
IN
ST

IT
UT

Eof
MATHEMATICS

A
ca

de
m

yo
f S

ci
en

ce
s

C
ze

ch
R

ep
ub

lic INSTITUTE of MATHEMATICS
A
CA

D
EM

Y
of

SC
IE
N
CE

S
of

th
e
CZ
EC

H
RE

PU
BL
IC Homogeneous grading affine

Todamodels

Alexander Zuevsky

Preprint No. 15-2014

PRAHA 2014





Homogeneous grading affine Toda models

Alexander Zuevsky

Institute of Mathematics, Academy of Sciences of the Czech Republic

E-mail: zuevsky@yahoo.com

Abstract. We derive equations for the homogeneous higher grading affine Toda models and
propose corresponding solutions. The main example of the homogeneous higher grading sine–
Gordon equation is discussed.

1. Introduction
The Lie-algebraic way to construct non-linear exactly solvable models in classical regions is
very well known and elaborated [10]. Applying the zero-curvature conditions on elements
of connection containing Lie algebra generators in appropriate grading subspaces, we obtain
systems of equations of motion associated to a specific Lie algebra. In [4] the higher grading
generalization to the conformal affine Toda models was considered. Elements of the higher
(then number one) grading subspaces are taking into account while connection elements are
constructed. The main example of [4] is the principal grading case. In this paper we consider
an alternative, the homogeneous grading case. We derive the systems of equations generalizing
the case of the sine–Gordon equation and provide quantum group solutions.

2. Homogeneous higher grading generalization of the affine Toda model
We start with the equations (23–26) of [4] (see subsection 6.2 in Appendix). Consider the case
l = 1. In the principal grading we obtain from (23) the sin–Gordon equation. Recall that In the

homogeneous grading of G̃ the grading subspaces are G̃n =
{
Hn, En±

}
. We take

E1 = E1
+ + E1

−, E−1 = E−1
+ + E1

−. (1)

Consider a particular case when we parameterize the group element b as

b = eϕH
0
. (2)

Then, substituting (1) and (2) into (23–25) we get the following system of equations

∂±ϕ = eη
(
e−2ϕ − e2ϕ

)
, ∂±ν = −eη

(
e2ϕ + e−2ϕ

)
, ∂±η = 0,

i.e., in the first equation is again the sine–Gordon equation. The solution to the field ϕ is then
the standard classical solution (28), [12] (see subsection 6.2 of Appendix).

Now consider the case l = 2. The equations corresponding to the principal grading can be
found in [4]. Here again we take b = eϕH

0
though it this is not the most general choice of the



group element parameterization since it does not contain dependence on the E0
± elements from

Ĝ, i.e., we have send corresponding fields near those generators to zero. Let us also put

F+
1 = κ+H1 + f++E

1
+ + f+−E

1
−, F−

1 = κ−H1 + f−+E
−1
+ + f−−E

−1
− .

Then the system (23–25) gives the following system of equations:

∂±ϕ = eη
(
e−2ϕ − e2ϕ

)
+ eη

(
f+− f

−
+ e

−2ϕ − f−− f
+
+ e

2ϕ
)
,

∂±ν = 2eη
(
e2ϕ − e−2ϕ

)
+ eη

(
−2κ+κ− + f−− f

+
+ e

2ϕ − f+− f
−
+ e

−2ϕ
)
, ∂±η = 0

(3)

∂+κ
− = −eη

(
f+− e

−2ϕ − f++ e
2ϕ
)
, ∂−κ

+ = eη
(
f−− e

−2ϕ − f−+ e
2ϕ
)
,

∂+f
−
+ = 2eηκ+, ∂−f

+
+ = −2eηκ−, ∂+f

−
− = −2eηκ+, ∂−f

+
− = 2eηκ−,

e2ϕf++κ
− = κ+f−+ , e−2ϕf+−κ

− = κ+f−− .
(4)

The formal general solution to (3–4) age given in [4]:

e−ϕ = eϕ
+
0 −ϕ0 ⟨Λ1|µ−1

+ µ−|Λ1⟩
⟨Λ0|µ−1

+ µ−|Λ0⟩m1
, (5)

for the ϕ field and for the F±
1 elements

⟨i|F+
i |i; i⟩ = eki1(ϕ

−
0i−ϕ0i)∂+

(
⟨i|γ−0 b

(
γ+0
)−1

µ−1
+ µ−|i; i⟩

)
.

In the homogeneous grading case, taking into account the parameterization of b element, we get

⟨1|F+
i |1; 1⟩ = e2(ϕ

−
0 −ϕ0)∂+

(
⟨1|eϕ

−
0 H

0
eϕH

0
e−ϕ

+
0 H

0
µ−1
+ µ−|1; 1⟩

)
.

