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1 Introduction

In this review we discuss various approaches to the construction of the Toda
Heisenberg feld operator equatons and their solutions. In the case of the non-
periodic boundary condition we start with the light-cone formalism which was
applied in [12] to the quantization of the conformal Toda model. Then we
remind results obtained in [8] in frames of the perturbative Yang–Feldman
approach [14] and its coincidence with the approach of [9] quantum group
based construction. For the periodic boundary condition case, we recall the
quantizaion of the Liouville field operators in the sense of [3], [4]. Finally we
compare results in the above mentioned constructions in the most simple case
of conformal Toda model, i.e., the quantum Liouville equation.

2 Conformal Toda models: classical region

Let M be the manifold R2 or C1 with the standard coordinates z±. For C1

we assume z− = (z+)∗. Let G be a complex simple Lie group of rank r with
the Lie algebra [7] G endowed with the principal gradation. In this, in the
decomposition G = ⊕m∈ZGm the subspace G0 is abelian. Denote by G0 and
G± the subspaces corresponding to G0 and ⊕m>1G±m, respectively. Denote
by hi and x±i the Cartan and Chevalley generators of G, i.e., for its principal
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2 Alexander Zuevsky

gradation, the elements of G0 and G±1, respectively, satisfying the defining
relations

[hi, hj ] = 0, [hi, x±j ] = ±kijx±j , [x+i, x−j ] = δijhi, 1 ≤ i, j ≤ r, (1)

where k is the Cartan matrix of G. There are also the Serre relations.
Conformal abelian Toda fields ϕ =

∑r
i=1 hiϕi, satisfy the equations

∂+∂−ϕ+
4η2

β

r∑
i=1

mi
αi
α2
i

eβαi·ϕ = 0, (2)

with some coupling constant β and a length scale factor η. Their general
solution written in the [10] in a holomorphically factorisable form given by

e−βλj ·ϕ =< Λj |γ−1
+ µ−1

+ µ−γ−|Λj >, (3)

where γ±(z±) and µ±(z±) are holomorphic and anti-holomorphic mappings
M → G0 and M → G±, respectively; |Λi > is the highest vector of the i-th
fundamental representation of G. Moreover, the mappings µ±(z

±) satisfy the
initial value problem

∂±µ± = µ±κ±,

where κ± realize mappings M → G±1, i.e., κ±(z
±) =

r∑
i=1

Ψ
(0)
±i · x±i, Ψ (0)

±j =

mj exp

(
∓β

r∑
i=1

kjiϕ
(0)
±i

)
.

3 Light-cone quantization

The conformal Toda field theory was quantized in the light-cone formalism in
[12], [5]. Introduce a set of r scalar fields subject to the canonical commutation
relations

[ϕi(z
+, z−), ϕj(z̃

+, z−)] = −1/4ih̄δijϵ(z
+ − z̃+),

[ϕi(z
+, z−), ϕj(z

+, z̃−)] = −1/4ih̄δijϵ(z
− − z̃−),

[ϕi(z
+, z−), ϕi(z̃

+, z̃−)] = 0,

when (z+ − z̃+)(z− − z̃−) < 0, (ϵ(z) is a standard sign function). Then one
takes

∂+∂−(βΦi) + α2σ

r∑
j=1

kij : e
βΦi := 0, (4)

as the quantum Toda equation for the Heisenberg field operators. Here α,

β are constants, Φi =
r∑
s=1

Misϕs, and columns denote the normal ordering

in the light-cone I±τ =
{
z± = t

2 , z
∓ ≥ t

2

}
, with respect to associated Fock

space oscillator operators aj(p) =
∫
I+τ

dz−eip·xi∂̂−ϕi+
∫
I−τ

dz+eip·xi∂̂+ϕi, where
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a∂̂±b = a(∂±b) − (∂±a)b. Then the exponential of the field m− h̄β2

2π : eβΦi :
does not depend on the mass m. The equation (4) can be rewritten as the zero
curvature condition

[∂+ + ω+, ∂− + ω−] = 0, (5)

on the quantum Lax pair operators containing both non-commuting Heisen-
berg field operators ψi and Lie algebra generators x±i, hi

ω+ = ∂+ψ · h+ α
r∑
i=1

x+i + ζΩ, ω− = −ασ
r∑
i=1

: eβΦi : x−i, (6)

where ψ · h =
r∑
i=1

ψihi, and ψi = β
r∑
j=1

k−1
ij Φj . To make the left hand side of

(5) equal to zero we have to put ζ = −1/4ih̄β2δ(0). Then one can construct
a solution to (4) using properties of the highest weight representation of Lie
algebras. In this formalism, the Heisenberg field operator solution is of the
form

