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In this Supplemental material we bring more informa-
tion about the statistical evaluation of the conditional
mutual information (CMI) as a measure of directional
interactions, then a discussion of the frequency localiza-
tion ability of the complex continuous wavelet transform
(CCWT). Searching for clues to understanding of the
physical mechanisms underlying the observed cross-scale
interactions we point to some interesting facts about the
North Atlantic Oscillation and its influence on the atmo-
spheric circulation. However, for convenience of readers,
we start with a brief introduction of the mutual informa-
tion, the CMI in a general form and the form of the CMI
used for the inference of causal relations from time series.
We also make a note on the dependence of the CMI on
the forward time lag and present examples of this depen-
dence in the studied phase-amplitude interactions in the
air temperature.

I. DEFINITION OF MUTUAL INFORMATION

Consider a discrete random variable X with a set of
values Ξ. The probability distribution function (PDF)
for X is p(x) = Pr{X = x}, x ∈ Ξ. We denote the
PDF by p(x), rather than pX(x), for convenience. Anal-
ogously, in the case of two discrete random variables X
and Y with the sets of values Ξ and Υ, respectively, their
probability distribution functions will be denoted as p(x),
p(y) and their joint PDF as p(x, y). The entropy H(X)
of a single variable, say X, is defined as

H(X) = −
∑
x∈Ξ

p(x) log p(x), (1)

and the joint entropy H(X,Y ) of X and Y is

H(X,Y ) = −
∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(x, y). (2)

The conditional entropy H(Y |X) of Y given X is

H(Y |X) = −
∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(y|x). (3)
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The average amount of common information, contained
in the variables X and Y , is quantified by the mutual
information I(X;Y ), defined as

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (4)

The conditional mutual information I(X;Y |Z) of the
variables X, Y given the variable Z is given as

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z). (5)

For Z independent of X and Y we have

I(X;Y |Z) = I(X;Y ). (6)

By a simple manipulation we obtain

I(X;Y |Z) = I(X;Y ;Z)− I(X;Z)− I(Y ;Z). (7)

Thus the conditional mutual information I(X;Y |Z)
characterizes the “net” dependence between X and Y
without a possible influence of another variable, Z.

Consider now n discrete random variables X1, . . . , Xn

with values (x1, . . . , xn) ∈ Ξ1 × · · · × Ξn, with
PDF’s p(xi) for individual variables Xi and the joint
distribution p(x1, . . . , xn). The mutual information
I(X1;X2; . . . ;Xn), quantifying the common information
in the n variables X1, . . . , Xn can be defined as

I(X1;X2; . . . ;Xn) = (8)

H(X1) +H(X2) + · · ·+H(Xn)−H(X1, X2, . . . , Xn).

It is possible, however, to define mutual information
functionals quantifying common information of groups
of variables and also various multivariate generalizations
of the conditional mutual information, see Ref. [1].

All the information theoretic functionals can be defined
for continuous random variables. The sums are substi-
tuted by integrals and the PDF’s by the probability dis-
tribution densities [2, 3]. Among the continuous proba-
bility distributions a special role is played by the Gaus-
sian distribution. Let X1, . . . , Xn be an n-dimensional
normally distributed random variable with a zero mean
and a covariance matrix C. Then (see Refs. [1, 3] and
references therein)

IG(X1; . . . ;Xn) =
1

2

n∑
i=1

log(cii) − 1

2

n∑
i=1

log(σi), (9)
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FIG. 1. The conditional mutual information I(ϕ1(t);ϕ2(t+ τ)|ϕ2(t)), characterizing the causal influence of the phase ϕ1(t) of
the autonomous Rössler system on the phase ϕ2(t + τ) of the driven Rössler system (the black curve); and the conditional
mutual information I(ϕ2(t);ϕ1(t + τ)|ϕ1(t)), characterizing the causal influence in the opposite direction ϕ2(t) → ϕ1(t + τ)
without any coupling (the red curve) as the function of the time lag τ .

where cii are the diagonal elements (variances) and σi

are the eigenvalues of the n× n covariance matrix C.
The entropy and information are usually measured in

bits if the base of the logarithms in their definitions is 2,
here we use the natural logarithm and therefore the units
are called nats.

