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mal mixtures of two immiscible fluids consists of the Navier–Stokes
system coupled with a convective Cahn–Hilliard equation. In some
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replaced by its nonlocal version. The corresponding system is phys-
ically more relevant and mathematically more challenging. Indeed,
the only known results are essentially the existence of a global
weak solution and the existence of a suitable notion of global at-
tractor for the corresponding dynamical system defined without
uniqueness. In fact, even in the two-dimensional case, uniqueness
of weak solutions is still an open problem. Here we take a step
forward in the case of regular potentials. First we prove the ex-
istence of a (unique) strong solution in two dimensions. Then we
show that any weak solution regularizes in finite time uniformly
with respect to bounded sets of initial data. This result allows us
to deduce that the global attractor is the union of all the bounded
complete trajectories which are strong solutions. We also demon-
strate that each trajectory converges to a single equilibrium, pro-
vided that the potential is real analytic and the external forces
vanish.
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1. Introduction

The evolution of an incompressible mixture of two immiscible fluids can be described through
a diffuse interface model (cf., e.g., [26,31,34,39] and their references). Assuming that the temperature
variations are negligible, taking the density is equal to one, and suppose the viscosity ν to be constant,
the model H (see [32]) reduces to the so-called Cahn–Hilliard–Navier–Stokes system

ϕt + u · ∇ϕ = ∇ · (κ∇μ),

μ = −�ϕ + F ′(ϕ),

ut − ν�u + (u · ∇)u + ∇π = μ∇ϕ + h(t),

div(u) = 0,

in Ω × (0,∞), where Ω ⊂ R
d , d = 2,3, is a bounded domain. Here u denotes the (average) velocity

and ϕ is the difference of the two fluid concentrations. Moreover, κ > 0 is the mobility coefficient,
F is a suitable double well potential density, π the pressure and h a given external (non-gradient)
force.

The existing theoretical literature (see, for instance, [1,2,7,18–20,42,50]) can be summarized by
saying that all the results known for the Navier–Stokes system can be extended to the Cahn–Hilliard–
Navier–Stokes one, with some additional technical difficulties when, for instance, F is a singular (i.e.
logarithmic) potential and/or the mobility κ depends on ϕ and vanishes at pure phases (cf. [1,7]).
However, we recall that the Cahn–Hilliard equation has a phenomenological nature (cf. [8]). Instead,
a rigorous derivation from a microscopic model yields a nonlocal equation (see [22,23]). In this case
the chemical potential μ has the following form

μ = aϕ − J ∗ ϕ + F ′(ϕ),

where ∗ denotes the convolution product over Ω , J : Rd → R is a sufficiently smooth interaction
kernel such that J (x) = J (−x) and a(x) = ∫

Ω
J (x − y)dy. Motivated by this fact, in [11] we have

introduced and analyzed the following nonlocal Cahn–Hilliard–Navier–Stokes system

ϕt + u · ∇ϕ = �μ, (1.1)

μ = aϕ − J ∗ ϕ + F ′(ϕ), (1.2)

ut − ν�u + (u · ∇)u + ∇π = μ∇ϕ + h(t), (1.3)

div(u) = 0, (1.4)

endowed with boundary and initial conditions

∂μ

∂n
= 0, u = 0 on ∂Ω × (0, T ), (1.5)

u(0) = u0, ϕ(0) = ϕ0 in Ω. (1.6)

For such a problem we have proven first the existence of a global weak solution satisfying an energy
inequality (equality in dimension two) for a regular potential F (see [11]). Then in [15] we have
established the existence of a global attractor for the generalized semiflow (d = 2) and a trajectory
attractor (d = 3). Similar results have recently been extended to singular potentials of logarithmic
type (cf. [16]). However, an important issue has been left open: the uniqueness of weak solutions in
dimension two. This is well known for the standard local models and it suggests that the present
model is more difficult to handle. The main reason seems to be the poorer regularity of ϕ which
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makes the capillarity term (i.e. the Korteweg force) μ∇ϕ difficult to handle (see [11]). Here we are
not able to address this issue but we come close. More precisely, we prove the existence of a (unique)
strong solution and the regularization in finite time of any weak solution. The latter is uniform with
respect to bounded set of initial data so that, as a by-product, we deduce that the global attractor
we found in [15] is smooth. More precisely, it is the union of all the bounded complete trajectories
which are strong solutions to (1.1)–(1.6). Finally, taking advantage of the regularization property, we
show that any weak trajectory does converge to a unique equilibrium (cf. [21,37,38] for nonlocal
Cahn–Hilliard equations).

2. Notation and known results

We set H := L2(Ω) and V := H1(Ω). For every f ∈ V ′ we denote by f the average of f over Ω ,
i.e., f := |Ω|−1〈 f ,1〉. Here |Ω| is the Lebesgue measure of Ω . We assume that ∂Ω is smooth enough.

Then we introduce the Hilbert spaces

V 0 := {v ∈ V : v = 0}, V ′
0 := {

f ∈ V ′: f = 0
}
,

and the operator A : V → V ′ , A ∈L(V , V ′), defined by

〈Au, v〉 :=
∫
Ω

∇u · ∇v, ∀u, v ∈ V .

We recall that A maps V onto V ′
0 and the restriction of A to V 0 maps V 0 onto V ′

0 isomorphically.
Further, we denote by N : V ′

0 → V 0 the inverse map defined by

AN f = f , ∀ f ∈ V ′
0 and N Au = u, ∀u ∈ V 0.

As is well known, for every f ∈ V ′
0, N f is the unique solution with zero mean value of the Neumann

problem ⎧⎨⎩
−�u = f , in Ω,

∂u

∂n
= 0, on ∂Ω.

In addition, we have

〈Au,N f 〉 = 〈 f , u〉, ∀u ∈ V , ∀ f ∈ V ′
0, (2.1)

〈 f ,N g〉 = 〈g,N f 〉 =
∫
Ω

∇(N f ) · ∇(N g), ∀ f , g ∈ V ′
0. (2.2)

We consider the canonical Hilbert spaces for the Navier–Stokes equations with no-slip boundary con-
dition (see, e.g., [44])

Gdiv := {
u ∈ C∞

0 (Ω)d: div(u) = 0
} L2(Ω)d

, V div := {
u ∈ H1

0(Ω)d: div(u) = 0
}
.

We denote by ‖ ·‖ and (·,·) the norm and the scalar product on both H and Gdiv , respectively. Instead,
V div is endowed with the scalar product

(u, v)V div = (∇u,∇v), ∀u, v ∈ V div.



2590 S. Frigeri et al. / J. Differential Equations 255 (2013) 2587–2614
We shall also need to introduce the Stokes operator S with no-slip boundary condition. More
precisely, S : D(S) ⊂ Gdiv → Gdiv is defined as S := −P� with domain D(S) = H2(Ω)d ∩ V div , where
P : L2(Ω)d → Gdiv is the Leray projector. Notice that we have

(Su, v) = (u, v)V div = (∇u,∇v), ∀u ∈ D(S), ∀v ∈ V div,

and S−1 : Gdiv → Gdiv is a self-adjoint compact operator in Gdiv . Thus, according with classical results,
S possesses a sequence of eigenvalues {λ j} with 0 < λ1 � λ2 � · · · and λ j → ∞, and a family {w j} ⊂
D(S) of eigenfunctions which is orthonormal in Gdiv . Let us also recall Poincaré’s inequality

λ1‖u‖2 � ‖∇u‖2, ∀u ∈ V div.

The trilinear form b which appears in the weak formulation of the Navier–Stokes equations is
defined as follows

b(u, v, w) =
∫
Ω

(u · ∇)v · w, ∀u, v, w ∈ V div,

and the associated bilinear operator B from V div × V div into V ′
div is defined by〈

B(u, v), w
〉 := b(u, v, w), ∀u, v, w ∈ V div.

We shall set B(u, u) := Bu, for all u ∈ V div . We recall that we have

b(u, w, v) = −b(u, v, w), ∀u, v, w ∈ V div, (2.3)

and that the following estimates hold in dimension two∣∣b(u, v, w)
∣∣ � c‖u‖1/2‖∇u‖1/2‖∇v‖‖w‖1/2‖∇w‖1/2, ∀u, v, w ∈ V div, (2.4)∣∣b(u, v, w)
∣∣ � c‖u‖1/2‖∇u‖1/2‖∇v‖1/2‖S v‖1/2‖w‖, ∀u ∈ V div, v ∈ D(S), w ∈ Gdiv. (2.5)

If X is a Banach space and τ ∈ R, we shall denote by Lp
tb(τ ,∞; X), 1 � p < ∞, the space of

functions f ∈ Lp
loc([τ ,∞); X) that are translation bounded in Lp

loc([τ ,∞); X), i.e. such that

‖ f ‖p
L p

tb(τ ,∞;X)
:= sup

t�τ

t+1∫
t

∥∥ f (s)
∥∥p

X ds < ∞. (2.6)

We shall use the following lemma. Its simple proof is given below for the reader’s convenience.

Lemma 1. Let X be a reflexive Banach space and 1 � p1 < ∞, 1 < p2 � ∞, τ ∈R. Assume f ∈ Lp1 (τ ,∞; X)

with ft ∈ Lp2
tb (τ ,∞; X), where ft is the derivative in the sense of distributions with values in X. Then f (t) → 0

in X as t → ∞.

Proof. We argue by contradiction. Suppose there exist a sequence {tn} with tn → ∞ and a con-
stant σ > 0 such that ‖ f (tn)‖X � σ , for all n. Set τn := tn + 1/n. Since f ∈ Lp1 (τ ,∞; X) with
1 � p1 < ∞, then, by possibly extracting a subsequence, for every n there exists t′

n ∈ [tn, τn] such
that ‖ f (t′

n)‖X � σ/2. We therefore get a contradiction, since, denoting by p′
2 ∈ [1,∞) the conjugate

of p2,
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0 <
σ

2
�

∥∥ f
(
t′
n

) − f (tn)
∥∥

X �
t′n∫

tn

∥∥ ft(s)
∥∥

Xds � ‖ ft‖L
p2
tb (τ ,∞;X)

1

np′
2

→ 0. �

We also report the uniform Gronwall lemma which will be useful in the sequel (see, e.g., [43]).