Here we have made use of the properties of the i-th fundamental representation (corresponding

to the homogeneous grading) of the Lie algebra ŝl2. Thus, using (5) we get

⟨1|F+
i |1; 1⟩ = e2(ϕ

−
0 −ϕ0)∂+

(
⟨1|µ−1

+ µ−|1; 1⟩ ·
⟨Λ0|µ−1

+ µ−|Λm1
0 ⟩

⟨Λ1|µ−1
+ µ−|Λ1⟩

)
.

3. Dirac equations
Let’s switch notations similarly to Dirac field components, i.e., ψR = f++ , ψL = f−+ , ψ̃R = f+− ,

ψ̃L = f−− . Now use the extra conditions (4), substituting them into (3). Then we see that the
second summands in the first two formulae in (3) vanish, i.e., the final equations are

∂+∂−ϕ = eη
(
e−2ϕ − e2ϕ

)
, ∂+∂−ν = 2eη

(
e2ϕ − e−2ϕ

)
− 2eηκ+κ−, ∂+∂−η = 0, (6)

i.e., equations (6) do not differ much from the corresponding equations with l = 1.
Now suppose that η = η0 = const. Then substitute the last four equations of (??) on f = ψ

fields into the first two on κ± fields. Then we get

∂+∂−ψR = 2e2η0
(
ψ̃Re

−2ϕ − ψRe
2ϕ
)
, ∂+∂−ψ̃R = −2e2η0

(
ψ̃Re

−2ϕ − ψRe
2ϕ
)
, (7)

∂+∂−ψL = 2e2η0
(
ψ̃Le

−2ϕ − ψLe
2ϕ
)
, ∂+∂−ψ̃L = −2e2η0

(
ψ̃Le

−2ϕ − ψLe
2ϕ
)
, (8)

that can be rewritten as

∂+∂−ωR = 0, ∂+∂−τR = 2e2η0ωR
(
e−2ϕ − e2ϕ

)
, ∂+∂−ωL = 0, ∂+∂−τL = 2e2η0ωL

(
e−2ϕ − e2ϕ

)
,

(9)

where ωR,L = ψR,L+ ψ̃R,L, τR,L = ψR,L− ψ̃R,L. The upshot is that using such a parametrization

b = eϕH
0
we arrive at three systems of sine–Gordon like systems when η is a constant.



3.1. l = 2. The general case
Let’s consider such b ∈ G0 that involves all generators of the G0 in the homogenous gradation.

Take for instance b = eϕ+E
0
+eϕH

0
eϕ−E

0
− , Then for l = 2 the equations are

∂+
(
∂−bb

−1
)
+ ∂+∂−νC = e2η

[
E−2, bE2b

−1
]
+
[
F−
1 , bF

+
1 b

−1
]
, (10)

∂−F
+
1 = eη

[
E2, b

−1F−
1 b
]
, ∂+F

−
1 = −eη

[
E−2, bF

+
1 b

−1
]
, ∂+∂−η = 0, (11)

where F+
1 = κ+H1+ f++E

1
++ f+−E

1
−, F

−
1 = κ−H1+ f−+E

−1
+ + f−−E

−1
− . Let us take κ+ = κ− = 0.

Then we have

∂+ (∂−ϕ+ ϕ+∂−ϕ−) = e2η
[
e−2ϕ(1− ϕ2−)− e2ϕ − 2ϕ+ϕ−)

]
+eη

[
e−2ϕ(f+− − f++ϕ

2
−)(f

−
+ + f−−ϕ

2
+)− 2f++ f

−
−ϕ−ϕ+ − f++ f

−
− e

2ϕ
]
,

∂+∂−ν = 2e2η
[
−e−2ϕ(1− ϕ2−)− e2ϕ − 2ϕ+ϕ−)

]
+eη

[
e−2ϕ(f+− − f++ϕ

2
−)(f

−
+ + f−−ϕ

2
+)− 2f++ f

−
−ϕ−ϕ+ − f++ f

−
− e

2ϕ
]
,

∂+(∂−ϕ+ − 2(∂−ϕ)ϕ+ − ϕ2+(∂−ϕ−)e
−2ϕ) = e2η

[
2ϕ+e

−2ϕ(1− ϕ2−)− 2ϕ−
]

+eη
[
−2f−+ (e−2ϕ(f+− − f++ϕ

2
−)ϕ+ − ϕ−f

+
+

]
,

∂+(∂−ϕ−e
−2ϕ) = e2η

[
2ϕ+e

−2ϕ(1− ϕ2−)− ϕ−
]
+ eη

[
2f++ (e−2ϕ(f+− − f++ϕ

2
−)ϕ+ − ϕ−f

+
+

]
,

∂+∂−η = 0,
(12)