II. INFERENCE OF CAUSALITY WITH THE
CONDITIONAL MUTUAL INFORMATION

Let {x(t)} and {y(t)} be time series considered as re-
alizations of stationary and ergodic stochastic processes
{X(t)} and {Y (t)}, respectively, t = 1, 2, 3, . . . . In the
following we will mark x(t) as x and x(t+ τ) as xτ , and
the same notation holds for the series {y(t)}.
The mutual information I(y;xτ ) measures the aver-

age amount of information contained in the process {Y }
about the process {X} in its future τ time units ahead
(τ -future thereafter). This measure, however, could also
contain an information about the τ -future of the process
{X} contained in this process itself, if the processes {X}

and {Y } are not independent, i.e., if I(x; y) > 0. In or-
der to obtain the “net” information about the τ -future
of the process {X} contained in the process {Y } we use
the conditional mutual information I(y;xτ |x). The latter
was used by Paluš et al. [4] to define the coarse-grained
transinformation rate, able to detect direction of coupling
of unidirectionally coupled dynamical systems.

We used the standard statistical language in which we
considered the time series {x(t)} and {y(t)} as realiza-
tions of stochastic processes {X(t)} and {Y (t)}, respec-
tively. If the processes {X(t)} and {Y (t)} are substituted
by dynamical systems evolving in measurable spaces of
dimensions m and n, respectively, the variables x and y
in I(y;xτ |x) and I(x; yτ |y) should be considered as n−
and m−dimensional vectors. In experimental practice,
however, usually only one observable is recorded for each
system. Therefore, instead of the original components

of the vectors X⃗(t) and Y⃗ (t), the time delay embedding
vectors according to Takens [5] are used. Then, back in
the time-series representation, we have

I
(
Y⃗ (t); X⃗(t+ τ)|X⃗(t)

)
= I

((
y(t), y(t− ρ), . . . , y(t− (m− 1)ρ)

)
;x(t+ τ)|

(
x(t), x(t− η), . . . , x(t− (n− 1)η)

))
, (10)
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where η and ρ are time lags used for the embedding

of the trajectories X⃗(t) and Y⃗ (t), respectively. Only
information about one component x(t + τ) in the τ -
future of the system {X} is used for simplicity. The
CMI characterizing the influence in the opposite direction

I
(
X⃗(t); Y⃗ (t+ τ)|Y⃗ (t)

)
is defined in full analogy. Exactly

the same formulation can be used for Markov processes
of finite orders m and n. Based on the idea of finite-order
Markov processes, Schreiber [6] has proposed a “transfer
entropy” which is an equivalent expression for the condi-
tional mutual information (10) – see Refs. [7, 8].
Paluš & Vejmelka [8] apply the CMI (10) in the infer-

ence of coupling directionality from time series generated
by the unidirectionally coupled Rössler systems given by
the equations

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + a1 x2 (11)

ẋ3 = b1 + x3(x1 − c1)

for the autonomous system, and

ẏ1 = −ω2y2 − y3 + ϵ(x1 − y1)

ẏ2 = ω2y1 + a2 y2 (12)