Lemma 2. Let Φ be an absolutely continuous nonnegative function on [τ ,∞) and ω1,ω2 two nonnegative
locally summable functions on [τ ,∞) satisfying

d

dt
Φ(t) � ω1(t)Φ(t) + ω2(t), for a.e. t ∈ [τ ,∞), (2.7)

and such that

t+1∫
t

ωi(s)ds � ai, i = 1,2,

t+1∫
t

Φ(s)ds � a3, (2.8)

for all t � τ , where a1,a2,a3 are some nonnegative constants. Then

Φ(t + 1) � (a2 + a3)ea1 , ∀t � τ . (2.9)

We now summarize the main results of [11]. They are concerned with the existence of dissipative
weak solutions and the validity of the energy identity and of a dissipative estimate in dimension two.

The assumptions on J and F are listed below

(H1) J ∈ W 1,1(Rd), J (x) = J (−x), a � 0 a.e. in Ω .
(H2) F ∈ C2,1

loc (R) and there exists c0 > 0 such that

F ′′(s) + a(x) � c0, ∀s ∈R, a.e. x ∈ Ω.

(H3) F ∈ C2(R) and there exist c1 > 0, c2 > 0 and q > 0 such that

F ′′(s) + a(x) � c1|s|2q − c2, ∀s ∈ R, a.e. x ∈ Ω.

(H4) There exist c3 > 0, c4 � 0 and r ∈ (1,2] such that

∣∣F ′(s)
∣∣r � c3

∣∣F (s)
∣∣ + c4, ∀s ∈R.

Remark 1. Assumption J ∈ W 1,1(Rd) can be weakened. Indeed, it can be replaced by J ∈ W 1,1(Bδ),
where Bδ := {z ∈ R

d: |z| < δ} with δ := diam(Ω), or also by (see, e.g., [6])

sup
x∈Ω

∫
Ω

(∣∣ J (x − y)
∣∣ + ∣∣∇ J (x − y)

∣∣)dy < ∞.

The above assumptions allow to prove the following result (see [11])
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Theorem 1. Let h ∈ L2
loc([0,∞); V ′

div), u0 ∈ Gdiv, ϕ0 ∈ H such that F (ϕ0) ∈ L1(Ω) and suppose that
(H1)–(H4) are satisfied. Then, for every given T > 0, there exists a weak solution [u,ϕ] to (1.1)–(1.6) such
that

u ∈ L∞(0, T ; Gdiv) ∩ L2(0, T ; V div), ϕ ∈ L∞(
0, T ; L2+2q(Ω)

) ∩ L2(0, T ; V ), (2.10)

ut ∈ L4/3(0, T ; V ′
div

)
, ϕt ∈ L4/3(0, T ; V ′), d = 3, (2.11)

ut ∈ L2(0, T ; V ′
div

)
, d = 2, (2.12)

ϕt ∈ L2(0, T ; V ′), d = 2 or d = 3 and q � 1/2, (2.13)

and satisfying the energy inequality

E
(
u(t),ϕ(t)

) +
t∫

0

(
ν‖∇u‖2 + ‖∇μ‖2)dτ � E(u0,ϕ0) +

t∫
0

〈
h(τ ), u

〉
dτ , (2.14)

for every t > 0, where we have set

E
(
u(t),ϕ(t)

) = 1

2

∥∥u(t)
∥∥2 + 1

4

∫
Ω

∫
Ω

J (x − y)
(
ϕ(x, t) − ϕ(y, t)

)2
dx dy +

∫
Ω

F
(
ϕ(t)

)
.

If d = 2, then any weak solution satisfies the energy identity

d

dt
E(u,ϕ) + ν‖∇u‖2 + ‖∇μ‖2 = 〈

h(t), u
〉
. (2.15)

In particular we have u ∈ C([0,∞); Gdiv), ϕ ∈ C([0,∞); H) and
∫
Ω

F (ϕ) ∈ C([0,∞)). Furthermore, if d = 2
and h ∈ L2

tb(0,∞; V ′
div), then any weak solution satisfies also the dissipative estimate

E
(
u(t),ϕ(t)

)
� E(u0,ϕ0)e−kt + F (m0)|Ω| + K , ∀t � 0, (2.16)

where m0 = (ϕ0,1) and k, K are two positive constants which are independent of the initial data, with K
depending on Ω , ν , J , F and ‖h‖L2

tb(0,∞;V ′
div)

.

3. Strong solutions in two dimensions

In this section we state and prove our main result, namely the existence of a (global) strong
solution to (1.1)–(1.6) and its uniqueness. More precisely, we have

Theorem 2. Let h ∈ L2
loc([0,∞); Gdiv), u0 ∈ V div, ϕ0 ∈ V ∩ L∞(Ω) and suppose that (H1)–(H4) are satisfied.

Then, for every given T > 0, there exists a weak solution [u,ϕ] such that

u ∈ L∞(0, T ; V div) ∩ L2(0, T ; H2(Ω)2), ϕ ∈ L∞(
Ω × (0, T )

) ∩ L∞(0, T ; V ), (3.1)

ut ∈ L2(0, T ; Gdiv), ϕt ∈ L2(0, T ; H). (3.2)

Furthermore, suppose in addition that F ∈ C3(R), a ∈ H2(Ω) and that ϕ0 ∈ H2(Ω). Then, system (1.1)–(1.4)
admits a unique strong solution on [0, T ] satisfying (3.1), (3.2) and also



S. Frigeri et al. / J. Differential Equations 255 (2013) 2587–2614 2593
ϕ ∈ L∞(
0, T ; W 1,p(Ω)

)
, 2 � p < ∞, (3.3)

ϕt ∈ L∞(0, T ; H) ∩ L2(0, T ; V ). (3.4)

If J ∈ W 2,1(R2), we have in addition

ϕ ∈ L∞(
0, T ; H2(Ω)

)
. (3.5)

Moreover, let [u0i,ϕ0i,hi] ∈ V div × H2(Ω) × L2
loc([0,∞); Gdiv), i = 1,2, be two sets of data and denote

by [ui,ϕi] the corresponding solutions. Then, there exists a positive constant Λ which is a continuous and
increasing function of the norms of the data of two solutions and which also depends on T , F , J , Ω , ν , such
that the following continuous dependence estimate holds

∥∥u2(t) − u1(t)
∥∥2 + ∥∥ϕ2(t) − ϕ1(t)

∥∥2
V ′

0

+
t∫

0

∥∥∇u2(τ ) − ∇u1(τ )
∥∥2

dτ +
t∫

0

∥∥ϕ2(τ ) − ϕ1(τ )
∥∥2

dτ

� Λ
(‖u02 − u01‖2 + ‖ϕ02 − ϕ01‖2

V ′
0
+ ‖h2 − h1‖2

L2(0,T ;Gdiv)

)
, (3.6)

for every t ∈ [0, T ].

Remark 2. The regularity properties (3.1)–(3.5) imply that

u ∈ C
([0,∞); V div), ϕ ∈ C

([0, T ]; V
) ∩ C w

([0, T ]; H2(Ω)
)
.

We have denoted by C w([0, T ]; X) the space of weakly continuous functions from [0, T ] with values in
a Banach space X , that is, ϕ ∈ C w([0, T ]; X) if and only if 〈x′,ϕ(·)〉 ∈ C([0, T ]) for all x′ ∈ X ′ . Actually,
we have also ϕ ∈ C([0, T ]; Hδ(Ω)) for every δ ∈ [0,2). Recall that the time continuity of the velocity
field into V div is a consequence of the fact that u ∈ C w([0,∞); V div) and of the following differential
identity

1

2

d

dt
‖∇u‖2 + ν‖Su‖2 + (Bu, Su) = (μ∇ϕ, Su) + (h, Su), (3.7)

which is deduced by testing equation (1.3) by Su.

Remark 3. If the condition ϕ0 ∈ L∞(Ω) in the first part of Theorem 2 is removed, a boundedness
estimate for the order parameter ϕ can still be recovered. In particular, it can be proved (see [21,
Lemma 2.10]) that for every t0 > 0 there exists a constant Cm,t0 > 0, where m is such that |ϕ0| � m,
such that

sup
t�2t0

∥∥ϕ(t)
∥∥

L∞(Ω)
� Cm,t0 .

Moreover, (3.1)–(3.4) still hold provided that the time interval (0, T ) is replaced by (2t0, T ), for every
T > 2t0.

Remark 4. In Theorem 2 condition J ∈ W 2,1(R2) is actually needed to ensure the regularity property
ϕ ∈ L∞(0, T ; H2(Ω)).
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Proof. We shall carry out the proof by providing some formal higher-order estimates. The argument
can be made rigorous by means, e.g., of a Faedo–Galerkin approximation technique (see [11] for de-
tails). An alternative strategy might be the use of semigroup theory to ensure the existence of a
local (in time) solution and then proceed with the energy estimates. However, this approach does
not seem convenient in the present case. First, because we can take advantage of an existing approx-
imation scheme. Second, because the application of a fixed-point like argument does not seem so
straightforward.