∂+f
−
+ = eη

[
−2(−f++ϕ− + e−2ϕ(f++ϕ

2
− + f+−ϕ+

]
, ∂+f

−
− = eη

[
2(−f++ϕ− + e−2ϕ(f++ϕ

2
− + f+−ϕ+

]
e−2ϕ(f++ϕ

2
− + f+− )(1 + ϕ2+)− 2f++ϕ−ϕ+ − f++ e

2ϕ = 0
(13)

∂−f
+
+ = eη

[
−2(−ϕ−e−2ϕ(f−+ − ϕ2+f

−
− )− ϕ+f

−
−
]
, ∂−f

+
− =

[
2(−ϕ−e−2ϕ(f−+ − ϕ2+f

−
− )− ϕ+f

−
−
]
,

−e−2ϕ(f−+ − ϕ2+f
−
− )(1 + ϕ2−)e

2ϕf−− + ϕ−ϕ+f
−
− = 0.

(14)
When κ+ ̸= 0 and κ− ̸= 0 the system of equations is more complicated.

4. Solitonic solutions from general solutions
In [12] it was shown how to extract solitonic solutions from the formal general solutions of the
affine Toda field equations. Let’s take γ±0 = 1 in (28) to be a constant function. Then the
mappings µ± are µ± = µ0±e

z±E± with µ0± being some fixed mappings independent of z±. Next

take Ẽ± in (30) as E± ≡ E±l+
∑l−1

N=1 c
±
NE±N where E± are elements of a Heisenberg subalgebra

of Ĝ, namely [E+, E−] = ΩC. One can consider principal of homogeneous Heisenberg subalgebras
for that purpose. In this paper we only deel with the principal case while the homogeneous case
will be discussed elsewhere. Thus, we arrive at a special solution to (27)

e−βλi·ϕ = e−βλi·ϕ0
(1)⟨λi|ex±E±µ0ex±E± |λi⟩(1)

((1)⟨λ0|ex±E±µ0ex±E± |λ0⟩(1))
mj .

(15)

In order to compute these solutions explicitly we have to remove E±-dependence from (15)

moving E+ to the right and E− to the left . Then we should find such a µ0 =
∏N
i=1 e

Vi so that



Vi would be eigenvectors with respect to the adjoint action of E±, i.e., [E±,Vi] = ω
(i)
± Vi. Then

it turns out [12] that resulting expressions provide us with solitonic solutions to the equations

under considerations while parameters ω
(i)
± characterize solitons.

5. Quantum group soliton solution for sine–Gordon in homogeneous grading
As in [11] one can show that the affine Toda models are co-invariant with respect to the light-
cone quantization. Namely, the equation of motion are preserved in form though a standard
normal ordering has to be introduced as well as some infinite constant comming from quantum
versions of Lax pair to generate equations using Lie algebra elements in quantum case. At the
same time infinite constants do not appear in final formal solutions to the light-cone quantized
versions of equations. In order to find quantum solutions, one has to replace [3], [8], [9] group
elements as well as state vectors formal general solutions by their quantum group counterparts.

In this subsection we write examples of quantum group solutions to the quantized affine Toda
model in the specific case of the higher grading sine–Gordon equation (the cases l = 1, 2, 3).

Recall [13], that the homogeneous grading subspaces of Uq(ŝl2) are qĜ0 = {K, γ, x+0 , x
−
0 },

qĜn = {x+n , x−n , an, n ∈ {Z− 0}}.

5.1. The case l = 1
From the commutation relations for x±m and am (see subsection 7.1 of Appendix) it follows that

in this realization of the quantum group Uq(ŝl2), the generators x±m, am ∈ Gm, x±0 ∈ G0. The
solution

e−βλj ·ϕ = e−βλj ·ϕ0
⟨Λj |e−a1z+eQϕ−ea−1z− |Λj⟩
⟨Λ0|e−a1z+eQϕ−ea1z− |Λ0⟩

mj ,

where |Λ0⟩ = |1⊗ 1⟩, |Λ1⟩ = |1⊗ e
α
2 ⟩ and the homogeneous grading quantum vertex operator is

ϕ− = exp

( ∞∑
k=1

a−k

[2k] q
7k
2 ζk

)
exp

(
−

∞∑
k=1

ak
[2k]q

− 5k
2 ζ−k

)
⊗ e

α
2 (−q3ζ)

(∂α+i)
2 .