ẏ3 = b2 + y3(y1 − c2)

for the response system. Here we will use the parameters
a1 = a2 = 0.15, b1 = b2 = 0.2, c1 = c2 = 10.0, and
frequencies ω1 = 1.015 and ω2 = 0.985, and the coupling
strength ϵ = 0.08.
The CMI (10) can be evaluated either using the time

series of the components x1, y1; or the phases ϕ1, ϕ2,
obtained from the components x1, y1, respectively, using
the analytic signal approach introduced in Eqs. (1)–(3)
in the Letter. The CMI’s I(ϕ1(t);ϕ2(t + τ)|ϕ2(t)) and
I(ϕ2(t);ϕ1(t + τ)|ϕ1(t)) can be evaluated for a range of
the forward time lag τ , see Fig. 1. Note that the τ -
dependence of the CMI’s reflects an oscillatory character
of the underlying dynamics, rather than a time delay
between the driving system and the driven system. In
the example of the Rössler systems (11), (12) there is an
“immediate” (zero-lag) coupling given by the diffusive
term ϵ(x1 − y1) in (12). The study [8] suggests the use
of the lag-averaged CMI as a more robust measure for
the inference of causality than any single-lag CMI value,
including the maximum CMI value over a range of the
lags.
In the present study we use the CMI in order to in-

fer directional, mixed phase-amplitude interactions. The
functional

I(ϕ1(t);A2(t+τ)|A2(t), A2(t−η), . . . , A2(t−mη)) (13)

is evaluated and averaged for the forward lags τ from 1
to 750 days. This range was empirically established. We
have studied the dependence of (13) on τ for different
pairs of the time scales, i.e. pairs of the periods p1, p2 (p1
for the phase ϕ1 and p2 for the amplitude A2) – see the

examples in Figs. 2–4. The range 1 – 750 days includes all
observed patterns of positive CMI. Only the lag-averaged
value of the CMI is used in the statistical testing in order
to infer whether a directional influence exists or not. The
time-lag dependence of the CMI is not a subject of this
study.

III. STATISTICAL EVALUATION

Paluš & Vejmelka [8] also discuss numerical and sta-
tistical problems of inference of directional interactions
from time series. They demonstrate how properties of
dynamics underlying analyzed time series can influence
estimators of conditional mutual information (or other
measures of directional interactions). In particular, dif-
ferent levels of complexity and/or different typical time
scales (main frequencies of oscillatory processes) can in-
duce bias, e.g. estimates of the CMI quantifying inter-
actions in the direction from slower to faster systems are
greater than estimates of the CMI in the opposite direc-
tion without underlying causal interactions, i.e. either in
the case of a symmetric coupling, or no coupling at all.
Therefore the absolute values of CMI estimates are not
informative, but it is necessary to relate the CMI val-
ues obtained from studied data to ranges of CMI values
obtained from uncoupled processes which share impor-
tant properties of analyzed data. This is the base of
the surrogate data testing procedure in which we ma-
nipulate the original data in a randomization procedure
which preserves original frequency spectra or variance on
all relevant time scales; and the autocorrelation function
or both the autocorrelation function and auto-mutual in-
formation function in the cases of the Fourier transform
(FT) and the multifractal (MF) surrogate data, respec-
tively. By construction, in the surrogate data the inter-
actions between different time scales do not exist (FT
surrogates), or only those explained by random cascades
on wavelet dyadic trees are allowed (MF surrogates).

The specificity of causality inference methods can be
secured by an appropriate choice of surrogate data which
reproduce the bias of a CMI estimator applied to the
studied data. The sensitivity of the method can be guar-
anteed by a certain bound on the estimator variance [8].
Typically, a lower variance requires a larger amount of
data or, more precisely, a time series representing a longer
epoch of evolution of the studied process [8, 9]. In an
extensive numerical study we have found that the time
series length 32768 daily SAT samples is necessary for
reliable inference of the directed phase–amplitude inter-
actions for the CMI functional (13) even though we use
the estimator of mutual information (9) derived for Gaus-
sian processes [1, 3, 10]. This type of the CMI estimator
is also used by Molini et al. [11] in order to infer causality
across rainfall time scales. However, here we specifically
evaluate the influence of the phase ϕ1 of slow oscillations
on the amplitude A2 of a higher-frequency variability.