We first observe that the property ϕ ∈ L∞(Ω × (0, T )) can be obtained by exploiting the same
argument used in [6, Theorem 2.1]. Indeed, by multiplying (1.1) by ϕ|ϕ|p−1 and integrating on Ω

the resulting equation, the contribution of the convective term vanishes due to the incompressibility
condition (1.4) and the proof of [6, Theorem 2.1] entails

sup
t∈(0,T )

∥∥ϕ(t)
∥∥

L∞(Ω)
� C, (3.8)

where the constant C depends on the initial conditions, in particular on ‖u0‖, on ‖ϕ0‖L∞(Ω) and
on T (see [6, Estimate (2.28)]). Furthermore, if h ∈ L2

tb(0,∞; Gdiv) then, thanks to the dissipative
estimate (2.16), we have supt�0 ‖ϕ(t)‖L2+2q(Ω) � C , the constant C being dependent on the initial

data and on h only. Hence, due to [6, Estimate (2.28)], the constant C in (3.8) does not depend on T .
As far as the regularity of the velocity u is concerned, notice that, since the Korteweg-force

term μ∇ϕ ∈ L2(0, T ; L2(Ω)2), then by applying [44, Theorem 3.10], we immediately obtain (3.1)1
and (3.2)2.

Henceforth we shall denote by c a positive constant which depends only on J , F and Ω , while c
will denote a positive constant depending on J , F , Ω and also on the initial conditions u0 and ϕ0
(in particular on ‖∇u0‖ and on ‖ϕ0‖L∞(Ω)). The values of both c and c may possibly vary from line
to line, even within the same estimate. We shall divide the proof into three main steps.

Step 1. Estimate of ϕt in L2(0, T ; H).
We multiply (1.1) by μt in H and get∫

Ω

ϕtμt +
∫
Ω

(u · ∇ϕ)μt + 1

2

d

dt
‖∇μ‖2

=
∫
Ω

(
a + F ′′(ϕ)

)
ϕ2

t − (ϕt, J ∗ ϕt) +
∫
Ω

(u · ∇ϕ)μt + 1

2

d

dt
‖∇μ‖2 = 0. (3.9)

Now, we have ∣∣∣∣ ∫
Ω

(u · ∇ϕ)μt

∣∣∣∣ =
∣∣∣∣ ∫
Ω

(u · ∇ϕ)
(
aϕt − J ∗ ϕt + F ′′(ϕ)ϕt

)∣∣∣∣
� c0

4
‖ϕt‖2 + c‖u‖2

H2‖∇ϕ‖2, (3.10)

and

∣∣(ϕt, J ∗ ϕt)
∣∣ = ∣∣(−u · ∇ϕ + �μ, J ∗ ϕt)

∣∣
�

∣∣(u · ∇ϕ, J ∗ ϕt)
∣∣ + ∣∣(∇μ,∇ J ∗ ϕt)

∣∣
� c0 ‖ϕt‖2 + c‖u‖2

H2‖∇ϕ‖2 + c‖∇μ‖2. (3.11)

4
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Plugging (3.10) and (3.11) into (3.9), using assumption (H2) and integrating the resulting estimate
in time between 0 and t , we obtain

1

2
‖∇μ‖2 + c0

2

t∫
0

‖ϕt‖2 dτ � 1

2
‖∇μ0‖2 +

t∫
0

c‖u‖2
H2‖∇ϕ‖2 dτ

+ c

t∫
0

‖∇μ‖2 dτ , (3.12)

and on account of the following

‖∇μ‖2 �
c2

0

4
‖∇ϕ‖2 − c‖ϕ‖2, (3.13)

from (3.12) we are led to the differential inequality

‖∇μ‖2 � ‖∇μ0‖2 + cT +
t∫

0

m(τ )
∥∥∇μ(τ)

∥∥2
dτ , ∀t ∈ [0, T ], (3.14)

where m := c(‖u‖2
H2 + 1) ∈ L1(0, T ), for all T > 0. Thus the standard Gronwall lemma gives

∇μ ∈ L∞(0, T ; H), ∀T > 0, (3.15)

so that, using also (3.12), we infer

ϕ ∈ L∞(0, T ; V ), ϕt ∈ L2(0, T ; H), ∀T > 0. (3.16)

This concludes the proof of (3.1) and (3.2).

Step 2. Estimate of ϕt in L∞(0, T ; H).
We differentiate (1.1) with respect to time and multiply the resulting identity in H by μt . This

yields ∫
Ω

ϕttμt +
∫
Ω

μt ut · ∇ϕ +
∫
Ω

μt u · ∇ϕt + ‖∇μt‖2 = 0, (3.17)

and, due to (1.4), we obtain∫
Ω

ϕttμt + ‖∇μt‖2 =
∫
Ω

ϕt u · ∇μt +
∫
Ω

ϕut · ∇μt , (3.18)

which entails ∫
Ω

ϕttμt + 1

2
‖∇μt‖2 �

∫
Ω

(
ϕ2

t u2 + ϕ2u2
t

)
. (3.19)
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Observe now that∫
Ω

ϕttμt =
∫
Ω

ϕtt
(
aϕt − J ∗ ϕt + F ′′(ϕ)ϕt

)
= 1

2

d

dt

∫
Ω

aϕ2
t − ( J ∗ ϕt,−ut · ∇ϕ − u · ∇ϕt + �μt) +

∫
Ω

F ′′(ϕ)ϕtϕtt

= 1

2

d

dt

∫
Ω

(
a + F ′′(ϕ)

)
ϕ2

t − (∇ J ∗ ϕt, utϕ) − (∇ J ∗ ϕt, uϕt)

+ (∇ J ∗ ϕt,∇μt) − 1

2

∫
Ω

F ′′′(ϕ)ϕ3
t . (3.20)

On the other hand we have

∣∣(∇ J ∗ ϕt, utϕ)
∣∣ � ‖∇ J‖L1‖ut‖‖ϕ‖L∞‖ϕt‖ � 1

2
‖ut‖2‖ϕt‖2 + c,∣∣(∇ J ∗ ϕt, uϕt)

∣∣ � ‖∇ J‖L1‖u‖L∞‖ϕt‖2 � c‖u‖H2‖ϕt‖2,∣∣(∇ J ∗ ϕt,∇μt)
∣∣ � 1

4
‖∇μt‖2 + ‖∇ J‖2

L1‖ϕt‖2.

Therefore from (3.19) we get

1

2

d

dt

∫
Ω

(
a + F ′′(ϕ)

)
ϕ2

t + 1

4
‖∇μt‖2

� c
(‖u‖2

H2 + ‖u‖H2 + ‖ut‖2 + 1
)‖ϕt‖2 + ‖ϕ‖2

L∞‖ut‖2 + 1

2

∫
Ω

F ′′′(ϕ)ϕ3
t + c. (3.21)

The integral term containing ϕ3
t can be estimated by means of Gagliardo–Nirenberg inequality in

dimension two, that is,∣∣∣∣1

2

∫
Ω

F ′′′(ϕ)ϕ3
t

∣∣∣∣ � c‖ϕt‖3
L3 � c

(‖ϕt‖3 + ‖ϕt‖2‖∇ϕt‖
)
�

c2
0

32
‖∇ϕt‖2 + c‖ϕt‖4 + c. (3.22)

We now need to estimate ∇ϕt in terms of ∇μt . In order to do that, let us first control ∇ϕ in terms
of ∇μ in Lp , for every 2 � p < ∞. We then take the gradient of μ = aϕ − J ∗ ϕ + F ′(ϕ), multiply it
by ∇ϕ|∇ϕ|p−2 and integrate the resulting identity on Ω . We get∫

Ω

∇ϕ|∇ϕ|p−2 · ∇μ =
∫
Ω

(
a + F ′′(ϕ)

)|∇ϕ|p +
∫
Ω

(ϕ∇a − ∇ J ∗ ϕ) · ∇ϕ|∇ϕ|p−2,

and so, by (H2), we find

c0‖∇ϕ‖p
L p � ‖∇ϕ‖p−1

Lp ‖∇μ‖L p + (‖∇a‖L∞ + ‖∇ J‖L1

)‖ϕ‖L p ‖∇ϕ‖p−1
Lp

� c0 ‖∇ϕ‖p
L p + c‖∇μ‖p

L p + c
(‖∇a‖L∞ + ‖∇ J‖L1

)p‖ϕ‖p
L p .
2
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We therefore obtain

‖∇ϕ‖L p � c‖∇μ‖L p + c, (3.23)

with c depending also on p. We now see that the L p -norm of ∇μ can be estimated in terms of
the L2-norm of ϕt . Indeed, using once more the two-dimensional Gagliardo–Nirenberg inequality, we
infer

‖∇μ‖L p � c‖∇μ‖2/p‖∇μ‖1−2/p
H1 � c‖∇μ‖2/p‖μ‖1−2/p

H2

� c‖∇μ‖2/p(‖�μ‖1−2/p + ‖μ‖1−2/p)
� c

(‖ϕt‖1−2/p + ‖u · ∇ϕ‖1−2/p + 1
)

� c
(‖ϕt‖1−2/p + ‖u‖1−2/p

Lq ‖∇ϕ‖1−2/p
Lp + 1

)
,

where p−1 + q−1 = 1/2 and where we have taken into account (3.15) and the fact that the H2-norm
of μ is equivalent to the L2-norm of −�μ+μ, due to (1.5). By (3.23) we therefore deduce the desired
estimate

‖∇μ‖L p � c
(
1 + ‖ϕt‖1−2/p)

. (3.24)

We now take the gradient of μt and multiply it in L2 by ∇ϕt . We get∫
Ω

∇μt · ∇ϕt =
∫
Ω

(
a + F ′′(ϕ)

)|∇ϕt |2

+
∫
Ω

(∇aϕt − ∇ J ∗ ϕt) · ∇ϕt +
∫
Ω

F ′′′(ϕ)ϕt∇ϕ · ∇ϕt . (3.25)

Observe that we have∣∣∣∣ ∫
Ω

F ′′′(ϕ)ϕt∇ϕ · ∇ϕt

∣∣∣∣ � c‖ϕt‖L3‖∇ϕ‖L6‖∇ϕt‖

� c
(‖ϕt‖ + ‖ϕt‖2/3‖∇ϕt‖1/3)(1 + ‖ϕt‖2/3)‖∇ϕt‖

� c
(‖ϕt‖5/3‖∇ϕt‖ + ‖ϕt‖4/3‖∇ϕt‖4/3 + ‖ϕt‖2/3‖∇ϕt‖4/3 + ‖ϕt‖‖∇ϕt‖

)
� c0

4
‖∇ϕt‖2 + c‖ϕt‖4 + c. (3.26)