: e−ψj(z
+,z−) := < λi| g(z+, 0) · g−1(0, z−) |λi > : e−ψj(z

+,0) :,

where P = (z+, z−) is an arbitrary point inside the light cone and (z+, 0),
(0, z−) are points on I±τ with z±-coordinates same as at point P . Evaluating
g(z+, 0), g−1(0, z−) elements one finally finds

: e−ψj(z
+,z−) : =: e−ψj(z

+,0) :< λi|

(
Texp

(z+,0)∫
(0,0)

dz+B+

)
· u : e−ψ(0,0)·h :

×

(
T̄ exp

(z+,0)∫
(0,0)

dz−ω−

)
|λi > : e−ψj(0,z

−) : ·e
1
2 h̄β

2∆(0)k−1
ij ,

(7)

where B+ = −α
r∑
j=1

x+i : eβΦj : eh̄β
2∆(0), and ∆(x) =

+∞∫
−∞

dp
4πω e

−ip·x. A

regularization ∆(x) =
p+∫
p−

dp
4πω e

−ip·x with some p−, p+ is implied in B+. The

T -exponents in the last formula denote z± ordering on the light-cone.

4 Yang–Feldman perturbative approach

It has been observed in [9] that the explicit expressions for the conformal
Toda Heisenberg operators (satisfying the equations of the form (2)) obtained
via of the Yang–Feldman perturbation procedure [8], [14] exactly, order by
order, coincide with the expression for the general solution of the form (3)
constructed by means of corresponding quantum group. We end up with the

exact explicit expressions for the Heisenberg operators ϕ
(q)
i as finite series in

terms of the free fields operators qϕ
(0)
i satisfying the canonical commutation

relations. Here, in the same way as for the classical solutions, the number of
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terms in the series is precisely equal to the dimension of the i-th fundamental
representation of corresponding Lis algebra G.

In the Yang–Feldman formalism [11], [8] the expression for the exponential
of the Heisenberg field operator in the n-th order is

(
e−ϕα

)
(n)

= 1
(ih̄)n

+∞∫
−∞

dzθ(z − z1)...θ(zn−1 − zn)
∑

P (k1,

...,kn)

[
e−ϕ

(0)
α , V1k1 , ..., Vnkn

]
,

where dz := dz1...dzn, θ(z−z′) = θ(z+−z+′
) θ(z−−z−′

) is a usual step func-

tion, Vij =
r∑

α=1
2w

ψ
(0)
+α

(z+i)
e eψ

(0)
−α

(z−j), ψ
(0)
±α =

r∑
β=1

kαβϕ
(0)
±β , ϕ

(0)
±α =

r∑
β=1

k−1
αβψ

(0)
±β ,

[A,B, ..., C] = [[... [A,B] , ...] , C], and P (k1, ..., kn) denotes ... Here ϕ
(0)
±α are

asymptotic fields satisfying canonical commutation relations[
ϕ
(0)
±i (z

±), ϕ
(0)
±j (z

±′
)
]
= h̄

4ik
−1
ij w

−1
j ϵ(z± − z±

′
),

[
ϕ
(0)
±i (z

±), ϕ
(0)
∓j (z

∓′
)
]
= 0,[

ψ
(0)
±i (z

±), ψ
(0)
±j (z

±′
)
]
= h̄

4i k̂
−1
ij w

−1
j ϵ(z± − z±

′
),[

ψ
(0)
±i (z

±), ϕ
(0)
∓j (z

∓′
)
]
=

h̄δij
4iwj

ϵ(z± − z±
′
), k̂ij = kijw

−1
j .

The three first orders in the Yang–Feldman formula are(
e−ϕα

)
(0)

= e−ϕ
(0)
α ,

(
e−ϕα

)
(1)

= e−ϕ
(0)
α

2wα
ih̄

[
1− e−

ih̄
2wα

]
Φ+
αΦ

−
α , (8)

(
e−ϕα

)
(2)

= e−ϕ
(0)
α 2wα

ih̄

[
1− e−

ih̄
2wα

] ∑
γ ̸=α

2wα

ih̄

[
1− e

ih̄
2 k̂αγ

]
Φ+
αγΦ

−
αγ ,

Φ±
α1,...,αm

(z±) =
∫ z±
−∞ dz±1 e

ψ(0)
α1

(z±1 ) ∫ z±1
−∞ dz±2 e

ψ(0)
α2

(z±2 )...
∫ z±

m−1

−∞ eψ
(0)
αm

(z±m),

(9)

e.g.,

Φ±
α (z

±) =

∫ z±

−∞
dz±1 e

ψ(0)
α1

(z±1 ), (10)

Φ±
α1,β

(z±) =

∫ z±

−∞
dz±1 e

ψ(0)
α1

(z±1 )

∫ z±1

−∞
dz±2 e

ψ
(0)

β
(z±2 ). (11)

5 Solution construction based on quantum group

Now take the general solution (3) to the conformal Toda equations (2) and
substitute [9] the group elements and representation vectors in the right hand
side by quantum group elements and representation vectors correspondingly.