Using the analytic signal approach introduced in Eqs.
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FIG. 2. The conditional mutual information I(ϕ1(t);A2(t+ τ)|A2(t), A2(t− η), A2(t− 2η)), characterizing the causal influence
of the phase ϕ1(t) on the amplitude A2(t + τ) (the black curve); and the conditional mutual information I(A2(t);ϕ1(t +
τ)|ϕ1(t), ϕ1(t − η), ϕ1(t − 2η)), characterizing the causal influence in the opposite direction A2(t) → ϕ1(t + τ) (the red curve)
as the function of the time lag τ . The periods p1 for the phase ϕ1 and p2 for the amplitude A2, given as p1 – p2 are (a) 8yr –
1.3yr; (b) 6yr – 1.3 yr; and (c) 11yr – 1.3yr. Note that the backward lag η is always set to 1/4 of the period of slow oscillations,
i.e., it is 2yr in (a), 1.5yr in (b) and 2.75yr in (c). The SAT data from the Prague-Klementinum station was used.

(1)–(3) in the Letter, one can study various types of
cross-scale interactions involving the instantaneous am-
plitudes, the instantaneous phases, or instantaneous fre-
quencies, obtained as temporal derivatives of the latter.
The successful detection of the phase-amplitude inter-
actions, using the estimator (9), means that the ampli-
tudes of the faster variability change within the same
time scales as the phase of the slow oscillatory modes,
while the high-frequency variability is encoded in the
phase of the faster (small time-scale) variability. For de-
tection of all possible interactions one should apply some
of general nonlinear estimators which, however, would
require even more data for a satisfactory detecting per-
formance [8, 9]. For instance, we have tested a presence
of phase-phase interactions using the equiquantal binning
algorithm [8], however, no consistent interaction patterns
have been observed in the SAT data. It is premature
to conclude whether such interactions do not exist, or
present methods and available data do not allow a suc-
cessful detection. Therefore, in the present Letter we
report only the phase-amplitude interactions which have
been reliably detected.

The time series length equal to the power of two
(32768) was chosen because of the application of the dis-
crete Fourier and wavelet transforms, the latter was used
for the construction of the wavelet dyadic trees for the
multifractal randomization [12].

An example of the statistical evaluation of the CMI
I(ϕ1(t);A2(t+ τ)|A2(t), A2(t− η), A2(t− 2η)), quantify-
ing the causal influence of the phase ϕ1 on the amplitude
A2 for the phase ϕ1(t) obtained by using the complex con-
tinuous wavelet transform with the central period 8 years
and the amplitude A2(t) obtained by using the CCWT
with the central period 1.3 years from the Prague-
Klementinum daily SAT is presented in Fig. 5. While the
CMI value obtained for the original SAT data is 0.0452,
the histogram of the CMI values for 1000 realizations of
the FT surrogate data is presented in Fig. 5, the left
panel. From the cumulative histogram in the right panel
of Fig. 5 we can read that the original data CMI value
(0.0452) is greater than 99.7% of the surrogate data CMI
values. The surrogate data are realizations of the null hy-
pothesis of no cross-scale interactions, i.e. the hypothesis
that I(ϕ1(t);A2(t+ τ)|A2(t), A2(t− η), A2(t− 2η)) = 0.
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FIG. 3. The same as in Fig. 2, but for the periods (a) 8yr – 2.5yr; (b) 8yr – 2.5 yr (a subset of the time lags); and (c) 6yr –
2.5yr.
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FIG. 4. The same as in Fig. 2, but for the periods (a) 8yr – 0.8yr; (b) 11yr – 0.8 yr; and (c) 7yr – 0.4yr.
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FIG. 5. Histogram (left panel) and cumulative histogram (right panel) of the conditional mutual information I(ϕ1(t);A2(t +
τ)|A2(t), A2(t−η), A2(t−2η)) for 1000 realizations of the FT surrogate data. The period for ϕ1 is 8 years, the period for A2 is 1.3
years. The corresponding CMI value for the original Prague SAT data is I(ϕ1(t);A2(t+τ)|A2(t), A2(t−η), A2(t−2η)) = 0.0452
which, according to the cumulative histogram, corresponds to the “significance level” 0.997; i.e. the significantly positive CMI
establishes the directional ϕ1 → A2 interaction with p < 0.003.
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FIG. 6. Histogram (left panel) and cumulative histogram (right panel) of the conditional mutual information I(A2(t);ϕ1(t +
τ)|ϕ1(t), ϕ1(t−η), ϕ1(t−2η)) for 1000 realizations of the FT surrogate data. The period for ϕ1 is 8 years, the period for A2 is 1.3
years. The corresponding CMI value for the original Prague SAT data is I(A2(t);ϕ1(t+τ)|ϕ1(t), ϕ1(t−η), ϕ1(t−2η)) = 0.00245
which, according to the cumulative histogram, corresponds to the “significance level” 0.5; i.e. the CMI is not significantly
different from zero and no directional A2 → ϕ1 interaction can be inferred.
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FIG. 7. Causal influence of the phase of slower oscillations on the amplitude of faster fluctuations in different realizations of the
MF (a, b) and FT (c, d) surrogate data constructed from the daily surface air temperature from Prague-Klementinum. Here
the significance levels greater than 0.95 (grey-coded) demonstrate the false positive results. Note that the CMI is averaged
over the forward lags τ 1–750 days, the backward lag η is set to 1/4 of the period of the slower oscillations characterized by
the phase ϕ1.