Thus from (3.25) and (3.26) and using also (H2), we deduce

1

c0
‖∇μt‖2 + c0

4
‖∇ϕt‖2 � ‖∇μt‖‖∇ϕt‖ � c0‖∇ϕt‖2 − c0

4
‖∇ϕt‖2 − c‖ϕt‖2

− c0

4
‖∇ϕt‖2 − c‖ϕt‖4 − c,

so that

4

c2
‖∇μt‖2 � ‖∇ϕt‖2 − c‖ϕt‖4 − c. (3.27)
0
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We now go back to (3.21). By combining (3.22) and (3.27) we obtain

1

2

d

dt

∫
Ω

(
a + F ′′(ϕ)

)
ϕ2

t + 1

8
‖∇μt‖2 � α(t)‖ϕt‖2 + c‖ϕt‖4 + β(t) + c, (3.28)

where α := c(‖u‖2
H2 +‖u‖H2 +‖ut‖2 + 1) and β := ‖ϕ‖2

L∞‖ut‖2. We have α, β ∈ L1(0, T ). From (3.28)

we can easily infer the desired estimate. Indeed, let us multiply (3.28) by (1 + ∫
Ω

(a + F ′′(ϕ))ϕ2
t )−1

and get

1

2

d

dt
log

(
1 +

∫
Ω

(
a + F ′′(ϕ)

)
ϕ2

t

)
� 1

c0
α(t) + c(

∫
Ω

ϕ2
t )2

1 + ∫
Ω

(a + F ′′(ϕ))ϕ2
t

+ β(t) + c

� 1

c0
α(t) + β(t) + c‖ϕt‖2 + c.

Integrating this last inequality between 0 and t ∈ (0, T ) and using the second of (3.16) and the fact
that ϕt(0) ∈ H (since ϕ0 ∈ H2(Ω)) we therefore deduce that

ϕt ∈ L∞(0, T ; H), ∀T > 0. (3.29)

In particular, on account of (3.23) and (3.24), we also have

∇μ,∇ϕ ∈ L∞(
0, T ; Lp(Ω)

)
, ∀T > 0, 2 � p < ∞. (3.30)

Furthermore, by integrating (3.28) between 0 and t ∈ [0, T ] and using (3.27) and (3.29), we also get

ϕt ∈ L2(0, T ; V ). (3.31)

By comparison in (1.1) we can finally obtain estimates for μ and ϕ in L∞(0, T ; H2(Ω)). Indeed, we
have

‖�μ‖ � ‖ϕt‖ + c‖∇u‖‖∇ϕ‖L p , (3.32)

which implies that �μ ∈ L∞(0, T ; L2(Ω)), thanks to (3.29) and (3.30). Recalling (1.5) and the smooth-
ness of ∂Ω , we also have

μ ∈ L∞(
0, T ; H2(Ω)

)
. (3.33)

Apply now the second derivative operator ∂2
i j := ∂2

∂xi∂x j
to (1.2), multiply the resulting identity

by ∂2
i jϕ and integrate on Ω . Using the assumption J ∈ W 2,1(R2), we get

∫
Ω

∂2
i jμ∂2

i jϕ =
∫
Ω

(
a + F ′′(ϕ)

)(
∂2

i jϕ
)2 +

∫
Ω

(∂ia∂ jϕ + ∂ ja∂iϕ)∂2
i jϕ

+
∫
Ω

(
ϕ∂2

i ja − ∂2
i j J ∗ ϕ

)
∂2

i jϕ +
∫
Ω

F ′′′(ϕ)∂iϕ∂ jϕ∂2
i jϕ.
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From this identity, by means of (H2) and (3.30) it is easy to obtain

∥∥∂2
i jμ

∥∥2 �
c2

0

4

∥∥∂2
i jϕ

∥∥2 − c. (3.34)

Such estimate together with (3.33) entail

ϕ ∈ L∞(
0, T ; H2(Ω)

)
. (3.35)

Step 3. Continuous dependence and uniqueness of strong solutions.
Let us consider two strong solutions z1 := [u1,ϕ1] and z2 := [u2,ϕ2] corresponding to initial data

z01 := [u01,ϕ01] and z02 := [u02,ϕ02] and to external forces h1 and h2, respectively. Taking the dif-
ference between the variational formulation of (1.1) and (1.2) written for each solution and setting
u := u2 − u1, ϕ := ϕ2 − ϕ1, μ := μ2 − μ1 and h := h2 − h1, we have

〈ut, v〉 + ν(∇u,∇v) + b(u2, u2, v) − b(u1, u1, v)

= −(ϕ2∇μ2, v) + (ϕ1∇μ1, v) + (h, v), (3.36)

〈ϕt,ψ〉 + (∇μ,∇ψ) = (u2ϕ2,∇ψ) − (u1ϕ1,∇ψ), (3.37)

for every v ∈ V div and every ψ ∈ V . Let us choose v = u and ψ = Nϕ and sum the first resulting
identity to the second one multiplied by γ , where the positive constant γ will be suitably chosen.
After some easy calculations we obtain

1

2

d

dt
‖u‖2 + ν‖∇u‖2 + b(u2, u2, u) − b(u1, u1, u) + γ

2

d

dt
‖ϕ‖2

V ′
0
+ γ (ϕ,μ)

= −(ϕ∇μ2, u) − (ϕ1∇μ, u) + γ (u2,ϕ∇Nϕ) + γ (u,ϕ1∇Nϕ) + (h, u). (3.38)

Notice that

γ (ϕ,μ) = γ
(
ϕ,aϕ − J ∗ ϕ + F ′(ϕ2) − F ′(ϕ1)

)
� c0γ ‖ϕ‖2 − γ (ϕ, J ∗ ϕ)

� c0γ ‖ϕ‖2 − γ ‖ϕ‖V ′
0
‖ J‖V ‖ϕ‖ � c0γ ‖ϕ‖2 − ‖ϕ‖2 − cγ 2‖ϕ‖2

V ′
0
. (3.39)

Furthermore, as far as the first two terms on the right hand side of (3.38) are concerned, we have∣∣(ϕ∇μ2, u)
∣∣ � ‖ϕ‖‖∇μ2‖L4‖u‖L4 � ν

4
‖∇u‖2 + c‖∇μ2‖2

L4‖ϕ‖2, (3.40)∣∣(ϕ1∇μ, u)
∣∣ = ∣∣(μ∇ϕ1, u)

∣∣ � ‖μ‖‖∇ϕ1‖L4‖u‖L4 � ν

4
‖∇u‖2 + c‖∇ϕ1‖2

L4‖ϕ‖2, (3.41)

where we have used the bound

‖μ‖ = ∥∥aϕ − J ∗ ϕ + F ′(ϕ2) − F ′(ϕ1)
∥∥ � 2‖a‖L∞‖ϕ‖ + c‖ϕ‖ � c‖ϕ‖.

The last two terms on the right hand side of (3.38) can be estimated as follows∣∣γ (u2,ϕ∇Nϕ)
∣∣ � γ ‖u2‖L∞‖ϕ‖‖∇Nϕ‖ � cγ ‖u2‖H2‖ϕ‖‖ϕ‖V ′

0

� ‖ϕ‖2 + cγ 2‖u2‖2
H2‖ϕ‖2

V ′
0
, (3.42)∣∣γ (u,ϕ1∇Nϕ)

∣∣ � γ ‖u‖2 + γ ‖ϕ1‖2
L∞‖ϕ‖2

V ′ . (3.43)

2 2 0
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Consider the trilinear forms on the left hand side of (3.38). By (2.4) we have

b(u2, u2, u) − b(u1, u1, u) = b(u, u1, u) � c‖u‖‖∇u1‖‖∇u‖
� ν

4
‖∇u‖2 + c‖∇u1‖2‖u‖2. (3.44)

Plugging (3.39)–(3.44) into (3.38) we get

1

2

d

dt

(‖u‖2 + γ ‖ϕ‖2
V ′

0

) + ν

8
‖∇u‖2 + γ c0‖ϕ‖2

� c
(
1 + ‖∇ϕ1‖2

L4 + ‖∇μ2‖2
L4

)‖ϕ‖2 + cγ
(
γ ‖u2‖2

H2 + ‖ϕ1‖2
L∞ + γ

)‖ϕ‖2
V ′

0

+ c
(
γ + ‖∇u1‖2)‖u‖2 + 2

νλ1
‖h‖2. (3.45)

Thanks to (3.30), we can now choose γ = γ∗ such that

Γ∗ := c0γ∗ − c
(
1 + ‖∇ϕ1‖2

L∞(0,T ;L4(Ω))
+ ‖∇μ2‖2

L∞(0,T ;L4(Ω))

)
> 0.

Hence from (3.45) we deduce

1

2

d

dt

(‖u‖2 + γ∗‖ϕ‖2
V ′

0

) + ν

8
‖∇u‖2 + Γ∗‖ϕ‖2 � η(t)

(‖u‖2 + γ∗‖ϕ‖2
V ′

0

) + 2

νλ1
‖h‖2, (3.46)

where

η := c
(‖∇u1‖2 + γ∗‖u2‖2

H2 + ‖ϕ1‖2
L∞ + γ∗

) ∈ L1(0, T ), ∀T > 0.