Using the fact that [5] [ak, ϕ−] = q
7k
2

[k]
k ζ

k, ϕ−, k > 0, [ak, ϕ−] = q−
5k
2

[k]
k ζ

−k, ϕ−, k > 0, we
commute exp(−a1z+) with exp(Qϕ−) to the right and exp(Qϕ−) with exp(a−1z−) to the left.
The commutation of exp(−a1z+) withexp(a−1z−) gives exp(−z+z−[2])). Thus it follows that

⟨Λj |e−a1z+eQϕ−ea1z− |Λj⟩ = ⟨Λj |exp
(
Qe−q

7
2 z+ζ−q−

5
2 z−ζ−1

ϕ−

)
exp (−z+z−[2]) |Λj⟩,

(recall that exp(−a1z+) and exp(a−1z−) act on |Λj⟩ and ⟨Λj | as identities). Then we

expand exp

(
Qe−q

7
2 z+ζ−q−

5
2 z−ζ−1

ϕ−

)
as a series and apply the action of powers of operators

exp

( ∞∑
k=1

a−k

[2k] q
7k
2 ζk

)
and exp

(
−

∞∑
k=1

ak
[2k]q

− 5k
2 ζ−k

)
, to the left and to the right. Powers of

operators ϕ− act on the second part of tensor product as follows:

(ϕ−)
n |1⊗ e

α
2 ⟩ = (−q3ζ)

i+n
2 |1⊗ e

α(n+1)
2 ⟩, (ϕ−)n |1⊗ 1⟩ = (−q3ζ)i+

n−1
2 |1⊗ e

αn
2 ⟩.

Thus we have

e−βλj ·ϕ = e−βλj ·ϕ0
⟨Λj |e−z+z−[2]

∞∑
n=1

1
n!

(
Qe−q

7
2 z+ζ−q

− 5
2 z−ζ−1

)n

(−q3ζ)
i+n
2 |1⊗e

α(n+1)
2 ⟩

⟨Λ0|e−z+z−[2]
∞∑

n=1

1
n!

(
Qe−q

7
2 z+ζ−q

− 5
2 z−ζ−1

)n

(−q3ζ)i+
n−1
2 |1⊗e

αn
2 ⟩mj

= e−βλj ·ϕ0
⟨Λj |e−z+z−[2]exp

(
Qe−q

7
2 z+ζ−q

− 5
2 z−ζ−1

(−q3ζ)
i
2

)
(−q3ζ)

i
2⊗exp

(
e
α
2

)
|Λj⟩

⟨Λ0|e−z+z−[2]exp

(
Qe−q

7
2 z+ζ−q

− 5
2 z−ζ−1

(−q3ζ)
1
2

)
(−q3ζ)i−

1
2⊗exp

(
e
α
2

)
|Λ0⟩mj

.

(16)



In the limit q → 1 we obtain ordinary soliton solutions.

5.2. The case l = 2
As in [13], if we put ϕ̂±x,1 = 0, then E± = a±2+a±1, and one can integrate the equations for qµ±

to obtain qµ±(z
±) = qµ±(0)e

(a±2+a±1)z± . Then the quantum soliton solution to the quantized
(3) is

: e−βϕ̂(z
+,z−) :=: e−βϕ̂0(z

+,z−) : q⟨Λ1|e(a+1+a+2)z
+

qµ(0)e
(a−1+a−2)z

−
|Λ1⟩q

q⟨Λ0|e(a+1+a+2)z
+

qµ(0)e
(a−1+a−2)z

− |Λ0⟩q
,

where qµ(0) should be chosen the same as in [13]. Then we have

: e−βϕ̂(z
+,z−) :=: e−βϕ̂0(z

+,z−) :
q⟨Λ1|e−

α
2 exp(i(−1)∂α+1Q W2·qΦ(ζ))e

α
2 ζ

1
2 ∂α |Λ1⟩q

q⟨Λ0|e−
α
2 exp(i(−1)∂α+1Q W2·qΦ(ζ))e

α
2 ζ

1
2 ∂α |Λ0⟩q

=: e−βϕ̂0(z
+,z−) : 1+iW2Q

1−iW2Q
ζ

1
2 ,

where W2 = exp

(
2∑

k=1

7k
2

[k]
k ζ

kz+ −
2∑

k=1

5k
2

[k]
k ζ

−kz−
)
. Similarly,

q⟨1|F+
1 |1; 1⟩q = e2(ϕ̂

−
0 −ϕ̂)

×∂+
(
q⟨1|e(a+1+a+2)z+

qµ(0)e
(a−1+a−2)z− |1; 1⟩q × q⟨Λ1|e(a+1+a+2)z

+
qµ(0)e

(a−1+a−2)z
−
|Λ1⟩q

q⟨Λ0|e(a+1+a+2)z
+

qµ(0)e
(a−1+a−2)z

− |Λ0⟩q

)
.