This null hypothesis is rejected and the data CMI is sig-
nificantly positive with p < 0.003, i.e., there is a prob-
ability p < 0.003 that the CMI is positive by chance.
The “significance level” 0.997 is grey-coded in ϕ1 → A2

directional interaction charts such as that in Fig. 8.

The statistical evaluation of the interactions in the op-
posite direction A2 → ϕ1 reflecting a possible influence
of the amplitude A2 on the phase ϕ1 for the same pair of
periods as above is presented in Fig. 6. For the original
Prague SAT data I(A2(t);ϕ1(t+τ)|ϕ1(t), ϕ1(t−η), ϕ1(t−
2η)) = 0.00245, the significance level is approximately 0.5
and the null hypothesis of no directional A2 → ϕ1 inter-
action (I(A2(t);ϕ1(t+τ)|ϕ1(t), ϕ1(t−η), ϕ1(t−2η)) = 0)
is accepted.

As we can see in Fig. 8 and the related figures of the
Letter, we compute the CMI for a range of low and high
frequencies. Therefore we encounter the problem of mul-
tiple testing. Due to the redundant CCWT decomposi-
tion, the tests for subsequent frequencies are not indepen-
dent. Below we can see that the phases (amplitudes) for
any period are correlated with the phases (amplitudes)
of a broad range of neighboring periods. At this stage we

are not able to determine the number of effectively in-
dependent tests, but from the dependence patterns (be-
low) we can guess that it is considerably smaller than
the number of the actual tests. Therefore we present the
“significance levels” of the single tests and caution that
we can encounter false positive results (falsely significant
results) at some rate. Plotting the “significance levels”
from 0.95, the rate of false positives can reach 5%. In
order to study occurrence of such “false positives,” in
Fig. 7 we present examples of tests in which a realization
of surrogate data is used in the role of experimental data,
tested by using a set of other surrogate data realizations.
The dependent tests due to the CCWT redundancy lead
to the observation that the false positives do not occur
as randomly distributed points in the plane of the stud-
ied ranges of periods, but as randomly placed spots or
stains of various shapes and sizes. The FT surrogate
data (Fig. 7c, d) apparently suffer from a higher rate of
the false positives than the MF surrogate data (Fig. 7a,
b).

