + €

= 57||Qresr 2057 Qryy—2d| + & < se(I57]c +€) + €
< il $ e + 28 <] + 26 = (L =) [S7[le < [1S7]]e — &
This proves (1).
In particular, for t = n we get | 77| < |S|l. (j=1,...,m). O

Let (¢j) be a submultiplicative sequence of positive numbers, i.e.,

Civ; < cicj for all 4,5 € N. It is well known that the limit lim;_, cjl./j

exists and it is equal to inf; c;/ 1
We need the following lemma.

Lemma 5. Let (¢;) be a submultiplicative sequence of positive num-
bers such that lim;_, 6]1./] = 1. Let 0 < r <7 < 1. Then there

exists k& € N with the following property: if (d;) is a submultiplicative
sequence satisfying

Ogdjgcj (j:1,2,)
and '
dj <7”JC]‘ (1 S] Sk)
then .
dj <7",]Cj (j:1,2,)

1"

ko
Proof. Choose r”, r < r" < r'. Find ky such that ¢, < (%) )

Let M = max{l,ci,...,cg—1} and L = —=. Then there exists
k > ko such that Lr"* < r'*.

Let (d;) be a submultiplicative sequence satisfying d; <c¢; (j € N)
and d; <ric; (1<j<k). Forl<j<kwehaved; <ric; <rc.

Let j > k. Then j = sko+z for some s € Nand z € {0,1,...,kg—1}.
Then

My . . .
dj < dj, - d, < (r"c,)* e < M -r"0* = i < Lr'" < <.

U

Theorem 6. Let H be an infinite-dimensional Hilbert space. Let
S € B(H) satisfy 7.(5) # 0. Then there exists a compact operator
K € B(H) such that

I(S + K[| = 1157
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forall j =1,2,....

Proof. Without loss of generality we may assume that H is separable.
Indeed, there exists a decomposition H = €, ., H, such that all the
subspaces H, are separable and reducing for S. Write S, = Py, S Py, .

For all n € N and € > 0 there are only finitely many v € J such that
I|1S2]| > 1|S™||e + €. So there are only countable many v € J such that
|S™| > ||S™||e. Hence there exists a countable subset Jy C J such that
[S71 < [[S™]|e for all v & Jo and n € N. Let Hy = €D, 5, H,. Then Hy
is a separable subspace reducing for T" and || Prew, S" Pucm,|| < [|S" ||
for all n € N. So we may consider only the operator Py, S Py, .

Without loss of generality we may assume that r.(S) = 1. Fix a
sequence (r,) such that 0 =7y <r; <--- <1 and lim, .7, = 1.

Consider the submultiplicative sequence ¢, = [|S"||c. Then 1 =
re(S) = limj_o [[S9]]¢7 = limj_o ¢}/,

For n =1,2,..., let k, be the number constructed in Lemma 5 for
the sequence (¢;) and numbers r,, r,11. Thus, if (d;) is a submultiplica-
tive sequence satisfying d; < ¢; for all j and d;j < ric; (1 <j <ky,)
then d; < ), c; for all j € N.

Construct inductively a sequence (7;,) of operators such that

I <rllS7 e G=1, k),

[Tor1 = Tall < (rngs — ) 1]
and
Tn — rn_lS € JT(H)

Set T} = 0. Suppose that n > 1 and T3, ...,T,, € B(H) with the above
properties have already been constructed. Since || 77| < 77]S7]|. (1 <
j < k), we have || T3 < 7)1]|S7||. for all j € N.

By Theorem 4 for the operator 7,15 and the pair of numbers
In=l ' o there exists 1,41 € B(H) such that

T4l Tl
[Toir = Tall < (rn — 1) [[S]];
Thi1— 1S € F(H)
and
ITo il <l Sl (1< 5 < Kg).

Let (7,) be the sequence of operators satisfying the above properties.
Clearly (7)) is a Cauchy sequence. Let 7' be the norm-limit of the
sequence (7,,) and K =T — S. For each j € N we have

I77]] = lim T3] < lim 5[ S7]]e < [[S7]]-
n—oo n—oo
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Moreover,
K=1mT,—-95= lim (T, —r,_19),

where T, — r,—1.S € F(H) for all n. So K is a compact operator and
|73 = 1S9, for all . 0

Problem 7. Is the statement of Theorem 6 true for Riesz operators?

Recall that T' € B(H) is called power bounded if sup,, ||T"] < co. An
operator S € B(H) is called essentially power bounded if sup,, [|S™ <
00.

Essentially power bounded operators may serve as a source of in-
teresting examples of Hilbert space operators. Note that for example
the Read-type operator constructed by S. Grivaux and M. Roginskaya
[GR] is of this class.

Theorem 6 has the following simple consequence.

Corollary 8. An operator S € B(H) is essentially power bounded if
and only if S = T + K for some power bounded operator T € B(H)
and a compact operator K € B(H).

Proof. If sup, [|[T"]] < oo and K € B(H) is compact, then ||(7 +
K)™|e < ||IT™|| for all n, and so T+ K is essentially power bounded.

Let S € B(H) be essentially power bounded. If r.(S) # 0 then
S =T+ K for some compact operator K and an operator 7' satisfying
|| = ||S™|le for all n € N. So T" is power bounded.

Ifre(s) =0, then S =T + K for some K € K(H) and a quasinilpo-
tent T € B(H) by the West decomposition. Clearly then T is power
bounded. l
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