Thus,

q⟨1|F+
1 |1; 1⟩q = e2(ϕ̂

−
0 −ϕ̂)

×∂+
(
q⟨1|e(a+1+a+2)z+e−

α
2 exp

(
i(−1)∂α+1Q W2 · qΦ(ζ)

)
e

α
2 ζ

1
2
∂αe(a−1+a−2)z− |1; 1⟩q

× q⟨Λ1|e−
α
2 exp(i(−1)∂α+1Q W2·qΦ(ζ))e

α
2 ζ

1
2 ∂α |Λ1⟩q

q⟨Λ0|e−
α
2 exp(i(−1)∂α+1QW2·qΦ(ζ))e

α
2 ζ

1
2 ∂α |Λ0⟩q

)
.

Finally,

q⟨1|F+
1 |1; 1⟩q = e2(ϕ̂

−
0 −ϕ̂)∂+

(
(1 + iW2Q[2]) · 1−iW2Q

1+iW2Q
ζ−

1
2

)
.

5.3. Case l=3
The states

|Λ0⟩(m) = |
m+1∏
k=1

a−(m−k) ⊗ 1⟩, |Λ1⟩(m) = |
m+1∏
k=1

a−(m−k) ⊗ e
α
2 ⟩, |Λ0⟩(1) = |Λ0⟩, |Λ1⟩(1) = |Λ1⟩,

are annihilated by the action of Gn, n ≥ m. Therefore for F+
m we have

(1)⟨Λ1|e
−

3∑
k=1

akz+
eQϕ−e

3∑
k=1

a−kz−
|Λ1⟩(m)

= (1)⟨Λ1|exp
(
Qe−q

7
2 z+ζ−q

−5
2 z−ζ−1

ϕ−

)
exp

(
−z+z−

3∑
k=1

[2k]
k [k]

)
e
−

3∑
k=1

akz+
|Λ1⟩(m).



Action by the operators e
−

3∑
k=1

akz+
on |Λ1⟩(m), m = 1, 2, 3 we get for instance,

e
−

3∑
k=1

akz+
|Λ1⟩(3) = |Λ1⟩(3) − z+(C2 + a−2)|Λ1⟩(1) + z2+C1C2|Λ1⟩(1),

where Ck = [2k]
k [k]. Then we expand eϕ− again and act on the states. Therefore we get an

infinite series over |Λ1⟩(3), |Λ1⟩(2), |Λ1⟩(1) which contain Ck, (k = 1, 2, 3), z+ and tensor ⊗-part

due to powers of e
α
2 (−q3ζ)

(∂α+i)
2 .

6. Appendix
6.1. Affine Kac–Moody algebras
Here we recall facts about affine Kac–Moody algebras [7], [4]. Consider an untwisted affine Kac-

Moody algebra Ĝ endowed with an integral grading Ĝ =
⊕

n∈ZZ Ĝn, and denote Ĝ± =
⊕

n>0 Ĝ±n.
By an affine Lie algebra we mean a loop algebra corresponding to a finite dimensional simple
Lie algebra G of rank r, extended by the center C and the derivation D. According to Tkac,
integral gradings of Ĝ are labelled by a set of co-prime integers s = (s0, s1, . . . sr), and the
grading operators are given by

Qs ≡ Hs +NsD − 1

2Ns
Tr (Hs)

2 C . (17)

Here Hs ≡
∑r

a=1 saλ
v
a ·H0, Ns ≡

∑r
i=0 sim

ψ
i , ψ =

∑r
a=1m

ψ
aαa , mψ

0 = 1. H0 is an element of

Cartan subalgebra of G; αa, a = 1, 2, . . . r, are its simple roots; ψ is its maximal root; mψ
a the

integers in expansion ψ =
∑r

a=1m
ψ
aαa; and λva are the fundamental co–weights satisfying the

relation αa · λvb = δab.
The principal grading operator Qppal is given by (17) where Ns = h is Coxeter

number. Therefore Ĝ0 = {H0
a , a = 1, 2, . . . r ;C;Qppal}, Ĝm = {E0

α(m) , E
1
−α(h−m)}, Ĝ−m =

{E0
−α(m) , E

−1
α(h−m)} where 0 < m < h, and α(m) are positive roots of height m. The element

B is parameterized as B = eφ·H̃
0
eν C eηQppal = eφ·H

0
eν̃ C eηQppal , where H̃0 was defined in [4] as

H̃0
a = H0

a − 1
Ns

Tr
(
HsH

0
a

)
C = H0

a − 2
α2
a

sa
Ns
C, and ν̃ = ν − 2

h δ̂ · φ, with δ̂ =
∑r

a=1
λa
α2
a
, and

λa being the fundamental weights of G. Let us denote by Hn, En
±, D, C the Chevalley basis

generators of ŝl2. The commutation relations are

[Hm , Hn] = 2mC δm+n,0, [Hm , En±] = ±2Em+n
± ,

[Em
+ , En−] = Hm+n +mC δm+n,0, [D , Tm] = mTm , Tm ≡ Hm, Em± .