The significance levels for the CMI I(ϕ1(t);A2(t +
τ)|A2(t), A2(t − η), . . . , A2(t − mη)) obtained from the
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FIG. 8. Causal influence of the phase of slower oscillations on the amplitude of faster fluctuations in the daily surface air
temperature from Prague-Klementinum. The significance levels (grey-coded if they are greater than 0.95) for the conditional
mutual information I(ϕ1(t);A2(t + τ)|A2(t), A2(t − η), . . . , A2(t −mη)) with (a) 2-dimensional, (b, d) 3-dimensional, and (c)
4-dimensional condition, obtained using the (a,b,c) Fourier-transform, and (d) multifractal surrogate data. Note that the
CMI is averaged over the forward lags τ 1–750 days, the backward lag η is set to 1/4 of the period of the slower oscillations
characterized by the phase ϕ1.

Prague-Klementinum daily SAT data are presented in
Fig. 8. The results for the CMI with 2, 3 and 4 con-
ditioning variables are depicted in Fig. 8 a, b, and c,
respectively. Since the increase of the conditioning di-
mensionality over three does not substantially change the
patterns of ϕ1 → A2 interactions, the results presented
in the Letter were obtained by evaluating I(ϕ1(t);A2(t+
τ)|A2(t), A2(t − η), A2(t − 2η)) with the 3-dimensional
condition. The tests with the two types of the surrogate
data bring consistent results (cf. Fig. 8b and Fig. 8d) in
spite of the above observation of different rates of false
positives. The areas of the significant ϕ1 → A2 interac-
tions in the SAT data are not only considerably larger
than the areas of false positives, but also consistently
localized in the SAT data from different locations (cf.
the results from Prague in Fig. 8 and from Potsdam and
Hamburg in Fig. 1 in the Letter).

No consistent pattern of statistically significant influ-
ence has been observed in the opposite direction A2 → ϕ1

given by I(A2(t);ϕ1(t + τ)|ϕ1(t), ϕ1(t − η), . . . , ϕ1(t −
mη)).

IV. FREQUENCY LOCALIZATION

The patterns of statistically significant directional ϕ1–
A2 interactions (Fig. 8) show localized periods for the
driven amplitudes, and a more broad-band structure
for the periods of the driving phase. One can ask
whether this pattern reflects physical properties of the
phenomenon or can be induced by the analytic tools
used. The already mentioned redundant character of the
used CCWT with an equidistant step in the applied time
scales can induce dependence between the instantaneous
phases and amplitudes obtained for different time scales
(central wavelet periods). In order to quantify this effect,
we compute the mutual information between the instan-
taneous phases (Fig. 9a, c) and between the instanta-
neous amplitudes (Fig. 9b, d) of the CCWT-extracted
oscillatory components with the central wavelet period
8 years (Fig. 9a, b) and 1.3 years (Fig. 9c, d) and the
range of periods used in the study of the directional ϕ1–
A2 interactions (Fig. 8). The black curves illustrate this
dependence for the original Prague-Klementinum SAT
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FIG. 9. Dependence (measured by using the mutual information) between instantaneous phases (a, c) and amplitudes (b, d) for
the periods on the abscissa and phases/amplitudes for the period 8 years (a, b) and 1.3 years (c, d). The black curves depict the
values for the instantaneous phases and amplitudes obtained from the daily surface air temperature from Prague-Klementinum
by using the CCWT with the Morlet wavelet. The light blue curves and bars give the mean values and the range of 2 standard
deviations, respectively, for 1000 realizations of the FT surrogate data.

data, while the light blue curves depict the mean values
for the FT surrogate data with the bars reflecting the
range of 2 standard deviations of the surrogate data. The
CCWT redundancy apparently induces a certain band-
width of dependent oscillatory components of close peri-
ods.