In particular, substitute the mappings κ± with qκ±(z
±) =

r∑
i=1

qΨ
(0)
±i · xq±i.

Here qΨ
(0)
±j = mj exp

(
∓β

r∑
i=1

kjiqϕ
(0)
±i

)
. Here as before qϕ

(0) are operators of
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the asymptotic fields, i.e., fields in absence of interactions. qΨ
(0)
±j is contains ele-

ments xq±i that belong to the quantized universal enveloping algebra Uq(G) for
a Lie algebra G. Instead of (1) the quantum group Uq(G) has the commutation
relations (e.g., in Jimbo–Drinfeld form [6], [1])

[hqi , h
q
j ] = 0, [hqi , x

q
±j ] = ±kijxq±j , [xqi , x

q
j ] = δij

q
hq
i
i − q

−hq
i

i

qi − q−1
i

, (12)

where qi is defined as qi = edih̄ in terms of the Planck constant h̄ and coprime
integers di such that d k is a symmetric matrix. There are also analogues of
the Serre relations.

In place of (3) we get a similar expression for the exponential of a Heisen-
berg field operator solution

e−βλ
(q)
j

·ϕ(q)

= q < Λj |qγ−1
+ q · µ−1

+ · qµ− · qγ−|Λj >q, (13)

As in the classical case the group elements qµ± satisfy ∂±qµ± = qµ± · qκ±. In
this approach it is easy to find the first three order terms of (13):

(
e−qϕα

)
(0)

= q < α|e
−

r∑
β=1

hq
β

(
qϕ

(0)

+β
+qϕ

(0)

−β

)
|α >q= e

−
(
qϕ

(0)
α+

+qϕ
(0)
α−

)
= e−qϕ

(0)
α ,

(14)(
e−qϕα

)
(1)

= −e−qϕ
(0)
+α

r∑
θ,p=1

Φ+
θ Φ

−
p · q < α|xq+θ

xq−p|α >q e−qϕ
(0)
−α

= e−qϕ
(0)
α 2wα

ih̄

[
1− e−

ih̄
2wα

]
Φ+
αΦ

−
α ,

(15)

(
e−qϕα

)
(2)

= −e−qϕ
(0)
+α

r∑
θ,τ,p,q=1

q < α|xq+θ x
q
+τ x

q
−p x

q
−q |α >q Φ+

θτ Φ̃
−
pq e−qϕ

−
α

= e−qϕ
(0)
+α
∑
θ

e
ih̄k̂θα

4
2wα

ih̄ sinh
(

ih̄
4wα

)
2wθ

ih̄ sinh
(
ih̄
4 (2δαθ − kαθ)

)
Φ+
θαΦ

−
θαe

−qϕ
(0)
−α ,

(16)

Φ̃−
pq =

∫ z−

dz−1

∫ z−

dz−2 θ(z
−
2 − z−1 )eqψ

−
p eqψ

−
p ... = e−

h̄
4i k̂pqΦ−

pq,

and Φ±
α , Φ

±
αβ is the same as in (10), (11). One can see that (14)–(16) are the

same as (8)–(9) correspondingly.

6 Solution construction for quantum conformal Toda model

In order to explain and compare formulae given in [9], one considers the quan-
tum group construction of operator solutions to the conformal Toda equa-
tions. Recall the light-cone quantization of the conformal Toda field theory
given in [12]. The way one derives solutions (3) in classical region for the
conformal Toda model (2) can be modified to get solutions in the quantum
group case. The zero-curvature condition (5) implies the gradient form of qA±.
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The pure gauge qA± = qg
−1∂± (qg) therefore implies ∂±qg

−1 = −qA±qg
−1,

∂±qg = qgqA±, (here qA± = η
r∑
i=1

ϕ0±i(x+i⊗̂...) (i.e., the same ( in x±i-part) as

in [9]). Then the properties of the fundamental highest weight representation
of a quantum group implies that