The grading operator for the principal grading (s = (1, 1)) is Q ≡ 1
2H

0 + 2D. Then the

eigensubspaces are Ĝ0 = {H0, C,Q}, Ĝ2n+1 = {En+, En+1
− }, n ∈ ZZ, Ĝ2n = {Hn}, n ∈ {ZZ− 0}.

6.2. Higher grading affine Toda system
In this and the next sections we recall [4] the affine Toda system consrtuction. Consider
a two dimensional manifold M with local coordinates z±. Up to a gauge transformation,

(1, 0)-component lying in (see subsection 6.1 of Appendix)
⊕l

n=0 Ĝ+n and (0, 1)-component in⊕l
n=0 Ĝ−n of a flat connection A in the trivial holomorphic principal fibre bundle M×Ĝ −→ M

( l > 0 is fixed integer) satisfy the zero curvature condition

∂+A− − ∂−A+ + [A+ , A−] = 0. (18)



The components A± are the following (we keep notations of [4])

A+ = −B F+B−1 , A− = −∂−BB−1 + F−. (19)

Here B is a mapping M −→ Ĝ0 (Ĝ0 is a group with the Lie algebra Ĝ0) and F
± (1 ≤ m ≤ l−1)

are mappings to
⊕l

n=1 Ĝ±n

F± = E±l +

l−1∑
m=1

F±
m ,

where E±l are some fixed elements of Ĝ±l and F
±
m ∈ Ĝ±m, (1 ≤ m ≤ l − 1). Substituting (19)

into (18) one arrives at the equations of motion

∂+
(
∂−BB

−1
)

= [E−l , B ElB
−1] +

l−1∑
n=1

[F−
n , B F+

n B−1] , (20)

∂−F
+
m = [El , B

−1 F−
l−mB] +

l−m−1∑
n=1

[F+
n+m , B

−1 F−
n B] , (21)

∂+F
−
m = −[E−l , B F

+
l−mB

−1]−
l−m−1∑
n=1

[F−
n+m , B F

+
n B−1] . (22)

Since Qs, C ∈ Ĝ0 then B can be parameterized as B = b eη Qs eν C where b is a mapping to G0,
the subgroup of Ĝ0 generated by all elements of Ĝ0 other than Qs and C. Substituting B into
the equations of motion (20–22) one has

∂+
(
∂−bb

−1
)

+ ∂+∂− ν C = elη[E−l , b El b
−1] +

l−1∑
n=1

enη [F−
n , b F+

n b
−1] , (23)

∂−F
+
m = e(l−m)η [El , b

−1 F−
l−m b] +

l−m−1∑
n=1

enη[F+
m+n , b

−1 F−
n b] , (24)

∂+F
−
m = −e(l−m)η [E−l , b F

+
l−m b

−1]−
l−m−1∑
n=1

enη[F−
m+n , b F

+
n b−1] , (25)

∂+∂− η Qs = 0 . (26)

Now consider the case l = 1. Let us parameterize the element B in the homogeneous grading
of Ĝ, [4]. From the equations (23–26) for an infinite dimensional Lie algebra Ĝ in the principal
grading we obtain the affine Toda field theory systems of equations

∂+∂−ϕ+ 4µ
β

r∑
i=1

(
mi

αi

α2
i
exp(βαi · ϕ)− ψ

2 exp(−β · ϕ)
)
= 0. (27)

The formal general solution to the above equation was introduced in [12]:

e−βλi·ϕ = e−βλi·ϕ0
(1)⟨λi|(γ+0 )−1µ−1

+ (z+)µ−(z−)(γ−0 )|λi⟩(1)

((1)⟨λ0|(γ+0 )−1µ−1
+ (z+)µ−(z−)(γ−0 )|λ0⟩(1))

mj = e−βλi·ϕ0 (1)⟨λi|B−1|λi⟩(1)

((1)⟨λ0|B−1|λ0⟩(1))
mj , (28)

The general solutions to the matter fields F±
i may be written in the following form. For m = 1

in (23–26) one has [4]

⟨i|F+
1 |i; i⟩ = f+i = e

r∑
l=0

kil(ϕ
−−ϕ)l

eν0∂+

(
⟨i|µ−1

+ µ−|i; i⟩
⟨0|µ−1

+ µ−|0⟩mi

⟨i|µ−1
+ µ−|i⟩

)
.



