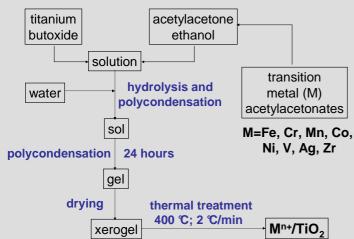
Visible-light active TiO₂ for microwave assisted photocatalytic reactions using mercury electrodeless discharge lamps

Hana Žabová and Vladimír Církva


Institute of Chemical Process Fundamentals of the AS CR, v.v.i. Rozvojová 135, 165 02 Prague, Czech Republic

Introduction

The photocatalytic reactions using active titanium dioxide have been successfully developed as a method for remediation of contaminated water and purification of polluted air. The research is aimed to prepare a visible-light response photocatalyst via transition metal ions doping. Titanium dioxide nanoparticles doped with various ions of transition metals Mn+ (M=Fe, Cr, Mn, Co, V, Ni, Ag, Zr) were prepared by using the sol-gel method based on hydrolysis of titanium butoxide. The photocatalytic activity was evaluated by the degradation of mono-chloroacetic acid in a microwave field using mercury electrodeless discharge lamps [1].

Experimental

Preparation of doped titanium dioxide

volume ratio TiBu:AcAc:EtOH=1:1:1 molar ratio TiBu:H₂O=1:10

formation of thin films dip-coating method v=6 cm.min⁻¹

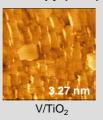
Electrodeless discharge lamp and experimental set-up

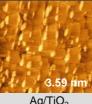
Principle of operation $e^{-} \xrightarrow{MW} e^{-} (accelerated)$ $e^- + Ar \rightarrow Ar^+ + 2e^$ $e^- + Ar^+ \rightarrow Ar^*$ $Ar^* + Hg \rightarrow Hg^* + Ar$ $Hg^* \rightarrow Hg + hV$

150 ml mono-chloroacetic acid c₀=0.1 mol/l; 900 W; 5.5 µW.cm⁻²

> addition of transition metals changes the morphology of prepared layers

Preparation glass envelope-Pyrex 20x40 mm filling material 2.5 µl Hg inert gas argon, 20 Torr


experimental set-up

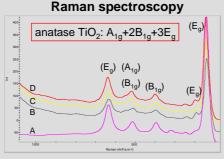

Results

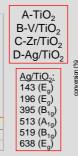
Atomic Force Microscopy (AFM)

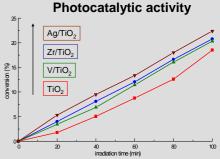
by electron microprobe Aq/TiO₂ raman spectroscopy revealed anatase as

a predominant crystalline phase for pure/doped TiO₂

Electron microprobe (EMP)


changes the morphology		x(wt.%)	thickness (nm)
of prepared layers	Zr/TiO ₂	2.13	149
	V/TiO ₂	2.24	143
amount of transition metal	Ag/TiO ₂	0.095	115
ions in wt.% was determined			


no effect - Fe, Co, Ni, Mn, Cr silver doped titania layers show the highest activity in a microwave assisted photocatalysis of MCAA


UV-Vis spectroscopy TiO₂ $TiO_2=367 nm$ V/TiO₂ V/TiO₂=410 nm $Zr/TiO_2=420 \text{ nm}$ Zr/TiO₂ Ag/TiO₂=424 nm Ag/TiO₂

significant absorption in visible region

shows these three samples

Conclusion

Compared with pure titania, the UV-Vis spectra of Ag+, Zr⁴⁺ and VO²⁺ doped titanium dioxide show significant absorption in visible region. The degradation efficiency of MCAA in a microwave field on these TiO₂ layers was higher than those of pure TiO₂.

Acknowledgements

The authors thank the Grant Agency of the Czech Republic for funding this research (Grant No. 104/06/0992). In addition, Hana Žabová thanks the Grant Agency of the Czech Republic for part funding her PhD studentship (Doctoral Grant No. 203/08/H032).

References