The standard Gronwall lemma then yields

∥∥u(t)
∥∥2 + γ∗

∥∥ϕ(t)
∥∥2

V ′
0
� e2

∫ t
0 η(s) ds

(
‖u0‖2 + γ∗‖ϕ0‖2

V ′
0
+ 4

νλ1
‖h‖2

L2(0,t;Gdiv)

)
, (3.47)

for every t ∈ [0, T ], where we have set u0 := u02 − u01 and ϕ0 := ϕ02 − ϕ01. By integrating (3.46)
between 0 and t and taking (3.47) into account, we also get

ν

4

t∫
0

‖∇u‖2 dτ + 2Γ∗
t∫

0

‖ϕ‖2 dτ

�
(

‖u0‖2 + γ∗‖ϕ0‖2
V ′

0
+ 4

νλ1
‖h‖2

L2(0,t;Gdiv)

)(
1 + 2e2

∫ t
0 η(s) ds

t∫
0

η(s)ds

)
, (3.48)

for every t ∈ [0, T ]. Finally, by combining (3.47) and (3.48), we obtain (3.6). �
Remark 5. If the assumptions of Theorem 2 ensure that ϕ satisfies (3.5), then we have strong conti-
nuity in time, that is,

ϕ ∈ C
([0,∞); H2(Ω)). (3.49)
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Indeed, by combining (3.17)–(3.20) and taking into account the regularity properties of the strong
solution, we can see that

∫
Ω

(a + F ′′(ϕ))ϕ2
t is absolutely continuous on [0,∞). Using (H2) and

the fact that ϕ ∈ C([0,∞); C(Ω)) (see Remark 2) we get ‖ϕt‖2 ∈ C([0,∞)). Now, (3.33) and
μt ∈ L2

loc([0,∞); V ) imply that μ ∈ C([0,∞); V ) and, by using (3.33) again, we also have μ ∈
C w([0,∞); H2(Ω)) so that �μ ∈ C w([0,∞); H). Moreover, since u ∈ C([0,∞); L4(Ω)) and ∇ϕ ∈
C w([0,∞); L4(Ω)) (cf. Remark 2), then we have u · ∇ϕ ∈ C w([0,∞); H). Thus from (1.1) we deduce
that ϕt ∈ C w([0,∞); H) and, on account of the continuity of t �→ ‖ϕt(t)‖, then ϕt ∈ C([0,∞); H). Re-
call now that ∇ϕ ∈ C([0,∞); Hε(Ω)2), for every ε ∈ [0,1) (cf. Remark 2). Then, choosing ε ∈ [1/2,1),
we have ∇ϕ ∈ C([0,∞); L4(Ω)2). Thus u · ∇ϕ ∈ C([0,∞); H) and so (1.1) yields �μ ∈ C([0,∞); H)

which entails μ ∈ C([0,∞); H2(Ω)). This and the assumption J ∈ W 2,1(R2) allow us to deduce (3.49).

Remark 6. Within the framework or Remark 5, the boundary condition for μ (see (1.5)) can be ex-
plicitly written in terms of a nonlocal boundary condition for ϕ . More precisely, we have (cf. (1.2)
and (H2))

(
a(x) + F ′′(ϕ(x, t)

))∂ϕ

∂n
(x, t) +

∫
Ω

∂ J

∂n
(x − y)

(
ϕ(x, t) − ϕ(y, t)

)
dy = 0,

for all t � 0 and for almost any x ∈ ∂Ω .

4. Uniform estimates and the global attractor

In this section we establish some uniform in time regularization estimates by exploiting the results
proved in the previous section. As a consequence we deduce a regularity property for the global
attractor of the dynamical system generated by (1.1)–(1.5) whose existence has been shown in [15].

Proposition 1. Let h ∈ L2
tb(0,∞; Gdiv), u0 ∈ V div, ϕ0 ∈ V ∩ L∞(Ω) and suppose that (H1)–(H4) are satisfied.

Then, the weak solution [u,ϕ] of Theorem 2 satisfies

u ∈ L∞(0,∞; V div) ∩ L2
tb

(
0,∞; H2(Ω)2), ϕ ∈ L∞(

Ω × (0,∞)
) ∩ L∞(0,∞; V ), (4.1)

ut ∈ L2
tb(0,∞; Gdiv), ϕt ∈ L2

tb(0,∞; H). (4.2)

Furthermore, suppose in addition that F ∈ C3(R) and that ϕ0 ∈ H2(Ω). Then, the unique strong solution of
Theorem 2 satisfies (4.1), (4.2) and, in addition,

ϕ ∈ L∞(
0,∞; W 1,p(Ω)

)
, 2 � p < ∞, (4.3)

ϕt ∈ L∞(0,∞; H) ∩ L2
tb(0,∞; V ). (4.4)

If J ∈ W 2,1(R2), we also have

ϕ ∈ L∞(
0,∞; H2(Ω)

)
. (4.5)

Moreover, there exists a constant Λ1 = Λ1(m), depending on m (and on F , J , Ω , ν), such that, for every initial
data z0 := [u0,ϕ0] ∈ V div × H2(Ω), with |ϕ0| � m, there exists a time t∗ := t∗(E(z0)) � 0 such that the
strong solution corresponding to z0 satisfies

∥∥∇u(t)
∥∥ + ∥∥ϕ(t)

∥∥
H2(Ω)

+
t+1∫
t

∥∥u(s)
∥∥

H2(Ω)2 � Λ1(m), ∀t � t∗. (4.6)
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Proof. Let us first notice that, setting z(t) := [u(t),ϕ(t)] and z0 := [u0,ϕ0], by integrating the energy
identity (2.15) between t and t + 1 we have

E
(
z(t + 1)

) +
t+1∫
t

(
ν

2
‖∇u‖2 + ‖∇μ‖2

)
dτ � E

(
z(t)

) + 1

2νλ1

t+1∫
t

‖h‖2 dτ . (4.7)

Therefore, using also the dissipative estimate (2.16), we get

t+1∫
t

(
ν

2
‖∇u‖2 + ‖∇μ‖2

)
dτ � E(z0)e−kt + F (m)|Ω| + K (4.8)

where the constant K depends on ‖h‖L2
tb(0,∞;Gdiv)

and on F , J , Ω , ν . Notice that the initial energy

E(z0) can be estimated as

E(z0) � 1

2
‖u0‖2 + M‖ϕ0‖2 +

∫
Ω

F (ϕ0), M := sup
x∈Ω

∫
Ω

∣∣ J (x − y)
∣∣dy.

From (4.8), setting Λ0(m) := F (m)|Ω| + K + 1, we deduce that there exists a time t0 = t0(E(z0)) > 0,
given e.g. by t0 = 1

k log(E(z0) + c), where E(z0) + c > 1, such that

t+1∫
t

(
ν

2
‖∇u‖2 + ‖∇μ‖2

)
dτ � Λ0(m), ∀t � t0. (4.9)

We now establish the uniform in time version of estimates (3.1)1 and (3.2)1 for the velocity field.
To this aim, notice first that (2.5) implies (see also [44, Lemma 3.8])

‖Bu‖ � c‖u‖1/2‖∇u‖‖Su‖1/2, ∀u ∈ D(S) = H2(Ω)2 ∩ V div.

Therefore, by splitting the term (Bu, Su) on the left hand side of (3.7) and using the estimate above,
we get the following differential inequality

d

dt
‖∇u‖2 + ν‖Su‖2 � 3

ν
‖μ∇ϕ‖2 + 3

ν
‖h‖2 + σ‖∇u‖2, (4.10)

where σ(t) := cν‖u‖2‖∇u‖2. Now, recalling Remark 3 (see also the proof of [21, Lemma 2.10]), the as-
sumption h ∈ L2

tb(0,∞; Gdiv) and the dissipative estimate (2.16), we know that there exists a constant
C0(m) > 0 depending on m, and a time t1 = t1(E(z0)) depending on E(z0) such that

sup
t�t1

∥∥ϕ(t)
∥∥

L∞(Ω)
� C0(m). (4.11)

Therefore we have supt�t1
‖μ(t)‖L∞(Ω) � C1(m). Then, using also (4.9) and (3.13), we get

t+1∫ ∥∥μ(τ)∇ϕ(τ )
∥∥2

dτ � C2(m),

t+1∫
σ(τ )dτ � C3(m), (4.12)
t t
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for all t � t2 := max{t0, t1}. Therefore, (4.8) and (4.12) allow us to apply Lemma 2 to the differential
inequality (4.10) and we deduce that

∥∥∇u(t)
∥∥2 � C4(m) := 2

ν

(
2C2(m) + 2‖h‖2

L2
tb(0,∞;Gdiv)

+ Λ0(m)
)
eC3(m), (4.13)

for all t � t3 := t2 + 1. Furthermore, by integrating (4.10) between t and t + 1, for t � t3, we obtain

cν

t+1∫
t

∥∥u(s)
∥∥2

H2(Ω)
ds � C5(m) := (

1 + C3(m)
)
C4(m) + 4

ν

(
C2(m) + ‖h‖2

L2
tb(0,∞;Gdiv)

)
, (4.14)

for all t � t3, where we have also used [44, Lemma 3.7]. Estimates (4.13) and (4.14) in particular
imply (4.1)1.

Now, let us write (1.3) in the form ut = −Bu − νSu + μ∇ϕ + h and observe that, owing to [44,
Lemma 3.8] (or (2.5)), we have

t+1∫
t

∥∥Bu(s)
∥∥4

ds �
t+1∫
t

∥∥u(s)
∥∥2∥∥∇u(s)

∥∥4∥∥Su(s)
∥∥2

ds � C6(m) := c

νλ1
C3

4(m)C5(m),

for all t � t3, and hence

t+1∫
t

∥∥ut(s)
∥∥2

ds � C7(m) := c
(
C1/2

6 (m) + νC5(m) + C2(m) + ‖h‖2
L2

tb(0,∞;Gdiv)

)
, (4.15)

for all t � t3. Note that (4.15) entails (4.2)1.
We are now in a position to get uniform in time regularization estimates for ϕt first in

L2
tb(τ ,∞; H) and then in L∞(τ ,∞; H), for some τ > 0.