Here |i; i⟩ denotes an element of the Verma module which is result of the action of the lowering
generator on the highest state vector. The fact that (28) is indeed a solution to (27) may

be checked by using the representation theory of Ĝ. A map g : M −→ G appearing in the
gradient form of the flat connection A± = g−1∂±g, may be factorized (according to the Lie
algebra decomposition G = G− ⊕ G0 ⊕ G+) by the modified Gauss decomposition g = µ−ν+γ0−
or g = µ+ν−γ0+ with maps γ0± : M −→ G0, µ±, ν± : M −→ G±. The grading condition
provides the holomorphic property of µ±, i.e., they satisfy the initial value problem

∂±µ±(z±) = µ±(z±)Ẽ±(z±), (29)

Ẽ±(z±) =
M∑
m=1

Ẽ±
m(Φ

±), Ẽ±
m(Φ

±) =
∑
α∈∆+

m

Φ±m
α (z±)X±α, (30)

with arbitrary functions Φ±m
α (z±) determining the general solution to the system. Note that

the summations in (30) are performed over the set of positive roots ∆+
m of G =

∑
m∈ZZ Gm in

the subspace Gm.

7. Soliton solution for the sine–Gordon in homogeneous grading
Another way to construct soliton solutions [13] to the sine–Gordon equation is to consider the
formal general solution (27) in the homogeneous grading and to use vertex operators [7] which are

related to the homogeneous Heisenberg subalgebra of ŝl2. Take the general solution (28) to the
affine Toda system (27). In the homogeneous grading the mappings γ± can be parameterized as

γ± = edϕdecϕceϕ
±
0 x

±
0 , where d is the grading operator, c is the center of ŝl2 and x±k are generators

of the subspaces Ĝk corresponding to the homogeneous grading. The mappings µ± satisfy (29)
where κ±(z

±) = a±1 + ϕ±x±1 . In order to obtain a soliton solution we put ϕ± = 0, ϕ±0 = 0.
Then the general solution reduces to

e−βϕ(z
+,z−) = ⟨Λ1|ea+1z+µ(0)ea−1z− |Λ1⟩

(
⟨Λ0|ea+1z+µ(0)ea−1z− |Λ0⟩

)−1
. (31)

The following group element µ(0) in (31)

µ(0) = e−
α
2
N

N∏
n=1

[
exp

(
(−1)∂α+1iQnΦ(ζn)

)
e

α
2 ζ

1
2
∂α

n

]
,

generates an N–soliton solution. Here the action of the operators 1
2∂α and e

α
2 on the highest

vectors |Λn⟩ = |1 ⊗ e
α
2
n⟩, n = 0, 1 is the same as in the case of U ′

q(ŝl2) [7] when q = 1. The
operator Φ(ζ) is given by

Φ(ζ) = exp

( ∞∑
k=1

a−n
n
ζn

)
exp

(
−

∞∑
k=1

a+n
n
ζ−n

)
,

and diagonalises the action of a±k, k ∈ IN, i.e., [a±k,Φ(ζ)] = ζ±kΦ(ζ). The product of two
vertex operators can be normal ordered as

Φ(ζ1)Φ(ζ2) = X(x) : Φ(ζ1)Φ(ζ2) :,

where X(x) = exp(−
∞∑
n=1

x2n/n) = exp
(
log(1− x2)

)
. When x = 1, X(x) vanishes which results

in Φ(ζ) · Φ(ζ) = 0. Therefore the exponential of Φ(ζ) operator terminates after the first order.



In the limit q −→ 1 soliton–soliton, antisoliton–antisoliton and soliton–
-antisoliton scattering reduce to the classical case, i.e.,

F a(ζ1)F
b(ζ2) =

1

x

X(x)

X(x−1)
F b(ζ2)F

a(ζ1),

where x2 = ζ2/ζ1, a, b denote soliton (antisoliton), and the factor 1/x comes from the

commutation of e
α
2 ζ

1
2
∂α

1 and e
α
2 ζ

1
2
∂α

2 operators. Therefore the vertex operator generating a
classical soliton solution is

F (ζ) = Q Φ(ζ) e
α
2 ζ

1
2
∂α

2 .

Taking into account the properties of the operator F (ζ) we rewrite the solution (31) as

e−βϕ(z
+,z−) =

⟨Λ1|(1+(−1)∂α+1iQΦ(ζ))e
α
2 ζ

1
2 ∂α |Λ1⟩

⟨Λ0|(1+(−1)∂α+1iQΦ(ζ))e
α
2 ζ

1
2 ∂α |Λ0⟩

=
(
1 + iQeζz

+−ζ−1z−
)(

1− iQeζz
+−ζ−1z−

)
ζ.