∂−

(
q < Λi|e−βϕ(z

+,z̃−)·h
qg

−1
)
=< Λi|e−βΛ·ϕ(z

+,z̃−)
(
−qA−qg

−1
)
= 0,

and ∂+ (qg|Λi >q) = qgqA+|Λi >q= 0. Here |Λi >q are vectors in the funda-
mental highest weight representation of the Uq(G). Therefore we derive that

q < Λi|e−βϕ(z
+,z̃−)·h

qg
−1(z+, z̃−) · qg(z̃+, z−)|Λi >q,

does not depend on z̃± and resultes in e−βΛ·ϕ(z
+,z−) when z̃± = z±. Thus for

a point p = (z+, z−) and two arbitrary points (z+, 0), (0, z−) on the null rays,
we have

e−βΛ·ϕ(z
+,z−) = q < Λi|e−βϕ(z

+,0)·h
qg

−1(z+, 0) · qg(0, z−)|Λi >q . (17)

The quantum Gauss decomposition [2] can be represented as qg(z
+, z−) =

qµ+(z
+)qν−(z

−)qγ0+, so that qg
−1(z+, z−) = qγ

−1
0+ qν

−1
− (z−)qµ

−1
+ (z+), and

qg
−1(z+, 0) = qγ

−1
0+ qµ

−1
+ (z+), and elements qg(z

+, 0) and qg
−1(z−, 0) are just

qµ
−1
+ (z+) , qµ−(z

−) elements of the modified Gauss decomposition [2] (same
for qg(0, z

−) ). All that gives us a solution to the quantum conformal Toda
equations (2). Note also that solutions of an inhomogeneous equation (line
conformal Toda equations) with fixed z∓ dependence satisfy the homogeneous
equation, namely ∂+∂−ϕ(z

+, 0) = ∂+∂−ϕ(0, z
−) = 0, i. e., we retain the for-

mula for the general solution to the quantized conformal Toda equation given
in [8].

7 Quantization scheme for periodic boundary case

An alternative construction for the quantum Liouvillle exponentials was elab-
orated in the papers [3], [4]. The final expression for the quantum Liouvillle
exponential was found in this approach in a form similar to the classical solu-
tion in [10], [11]

e−Jα−Φ(z+,z−) =< J, J | E(J)
q+ (η+(z

+), J+) E
(J)
q− (η−(z

−), J−) |J, J >,

E+
q =

∞∑
J+M=0

eih(J+M)(−1)J+Mη
(J)
+,−M

(J+)J+M

[J+M ]! ,

E−
q =

∞∑
J+M=0

η
(J)
−,M

(J−)J+M

[J+M ]! , η
(J)
∓,∓M = ξ

(J)
∓,∓M

(
2J

J ∓M

)− 1
2

q

,(
A
B

)
q

= [A]!
[B]![A−B]! , [A]! =

∏n
k=1 [k] , [k] = sin(hx)

sin(h) ,

ξ
(J)
±,M (σ) =

∑
−J≤m≤J

|J, ω)m±Mψ
(J)
m (σ),
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|J, ω)mM =
(
e−ih a2a1

)J+M
q

kJ

(
2J

J +M

) 1
2

q

e
ihm
2

×
∑

1
2 (JM+m−s)∈Z

eihs(ω+m)

(
J −M

1
2 (J −M +m− s)

)
q

(
J +M

1
2 (J +M +m+ s)

)
q

,

ψ(J)
m = ψJ−m,J+m, ψµ,ν ∼ ψµ1ψ

ν
2 ∼ N (1)

(
eµ
√

h
2πϕ1

)
N (2)

(
eµ
√

h
2πϕ2

)
,

and ψj , j = 1, 2 are two independent solutions of Schrodinger equation −ψ′′
j +

Tψj = 0, associated to the Liouvillle equation which implies ∂−

(
e−

ϕ
2 ∂+e

ϕ
2

)
=

0. Here the normal ordering is defined as

N (j)(eγϕj(z)) = eγq
(j)
0 e−iz(±ω+

1
2 )

h
2π exp

(
γ
∑
n<0

p
(j)
n

n
e−inz

)
exp

(
γ
∑
n>0

p
(j)
n

n
e−inz

)
,

where ϕj(z) = q
(j)
0 + p

(j)
0 + i

∑
n<0

e−inz

n p
(j)
n . For the case J = 1

2 the general

formula gives e−Jα−Φ(z
+,z−) = (a1κ1κ2 − a1κ1κ2)N

(1)N (2)... where κi are
some infinite series containing h. We have then ψj = djN

(j)(eγϕj ). Let’s put
ϕ2 = 0 and ϕ1 = ϕ+0 , ϕ1 = ϕ−0 . Then we have

e−Jα−Φ(z,z̄) = σ1 + σ2N
(1) (eγ) + σ3N

(1) (eγ) + σ4N
(1) (eγ)N (1) (eγ) , (18)

which is very close to the formulas for the quantum Liouville exponential in
[9] and [12], [5] formulations in appropriate limits.