Let us note first that, by combining (3.9)–(3.11) and taking (4.11) into account, we obtain the
following differential inequality, for all t > t1,

d

dt
‖∇μ‖2 + c0‖ϕt‖2 �

(
C8(m)‖u‖2

H2 + c
)‖∇μ‖2 + C9(m)‖u‖2

H2‖ϕ‖2. (4.16)

Observe that (cf. (4.14))

t+1∫
t

(
C8(m)

∥∥u(s)
∥∥2

H2 + c
)

ds � C10(m) := 1

cν
C5(m)C8(m) + c, (4.17)

t+1∫
t

C9(m)
∥∥u(s)

∥∥2
H2

∥∥ϕ(s)
∥∥2

ds � C11(m) := |Ω|
cν

C2
0(m)C5(m)C9(m), (4.18)

for all t � t3. Then, using (4.9) and (4.17), (4.18), we can apply the uniform Gronwall lemma to (4.16)
in [t3,∞) and get

∥∥∇μ(t)
∥∥2 � C12(m) := (

C11(m) + Λ0(m)
)
eC10(m), ∀t � t4 := t3 + 1. (4.19)
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Now, by integrating (4.16) between t and t + 1, for t � t4, we also deduce

c0

t+1∫
t

∥∥ϕt(s)
∥∥2

ds � C13(m) := (
1 + C10(m)

)
C12(m) + C11(m), ∀t � t4. (4.20)

Estimates (4.19) and (4.20) imply, in particular, (4.1)2 and (4.2)2, respectively.
Let us now consider estimate (3.28). Set

Φ(t) := 1

2

∫
Ω

(
a + F ′′(ϕ(t)

))
ϕ2

t (t),

and notice that, on account of (4.11), we have

c0

2

∥∥ϕt(t)
∥∥2 � Φ(t) � C14(m)

∥∥ϕt(t)
∥∥2

, ∀t � t1. (4.21)

Then, by arguing as in the previous section and taking (4.11) into account, we easily see that (3.28)
can be rewritten as follows

d

dt
Φ(t) + 1

8
‖∇μt‖2 � ω(t)Φ(t) + β(t) + C15(m), ∀t � t1, (4.22)

where ω(t) := α(t) + C16(m)Φ(t), and α,β the same as in (3.28). Then, by using (4.21), (4.20), (4.14)
and (4.15), we have

t+1∫
t

Φ(s)ds � C17(m) := 1

c0
C13(m)C14(m), (4.23)

t+1∫
t

ω(s)ds � C18(m) := c

(
1

ν
C5(m) + C7(m) + C16(m)C17(m) + 1

)
, (4.24)

t+1∫
t

β(s)ds � C19(m) := C2
0(m)C7(m), (4.25)

for all t � t4. By applying once more the uniform Gronwall lemma to (4.22) in the interval [t4,∞),
we deduce

∥∥ϕt(t)
∥∥2 � C20(m) := 2

c0

(
C15(m) + C17(m) + C19(m)

)
eC18(m), (4.26)

for all t � t5 := t4 + 1. Then, by integrating (4.22) between t and t + 1, for t � t5, and using (4.21),
(4.26) and (3.27) (written with a constant C21(m) in place of c, for t � t1, due to (4.11)), we also find

t+1∫
t

∥∥∇ϕt(s)
∥∥2

ds � C22(m) := 32

c0
(C14C20C18 + C19 + C15) + (

1 + C2
20

)
C21, (4.27)

for all t � t5, where all Ci depend on m. Observe that estimates (4.26) and (4.27) yield (4.4).
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Furthermore, owing to (3.23) and (3.24), we also have

∥∥∇ϕ(t)
∥∥

L p(Ω)2 � C23(m), ∀t � t5, 2 � p < ∞. (4.28)

Finally, on account of (3.32), (4.26) and (4.13), we obtain

∥∥μ(t)
∥∥

H2 � c
∥∥−�μ(t) + μ(t)

∥∥ � C24(m) := c
(
C1(m) + C1/2

20 (m) + C1/2
4 (m)C23(m)

)
, (4.29)

for all t � t5, and recalling (3.34), provided that J ∈ W 2,1(R2), we get

∥∥ϕ(t)
∥∥

H2 � C25(m), ∀t � t5. (4.30)

Estimates (4.28) and (4.30) yield (4.3). �
Let us now recall the main result about the existence of the global attractor for weak solutions

to system (1.1)–(1.5) in the autonomous case (cf. [15]). Since the weak solutions to system (1.1)–(1.5)
are not known to be unique but the energy identity holds, the existence of the global attractor is
achieved by using J.M. Ball’s approach based on the notion of generalized semiflows (see [5] for the
main definitions and results).

We assume that h is time independent, i.e., h ∈ Gdiv , and, for m � 0 fixed, we introduce the metric
space

Xm := Gdiv ×Ym, (4.31)

where

Ym := {
ϕ ∈ H: F (ϕ) ∈ L1(Ω),

∣∣(ϕ,1)
∣∣ � m

}
. (4.32)

The space Xm is endowed with the metric

d(z2, z1) = ‖u2 − u1‖ + ‖ϕ2 − ϕ1‖ +
∣∣∣∣ ∫
Ω

F (ϕ2) −
∫
Ω

F (ϕ1)

∣∣∣∣1/2

, ∀z1, z2 ∈ Xm,

where z1 := [u1,ϕ1] and z2 := [u2,ϕ2]. It is important to insert the potential difference into the
definition of distance in order to be able to deduce the point dissipativity in the sense of J.M. Ball
(cf. [15]).

Suppose that (H1)–(H4) are satisfied and that h ∈ Gdiv . Let Gm be the set of all weak solutions
to system (1.1)–(1.6) from [0,∞) to Xm given by Theorem 1 and corresponding to all initial data
z0 ∈ Xm . Then, in [15, Proposition 3 and Theorem 3] it is proved that Gm is a generalized semiflow
on Xm (i.e., Gm satisfies conditions (H1)–(H4) from [5] in the space Xm) which possesses a (unique)
global attractor Am .

Take z0 ∈ Xm and consider a weak solution z := [u,ϕ] ∈ C([0,∞);Xm) corresponding to z0.
From (2.14), written with t = τ , we know that for every τ > 0 there exists tτ ∈ (0, τ ] such that
z(tτ ) ∈ V div × V . Thanks to Remark 3, we can also assume that ϕ(tτ ) ∈ L∞(Ω). We can therefore
write the differential inequality (4.16) in [tτ ,∞) and, by integrating (4.16) between tτ and t > tτ ,
we can see that there exists sτ ∈ (tτ , t] such that ϕt(sτ ) ∈ H and hence ϕ(sτ ) ∈ H2(Ω) (recall that
J ∈ W 2,1(R)). Summing up, introducing the (complete) metric space

X 1
m := V div ×Y1

m, Y1
m := {

ϕ ∈ H2(Ω):
∣∣(ϕ,1)

∣∣ � m
}
, (4.33)
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endowed with the metric

d1(z2, z1) = ‖∇u2 − ∇u1‖ + ‖ϕ2 − ϕ1‖H2(Ω), ∀z1, z2 ∈ X 1
m,

then, for every τ > 0, there exists sτ ∈ (0, τ ] such that z(sτ ) ∈ X 1
m and starting from the time sτ

the weak solution corresponding to z0 becomes a (unique) strong solution z ∈ C([sτ ,∞);X 1
m) (cf. Re-

marks 2 and 5). Such a solution satisfies the dissipative estimate (4.6) in [sτ ,∞). Let us consider a
bounded in Xm subset B ⊂ Xm . Choosing τ = 1 for every z0 ∈ B , then every weak solution z starting
from z0 ∈ B becomes (at a certain time s1 ∈ (0,1] depending on z0 and on the weak solution con-
sidered from z0) a strong solution satisfying (4.6) in [1,∞). We therefore deduce that there exists
a time t∗ = t∗(B) � 1 such that

z(t) ∈ B1
(
Λ1(m)

)
, ∀t � t∗, (4.34)

where B1(Λ1(m)) is the closed ball in X 1
m given by

B1
(
Λ1(m)

) := {
w ∈ X 1

m: d1(w,0) � Λ1(m)
}
.

This fact immediately implies that Am ⊂ B1. Indeed, we have distX 1
m
(T (t)Am,B1) =

distX 1
m
(Am,B1) = 0, which implies Am ⊂ B1

X 1
m = B1. We recall that the multivalued evolution map

T (t) is defined, for every t � 0 and every subset E ⊂Xm , as (cf. [5])

T (t)E := {
z(t): z ∈ Gm, z(0) ∈ E

}
. (4.35)

Summing up we have just proven the following regularity result for the global attractor

Theorem 3. Let (H1)–(H4) be satisfied and assume that h ∈ Gdiv is independent of time. Then the global
attractor Am of the generalized semiflow Gm associated with system (1.1)–(1.5) is such that

Am ⊂ B1
(
Λ1(m)

)
.

Thus the global attractor is the union of all the bounded complete trajectories which are strong
solutions to (1.1)–(1.6).

5. Convergence to equilibria

In this section we shall prove that every weak solution to system (1.1)–(1.6) converges to a sta-
tionary solution as t → ∞, provided that F is real analytic and h ≡ 0.

The main tool is a generalized version of the so-called Łojasiewicz–Simon inequality. We recall
that the convergence to equilibria is a nontrivial issue since, when the dimension of Ω is 2 at least,
then the set of stationary solutions is a continuum (see [28,12]). Therefore, even if the system has a
Lyapunov functional, it might not happen that every trajectory does converge to a single equilibrium.
However, if the nonlinearities are real analytic, then one may take advantage of a suitable inequality:
the Łojasiewicz–Simon inequality (see [41], cf. also [9,10,30,35]). In recent years, taking advantage of
such an inequality, many results for various nonlinear evolution equations have been established (cf.,
e.g., [3,4,12–14,21,24,25,29,33,36–38,40,45–49] and, in particular, for the local Cahn–Hilliard–Navier–
Stokes system [1,18,50]).