The bandwidth of the dependent CCWT components
is broader when considering the phases than the band-
width obtained for the amplitudes; and it is broader for
larger time scales around the 8-year period than for the
smaller time scales around the 1.3-year period. Thus the
shape of the ϕ1–A2 interaction pattern can be artificially
extended over a range of the slower driving periods. On
the other hand, we can compare the phase/amplitude de-
pendence results for the original SAT data and their FT
surrogate data. While there are no differences for smaller
time scales around the 1.3-year period (Fig. 9c, d), for
the larger time scales around the 8-year period the re-
sults from the SAT data differ from the FT surrogates

even with a statistical significance (considering the 2SD
range of the surrogates, Fig. 9a, b). The phase coher-
ence over the neighboring periods is broader in the SAT
data than in the surrogates, while the amplitude depen-
dence in the SAT data is narrower than in the FT surro-
gate data. This behavior reminds the property of phase-
synchronized systems with coherent (dependent) phases
but independent amplitudes [14]. The statistically signif-
icant differences in Fig. 9a also constitute a new test for
nonlinearity for the oscillatory phenomenon acting on the
periods around 8 years. This phenomenon induces coher-
ent phases to oscillatory components in a broader range
than the range of phase coherence induced by the used
CCWT decomposition applied to realizations of a lin-
ear stochastic process with the same frequency spectrum
as the original SAT data. This analysis supports the
conclusion that we observe a nonlinear, possibly broad-
band phenomenon, acting in a range of periods between
6 and 11 years and influencing temperature variability
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FIG. 10. Dependence (measured by using the mutual information) between the instantaneous phases for the periods on the
abscissa and the instantaneous phases for the period 8 years. The black curve depicts the values for the instantaneous phases
obtained from the daily surface air temperature from Prague-Klementinum by using the CCWT with the Morlet wavelet.
The blue curve and bars give the mean values and the range of 2 standard deviations, respectively, for 1000 realizations of
independent, identically, normally distributed 32768-sample data (Gaussian white noise).

on shorter time scales. We should not forget, however,
the possibility that the used CCWT decomposition might
artificially extend the bandwidth of phase-coherent oscil-
lations, since the FT surrogates should produce a set of
independent oscillatory components. In order to see the
“net” effect of the limited frequency localization due to
CCWT without possible confounding effects of the FT
surrogate algorithm, in Fig. 10 using the blue curves and
bars we illustrate the range of false phase coherence due
to the CCWT decomposition applied to white Gaussian
noise. Thus the actual multiscale phenomenon in the
atmospheric dynamics can have a narrower bandwidth
than the observed range of periods 6–11 years, or, two
or more distinct phenomena can be merged together due
to a limited frequency localization of the used CCWT
decomposition. The CCWT frequency localization can
be increased by tuning the mother wavelet parameters.
However, according to the uncertainty principle, sharp
localization in time and frequency are mutually exclu-
sive [15, 16]. Increasing the localization in frequency we
would decrease the localization in time which would ef-
fect the test for causal ϕ1–A2 interactions. The problem

of increasing the frequency localization without loosing
the sensitivity of the test for the directional ϕ1–A2 in-
teractions will be one of the most important topics of
further research.

V. NORTH ATLANTIC OSCILLATION AS A
POSSIBLE CLUE FOR A MECHANISM OF

CROSS-SCALE INTERACTIONS

Oscillatory phenomena with the periods between 6
and 11 years, however, most frequently with the period
around 7–8 years have been observed in the air temper-
ature and other meteorological data such as sea surface
temperature and salinity, Baltic Sea ice annual maximum
extent, precipitation records, river runoff records, and
most importantly, in the index of the North Atlantic Os-
cillation (see Ref. [17, 18] and references therein).