The antisoliton solution can be associated with the vertex operator

F̄ (ζ) = −Q Φ(ζ) e
α
2 ζ

1
2
∂α .

7.1. Quantized universal enveloping algebra U ′q(ŝl2)
In the spirit of [2], [5], the quantised enveloping algebra Uq(sl2) is an associative algebra
generated by X+, X−, H with q-deformed commutation relations

X+X− −X−X+ =
(
qH − q−H

) (
q − q−1

)−1
, HX± −X±H = ±2X±.

It possesses a Hopf algebra structure with the deformed adjoint action

(adX±)qa = X±aqH/2 − q∓1qH/2aX±, (adH)qa = Ha− aH,

for all a ∈ Uq(sl2). Let us recall the second Drinfeld realization of the quantized universal

enveloping algebra U ′
q(ŝl2), (i.e., Uq(ŝl2) without grading operator) [2], [6], which is a natural

quantum analogue of the algebra ŝl2 in the loop realizations. U ′
q(ŝl2) is an associative algebra

generated by {x±k , k ∈ ZZ; an, n ∈ {ZZ − 0}; γ±
1
2 ,K}, where γ±

1
2 belong to the center of the

algebra, satisfying the commutation relations

[K, ak] = 0, [ak, al] = δk,−l
[2k]
k

γk−γ−k

q−q−1 , Kx±kK
−1 = q±2x±k ,[

an, x
±
k

]
= ± [2n]

n γ∓
|n|
2 x±n+k,

[
x+k , x

−
n

]
=

γ(k−n)/2ψk+n−γ(n−k)/2ϕk+n

q−q−1 ,

x±k+lx
±
l − q±2x±l x

±
k = q±2x±k x

±
l+1 − x±l+1x

±
k .

The generators ϕk and ψ−k, k ∈ ZZ+ are related to ak and a−k by means of the expressions
∞∑
k=0

ψmz
−m = Kexp

(
(q − q−1)

∞∑
k=1

akz
−k
)
,

∞∑
k=0

ϕ−mz
m = K−1exp

(
−(q − q−1)

∞∑
k=1

a−kz
k

)
, i.e.,

ψm = 0, m < 0; ϕm = 0, m > 0. Here [k] = qk−q−k

q−q−1 .

It is easy to define the grading operators corresponding to the principal and homogeneous

grading of U ′
q(ŝl2) by analogy with the grading of U ′

q(G) where G is a simple Lie algebra. The



principal grading can be realized with the help of the operator Dpx = 1
2qK

−1
(
d
dq (KxK

−1)
)
K+

2λ d
dλx, where x ∈ Uq(ŝl2) and λ is an affinization parameter. The power of λ is denoted

by the subscript of U ′
q(ŝl2) generators. Then the grading subspaces are qĜ0 = {K, γ},

qĜ2n+1 = {x+n , x−n+1, n ∈ ZZ}, qĜ2n = {an, n ∈ {ZZ − 0}}. The grading operator for the

homogeneous grading is Dhx = 2λ d
dλx, so that the grading subspaces are qĜ0 = {K, γ, x+0 , x

−
0 },

qĜn = {x+n , x−n , an, n ∈ {ZZ− 0}}.
The level one irreducible integrable highest weight representation of U ′

q(ŝl2) can be
constructed in the following way [6]. Let P = ZZα2 , Q = ZZα be the weight/root lattice of sl2.
Consider the group algebras F [P ], F [Q] of P and Q. The multiplicative basis of F [P ] is formed
by e

α
2
n, n ∈ ZZ. The F [Q]-module is split into F [P ] = F [P ]0 ⊕ F [P ]1 where F [P ]n = F [Q]e

α
2
n.

The sl2-module structure on the space W = F [a−1, a−2, ...]⊗ F [P ] is given by the action of the
ak, k ∈ {ZZ− 0} and eα, ∂α = a0 generators in accordance with the rules

ak(f ⊗ eβ) = (akf ⊗ eβ), k < 0, ak(f ⊗ eβ) = ([ak, f ]⊗ eβ), k > 0,
eα(f ⊗ eβ) = (f ⊗ eα+β), ∂α(f ⊗ eβ) = (α, β)(f ⊗ eβ),

K = 1⊗ q∂α , γ = q ⊗ id.

Then W is a U ′
q(ŝl2)-module. Its submodules are isomorphic to irreducible highest weight

modules V (Λn) with the highest vectors |Λn⟩ = |1⊗ e
αn
2 ⟩, n = 0, 1.
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