Let us first consider the set of all stationary solutions z∞ to system (1.1)–(1.5), namely the set of
pairs z∞ := [0,ϕ∞] ∈Xm (for some m � 0), where ϕ∞ solves the integral equation
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aϕ∞ − J ∗ ϕ∞ + F ′(ϕ∞) = μ∞, (5.1)

with some constant μ∞ ∈R given necessarily by μ∞ = F ′(ϕ∞). Therefore we introduce

Em = {
z∞ = [0,ϕ∞]: ϕ∞ ∈ H, F (ϕ∞) ∈ L1(Ω), |ϕ∞| � m,

aϕ∞ − J ∗ ϕ∞ + F ′(ϕ∞) − F ′(ϕ∞) = 0 a.e. in Ω
}
. (5.2)

We point out that, by using an easy iteration argument from (5.1), on account that F ′ has polynomial
growth, we can deduce that ϕ∞ ∈ L∞(Ω). The structure of the stationary set is rather complicated. In
particular, such a set may be a continuum (see [12] for an example and [27] where the author proves
the existence of solutions ϕ∞ to (5.7) with ϕ∞ = 0 in cylindrical bounded domains). It is also worth
observing that to every stationary solution z∞ = [0,ϕ∞] there corresponds a stationary pressure π∞
given by π∞ = F ′(ϕ∞)ϕ∞ + c, where c ∈R is an arbitrary constant (cf. (1.3)).

We begin with the following preliminary but crucial result.

Lemma 3. Assume that (H1)–(H4) are satisfied. Take z0 ∈ Xm and let z ∈ C([0,∞);Xm) be a weak solution
corresponding to z0 . Then, we have

∅ �= ω(z) ⊂ Em (5.3)

and

u(t) → 0 in Gdiv, as t → ∞. (5.4)

Furthermore, there exists a time t∗ = t∗(z0) depending on z0 such that the trajectory
⋃

t�t∗ {z(t)} is precom-
pact in Xm.

Proof. From (2.14), by letting t → ∞, we obtain that

u ∈ L2(0,∞; V div). (5.5)

On the other hand, from (1.3), written as ut = −Bu − νSu + μ∇ϕ , we get

‖ut‖V ′
div

� ν‖∇u‖ + c‖u‖‖∇u‖ + ‖ϕ‖L∞(Ω)‖∇μ‖.

Now, (2.14) also implies that u ∈ L∞(0,∞; Gdiv) and that ∇μ ∈ L2(0,∞; H). Hence, on account
of (4.11) as well, from the previous estimate we infer that

ut ∈ L2(τ ,∞; V ′
div

)
, (5.6)

for some τ > 0. From (5.5) and (5.6) we deduce (5.4). Let us now take z̃ ∈ ω(z0) arbitrary, with
z̃ := [ ũ, ϕ̃ ]. Then, there exists a sequence {tn} with tn → ∞ such that u(tn) → ũ in Gdiv and ϕ(tn) → ϕ̃
in H . We get ũ = 0 and, up to a subsequence,

μ(tn) → μ̃, a.e. in Ω, (5.7)

where μ̃ := aϕ̃ − J ∗ ϕ̃ + F ′(ϕ̃). By integrating (4.22) between t and t + 1 we easily deduce that
∇μt ∈ L2

tb(τ ,∞; H) for some τ > 0. Since we also have ∇μ ∈ L2(0,∞; H), then Lemma 1 yields

∇μ(t) → 0 in H, as t → ∞. (5.8)
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From (5.7) and (5.8) we easily deduce that μ̃ = const almost everywhere in Ω , where the constant
is necessarily given by F ′(ϕ̃). Therefore z̃ = [ ũ, ϕ̃ ] = [0, ϕ̃ ] ∈ Em (note that F (ϕ̃) ∈ L1(Ω) is ensured
by Fatou’s lemma), and (5.3) is proven. Finally, the precompactness of the trajectory is an immediate
consequence of (4.34). �
Remark 7. Lemma 3 yields in particular an existence result for Eq. (5.1).

We now recall the generalized Łojasiewicz–Simon inequality established in [17] which is the main
tool for proving our convergence result.

Let V and W be Banach spaces embedded into a Hilbert space H and its dual H ′ , respectively,
with dense and continuous injections. Assume that the restriction of the Riesz map R ∈ L(H, H ′)
to V is an isomorphism from V onto W = R(V ). Moreover, let H = H0 + H1, where H1 ⊂ V is
a finite-dimensional subspace and H0 is its orthogonal complement in H . Introduce the subspace
of H ′

H0
0 := {

g ∈ H ′: 〈g,ϕ〉 = 0 for all ϕ ∈ H0
}
.

Then let

F := G1 + G2,

where the functionals G1 and G2 satisfy the following conditions

• G1 : U ⊂ V → R is Fréchet differentiable on an open set U such that the Fréchet derivative DG1 :
U → W is a real analytic operator which satisfies

〈
DG1(ϕ2) − DG1(ϕ1),ϕ2 − ϕ1

〉
� α1‖ϕ2 − ϕ1‖2

H , (5.9)∥∥DG1(ϕ2) − DG1(ϕ1)
∥∥

H ′ � α2‖ϕ2 − ϕ1‖H , (5.10)

for all ϕ1,ϕ2 ∈ U and for some constants α1,α2 > 0. Furthermore, the second Fréchet derivative
D2G1(ϕ) ∈L(V , W ) is assumed to be an isomorphism for all ϕ ∈ U .

• G2 : H →R is assumed to be in the form

G2(ϕ) = 1

2
〈Kϕ,ϕ〉 + 〈l,ϕ〉 + ρ, ∀ϕ ∈ H,

where K ∈L(H, H ′) is a self-adjoint compact operator such that its restriction to V is a compact
operator in L(V , W ) and l ∈ W , ρ ∈R are given.

The inequality we need is given by

Lemma 4. (See [17].) Let the previous assumptions be satisfied for the spaces V , W , H, H ′ and for the func-
tional F . Let [ϕ∞,μ∞] ∈ U × H0

0 satisfy DF(ϕ∞) = μ∞ . Then, there exist σ ,λ > 0 and θ ∈ (0,1/2] such
that the following inequality holds

∣∣F(ϕ) −F(ϕ∞)
∣∣1−θ � λ inf

{∥∥DF(ϕ) − μ
∥∥

H ′ , μ ∈ H0
0

}
, (5.11)

for all ϕ ∈ U satisfying ϕ − ϕ∞ ∈ H0 and ‖ϕ − ϕ∞‖H � σ .

We can now state the main result of this section.
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Theorem 4. Assume that (H1)–(H4) are satisfied with F real analytic. Take z0 ∈Xm and let z ∈ C([0,∞);Xm)

be a weak solution corresponding to z0 . Then, there exists z∞ := [0,ϕ∞] ∈ Em with ϕ∞ = ϕ0 such that

z(t) → z∞ in Xm, as t → ∞. (5.12)

Moreover, there exist some constants γ � 0, θ ∈ [0,1/2) and a time t > 0 which depend on z0 and z∞ (and
on the weak solution z originated from z0) such that

∥∥u(t)
∥∥

V ′
div

+ ∥∥ϕ(t) − ϕ∞
∥∥

V ′ � γ t− θ
1−2θ , ∀t > t. (5.13)

Proof. Our aim is to prove that ϕt ∈ L1(τ ,∞; V ′), for some τ > 0. This, together with (5.4) and with
the precompactness of the trajectory in Gdiv × H , will allow to deduce the convergence in Gdiv × H
of a whole trajectory z = [u,ϕ] originating from an initial datum z0 = [u0,ϕ0] ∈ Xm to a station-
ary solution z∞ ∈ Em with ϕ∞ = ϕ0. Observe that if z : [0,∞) → Xm is a weak solution, then the
convergence condition z(t) → z∞ in Xm is equivalent to the condition z(t) → z∞ in Gdiv × H , since
the convergence

∫
Ω

F (ϕ(t)) → ∫
Ω

F (ϕ∞) is ensured by (4.11) and Lebesgue’s dominated convergence
theorem.

The key point is the application of Lemma 4 to a suitable functional F which is, in our case, the
energy functional E associated with the ϕ component of the solution, namely,

E(ϕ) = 1

2
‖√aϕ‖2 − 1

2
(ϕ, J ∗ ϕ) +

∫
Ω

F (ϕ). (5.14)

More precisely, we set (cf. Lemma 4)

H := H ′ = L2(Ω), H0 := {ψ ∈ H: ψ = 0}, H0
0 = {ψ = const},

V = L∞(Ω), W := R(V ), ‖ f ‖W := ∥∥R−1 f
∥∥

V ,

G1(ψ) :=
∫
Ω

(
F (ψ) + 1

2
aψ2

)
, U = Um := {

ψ ∈ V :
∣∣ψ(x)

∣∣ < C0(m), a.e. x ∈ Ω
}
,

K(ψ) := − J ∗ ψ, l = ρ = 0, (5.15)

where the positive constant C0(m) is the same as in (4.11).
All the assumptions of Lemma 4 are fulfilled. Indeed, G1 is Fréchet differentiable on the whole V

with DG1(ϕ) ∈ W , for all ϕ ∈ V given by

〈
DG1(ϕ),h

〉 = ∫
Ω

(
F ′(ϕ) + aϕ

)
h, ∀h ∈ V .