The North Atlantic Oscillation (NAO) is a dominant
pattern of atmospheric circulation variability in the ex-
tratropical Northern Hemisphere and is a major factor
influencing meteorological variables including tempera-
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ture, precipitation, occurrence of storms, wind strength
and direction in the Atlantic sector and surrounding con-
tinents. On the global scale, NAO has a climate signifi-
cance that rivals the Pacific El Niño Southern Oscillation
(ENSO) [19]. Since NAO reflects synchronous variations
of the pressure gradient between the Icelandic Low and
the Azores High on timescales from daily to multidecadal,
the NAO phenomenon is characterized by the NAO index
which is defined as the normalized pressure difference be-
tween the Azores and Iceland. The character of the NAO
index time series is dominated by a colored-noise process
with a 1/f spectrum, however, subtle analysis methods
such as the Monte Carlo Singular Spectrum Analysis (see
[17] and references therein) can uncover quasi-oscillatory
phenomena explaining a part of its variability. Gámiz-
Fortis et al. [20] observed a cycle with a period 7.7
years in the winter NAO index. Paluš & Novotná [17]
have also detected the 7–8-year cycle in the (whole-year)
NAO index and found that it is phase-synchronized with
the equivalent cycle in SAT recordings from a number of
European locations. There are indications that the 7–8
year cycle in the North Atlantic has its roots in nonlinear
ocean-atmosphere interactions. According to Feliks et al.
[21, 22] the 7-8 year cycle might be induced by an oscilla-
tion of a similar period in the position and strength of the
Gulf Stream’s sea surface temperature front in the North
Atlantic. The 7-8 year variability in the Gulf Stream, in
turn, has been attributed to an oscillatory gyre mode of
the North Atlantic’s wind-driven circulation.
In the present Letter we have studied the atmo-

spheric cross-scale interactions as local phenomena in
SAT recordings from individual locations. The roots of
these phenomena, however, might stem from large-scale
interactions in which dominant modes of circulation vari-
ability, such as the NAO, play important roles. A new
perspective in research of climate variability has been
opened by using the tools from complex network the-
ory in analysis of multivariate climate data such as the
gridded SAT reanalysis [23]. Changes in the NAO in-
duce changes in connectivity of climate networks [24, 25].
When the NAO index is distinctly positive (so-called
positive NAO phase, NAO+) we can observe an in-
creased network connectivity in large areas of the North-
ern Hemisphere, including the European areas presented
in Fig. 4 of the Letter. Effectively it means that corre-

lations between temperature records from different loca-
tions are stronger during the NAO+ periods, that dur-
ing the NAO– periods (defined in full analogy). Hur-
rell and Dickson [26] help us to understand this obser-
vation: “in the so-called positive phase, higher than
normal surface pressures south of 55◦N combine with
a broad region of anomalously low pressure throughout
the Arctic and subarctic. Consequently, this phase of
the oscillation (NAO+) is associated with stronger-than-
average westerly winds across the middle latitudes of
the Atlantic onto Europe, with anomalous southerly flow
over the eastern United States and anomalous northerly
flow across western Greenland, the Canadian Arctic,
and the Mediterranean. The easterly trade winds over
the subtropical North Atlantic are also enhanced during
the positive phase of the oscillation. During the nega-
tive phase (NAO–), both the Icelandic low- and Azores
high-pressure centers are weaker-than-normal, so both
the middle latitude westerlies and the subtropical trade
winds are also weak.”

The NAO is a dominant mode of low-frequency atmo-
spheric variability [27]. Its changes on larger time scales
influence the character of atmospheric circulation and
thus the atmospheric dynamics on shorter time scales.
Considering the observation that the low-frequency dy-
namics in the NAO and in the air temperature in large
areas of Europe are phase-synchronized [18], we can sus-
pect that the NAO and its large-scale interactions are
important for understanding of mechanisms of the ob-
served local cross-scale interactions. These considera-
tions, however, are very preliminary, and the cross-scale
interactions in the multiscale atmospheric dynamics re-
quire further research in all aspects of theory, modelling
and data analysis.
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[8] M. Paluš, and M. Vejmelka, Phys. Rev. E 75 056211

(2007). doi: 10.1103/PhysRevE.75.056211
[9] M. Vejmelka, and M. Paluš, Phys. Rev. E 77 026214
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