Furthermore, DG1 is a real analytic operator, since F is assumed real analytic, and we have

〈
DG1(ϕ2) − DG1(ϕ1),ϕ2 − ϕ1

〉 = ∫
Ω

(
F ′′(ηϕ2 + (1 − η)ϕ1

) + a
)|ϕ2 − ϕ1|2

� c0‖ϕ2 − ϕ1‖2, ∀ϕ1,ϕ2 ∈ V ,

thanks to (H2), where η = η(x) ∈ (0,1). Hence (5.9) is satisfied (with α1 = c0). As far as (5.10) is
concerned, observe that DG1 is locally Lipschitz from V to H ′ . Indeed, we have
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∥∥DG1(ϕ2) − DG1(ϕ1)
∥∥

H ′ �
∥∥F ′(ϕ2) − F ′(ϕ1)

∥∥ + a∞‖ϕ2 − ϕ1‖ � Γm‖ϕ2 − ϕ1‖2,

for all ϕ1,ϕ2 ∈ Um , which yields (5.10) (with α2 = Γm). Moreover, the second Fréchet derivative is
given by

〈
D2G1(ϕ)h1,h2

〉 = ∫
Ω

(
F ′′(ϕ) + a

)
h1h2, ∀h1,h2 ∈ V ,

for all ϕ ∈ V . Hence D2G1(ϕ) ∈ L(V , W ) is an isomorphism for all ϕ ∈ Um . Finally, thanks to (H1),
the convolution operator K is compact from H to H and also from V to W (due to the compact
embedding W 1,∞(Ω) ↪→ C(Ω)). The Fréchet derivative of F = E is given by

D E(ϕ) = F ′(ϕ) + aϕ − J ∗ ϕ = μ, (5.16)

and we have that [ϕ∞,μ∞] ∈ Um × H0
0 satisfy D E(ϕ∞) = μ∞ iff z∞ := [0,ϕ∞] ∈ Em with ϕ∞ ∈ Um

and μ∞ = F ′(ϕ∞). Therefore, taking [ϕ∞,μ∞] ∈ Um × H0
0 such that D E(ϕ∞) = μ∞ , Lemma 4 entails

the existence of σ ,λ > 0 and θ ∈ (0,1/2] such that

∣∣E(ϕ) − E(ϕ∞)
∣∣1−θ � λ inf

{‖μ − μ̃‖, μ̃ = const
}

= λ‖μ − μ‖ � λcp‖∇μ‖, (5.17)

for all ϕ ∈ Um satisfying ϕ = ϕ∞ (i.e. ϕ − ϕ∞ ∈ H0) and ‖ϕ − ϕ∞‖H � σ , where cp is the Poincaré–
Wirtinger constant.

Now, let z0 ∈ Xm and z be a weak solution corresponding to z0. Take z∞ ∈ ω(z) and let {tn} be a
sequence such that tn → ∞ and z(tn) → z∞ in Xm . Consider the function

Φ(t) := E
(
z(t)

) − E(z∞).

We have

Φ ′(t) = −ν‖∇u‖2 − ‖∇μ‖2 � −cν

(‖∇u‖ + ‖∇μ‖)2 � 0, for a.e. t > 0, (5.18)

where cν = min{1, ν}/2. Since Φ(tn) → 0 and Φ is non-increasing in (0,∞), then Φ(t) → 0, as t → ∞
and Φ � 0. Now, due to (5.4) and to (5.17) (notice that 2(1 − θ) > 1), we have

Φ1−θ (t) =
(

1

2

∥∥u(t)
∥∥2 + E

(
ϕ(t)

) − E(ϕ∞)

)1−θ

�
∥∥u(t)

∥∥2(1−θ) + ∣∣E
(
ϕ(t)

) − E(ϕ∞)
∣∣1−θ

� cλ

(‖∇u‖ + ‖∇μ‖), (5.19)

for all t � t0, for some t0 > 0, provided that ‖ϕ(t)−ϕ∞‖ < σ , where cλ = max{1/
√

λ1, λcp}. Therefore,
by combining (5.18) and (5.19) we get

− d
Φθ(t) = −θΦθ−1(t)Φ ′(t) � θcν (∥∥∇u(t)

∥∥ + ∥∥∇μ(t)
∥∥)

, (5.20)

dt cλ
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provided that ϕ(t) ∈ Um with ‖ϕ(t) − ϕ∞‖ < σ and ϕ(t) = ϕ∞ = ϕ0. By means of a classical argu-
ment, together with Eqs. (1.1) and (1.2), we can now deduce that ϕt ∈ L1(τ ,∞; V ′). Indeed, for every
δ ∈ (0,1) there exists N = Nδ such that for all n � Nδ we have ‖u(tn)‖ < δ and ‖ϕ(tn) − ϕ∞‖ < δ. Set

t∗ = t∗(δ) := sup
{

t � tN :
∥∥u(s)

∥∥ < 1,
∥∥ϕ(s) − ϕ∞

∥∥ < σ, ∀s ∈ [tN , t]}. (5.21)

Then, estimate (5.20) holds for all t ∈ [tN , t∗]. By integrating it between tN and t∗ and possibly choos-
ing a larger N we have

t∗∫
tN

(∥∥∇u(τ )
∥∥ + ∥∥∇μ(τ)

∥∥)
dτ � cλ

θcν
Φθ (tN) < δ. (5.22)

We now claim that there exists δ∗ > 0 such that t∗(δ∗) = ∞. Indeed, suppose this is not true, i.e.
t∗(δ) < ∞ for all δ > 0. Then, we have

t∗∫
tN

∥∥ut(τ )
∥∥

V ′
div

dτ �
t∗∫

tN

(
ν
∥∥∇u(τ )

∥∥ + c
∥∥u(τ )

∥∥∥∥∇u(τ )
∥∥ + ∥∥ϕ(τ )

∥∥
L∞(Ω)

∥∥∇μ(τ)
∥∥)

dτ

� b1

t∗∫
tN

(∥∥∇u(τ )
∥∥ + ∥∥∇μ(τ)

∥∥)
dτ � b1δ, (5.23)

where b1 = max{ν + cΛ1(m)/
√

λ1, C0(m)}, and where Nδ is assumed large enough, i.e., such that
tNδ � t1(E(z0)) (see (4.11)). Furthermore, we have

t∗∫
tN

∥∥ϕt(τ )
∥∥

V ′ dτ �
t∗∫

tN

(∥∥∇μ(τ)
∥∥ + ∥∥ϕ(τ )

∥∥
L∞

∥∥u(τ )
∥∥)

dτ

� b2

t∗∫
tN

(∥∥∇u(τ )
∥∥ + ∥∥∇μ(τ)

∥∥)
dτ � b2δ, (5.24)

where b2 = max{1, C0(m)/
√

λ1}. Therefore, we deduce

∥∥u
(
t∗)∥∥

V ′
div

�
∥∥u(tN)

∥∥
V ′

div
+

t∗∫
tN

∥∥ut(τ )
∥∥

V ′
div

dτ � b3δ, (5.25)

∥∥ϕ(
t∗) − ϕ∞

∥∥
V ′ �

∥∥ϕ(tN) − ϕ∞
∥∥

V ′ +
t∗∫

tN

∥∥ϕt(τ )
∥∥

V ′ dτ � b4δ, (5.26)

where b3 = 1/
√

λ1 + b1 and b4 = 1 + b2. Let us now take a sequence {δn} such that δn → 0. Then,
from definition (5.21), for every n at least one of the following two conditions holds

∥∥u
(
t∗(δn)

)∥∥ = 1,
∥∥ϕ(

t∗(δn)
) − ϕ∞

∥∥ = σ . (5.27)
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By possibly extracting a subsequence we have, e.g., ‖ϕ(t∗(δn)) − ϕ∞‖ = σ . Writing (5.26) with δ = δn

and taking into account the precompactness of the trajectory in Gdiv × H we get a contradiction. Thus,
for some δ∗ > 0 we have (setting t := tNδ∗ )

∞∫
t

(∥∥∇u(τ )
∥∥ + ∥∥∇μ(τ)

∥∥)
dτ < δ∗ < ∞, (5.28)

so that

u ∈ L1(t,∞; V div), ∇μ ∈ L1(t,∞; H). (5.29)

This implies that ϕt ∈ L1(t,∞; V ′), due (4.1)2 and to the estimate

‖ϕt‖V ′ � ‖∇μ‖ + c‖ϕ‖V ‖∇u‖.

By using the precompactness of the trajectory in Gdiv × H again, we deduce that ϕ(t) → ϕ∞ in H
as t → ∞. Therefore we have z(t) → z∞ in Xm as t → ∞. We now provide an estimate for the
convergence rate in V ′

div × V ′ . Indeed, from (5.18) and (5.19) we deduce

Φ ′(t) � − cν

c2
λ

Φ2(1−θ)(t), ∀t > t,

which yields by integration

Φ(t) � Φ(0)
{

1 + b5Φ
1−2θ (0)t

}− 1
1−2θ , ∀t > t, (5.30)

where b5 = cν(1 − 2θ)/c2
λ . On the other hand, by integrating (5.20) from t � t to ∞ we get

∞∫
t

(∥∥∇u(τ )
∥∥ + ∥∥∇μ(τ)

∥∥)
dτ = cλ

θcν
Φθ (t), ∀t > t. (5.31)

Finally, we obtain

∥∥u(t)
∥∥

V ′
div

�
∞∫

t

∥∥ut(τ )
∥∥

V ′
div

dτ � b1

∞∫
t

(∥∥∇u(τ )
∥∥ + ∥∥∇μ(τ)

∥∥)
dτ , (5.32)

∥∥ϕ(t) − ϕ∞
∥∥

V ′ �
∞∫

t

∥∥ϕt(τ )
∥∥

V ′ dτ � b2

∞∫
t

(∥∥∇u(τ )
∥∥ + ∥∥∇μ(τ)

∥∥)
dτ . (5.33)

By combining (5.30)–(5.33) we deduce the convergence rate estimate (5.13) with γ =
(b1 + b2)cλθ

−1c−1
ν b−θ/(1−2θ)

5 . �
Remark 8. By using standard interpolation inequalities one can deduce from (5.13) convergence rate
estimates in stronger norms. Of course, the convergence exponent deteriorates.
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