8 Comparison of approaches

In the subsection 3 we recalled the light-cone quantization procedure applied
in [12] to the conformal Toda field theory. In this approach the Lax opera-
tors (6) corresponding to the quantum Heisenberg field operator equations (4)
contain elements of ordinary Lie algebra, but, as it was shown in [5], this con-
struction possesses an underlying quantum group structure. This case gives
as an example of the Gursa problem sinse the exponent of the field operator
depends on its value on the characteristics. Finally one obtains a solution (17)
to the equation (4) which is of the form given in [10] in the classical case. At
the same time this way of Lax pair construction for the quantum conformal
Toda has some obvious drawbacks. One may think of the Lax pair (6) as a
result of some gauge transformation sending the symmetric form of Lax oper-
ators A± = u±h+f±x± (where u± , f± are operators ) to (6) with a constant

operator near
r∑
i=1

x+i. Though infinite constant ξ in (6) does not appear in

the final expression for the solution (7) still it looks very discouraging in the
operator form.

Now we would like to compare the solution in the most simple case of
G = sl2 which corresponds to the quantum Liouville equation ∂+∂−(βΦ) +
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2α2σ : eβΦ := 0. The final expression for the exponent of the Liouville field in
the construction of [12], [5] has the form

: e−
β
2Φ(z

+,z−) :=: e−
β
2Φ(z

+,0) :

(
: e

β
2Φ(0,0) : e

h̄β2

2 ∆(0) + α2σ

(
(z+,0)∫
(0,0)

: eβΦ : dz+

)

× : e−
β
2Φ(0,0) :

(
(0,z−)∫
(0,0)

: eβΦ : dz−

)
e

3h̄β2

2 ∆(0)

))
: e−

β
2Φ(0,z

−) : .

If we get rid of the normal ordering in the last formulausing the fact that
eβΦ =: eβΦ : eh̄β

2∆(0), then we get the expression

e−
β
2Φ(z

+,z−) = e−
β
2Φ(z

+,0)

(
e−

β
2Φ(0,0) + α2σ

(
(z+,0)∫
(0,0)

eβΦ(z̃
+,0)dz̃+

)
· e−h̄β2∆(0)

×e−
β
2Φ(0,0) ·

(
(0,z−)∫
(0,0)

eβΦ(0,z̃
−)dz̃−

)
e−

β
2Φ(0,z

−)

)

= e−
β
2Φ(z

+,0) · e−
β
2Φ(0,0) · e−

β
2Φ(0,z

−) ·
(
1 + α2σe−h̄β

2δ(0)Φ+Φ−
)
.

Thus we see that the quantum Toda exponent is expressed through its values at
points on characteristics. Therefore this is an example of the Gursat problem.

In the approach of [9] one deals with the quantum exponents depending
on asymptotic fields which are in fact solutions fo the homogeneous operator
equation ∂+∂−ϕ = 0. Then in the Liouville case using (14)–(15) we obtain(
e−ϕ

)
(0)

= e−qϕ
(0)

,
(
e−ϕ

)
(1)

= −e−qϕ
(0) 2w

ih̄

[
1− e−

ih̄
2w

]
Φ+Φ−,

(
e−ϕ

)
(2)

= 0.

Thus the series terminates after the first order. It is not a surprise that the
formulas (8)–(9) and (14)–(16) coincide in [12] and [9] approaches. The reason
is that the elements of the quantum group are used in (13) and give extra
multipliers in the first order due to the non-linear right hand side of the com-
mutation relation (12) of the xq+, x

q
− generators of the quantum group.

One can also try to construct the Lax pair for the quantum conformal Toda
model equation (4) in the same as in the approach of [12] but using generators
of the quantized universal enveloping algebra. Indeed, consider the following
pair of operators

qω+ = ∂+ψ · hq + α
r∑
i=1

xq+i + ζΩq, qω− = −ασ
r∑
i=1

: eβΦi : xq−i, (19)

where hqi , x
q
±i are generators of the quantum group. Here Ωq ∈ Uq(G) is chosen

in such a way that it would kill higher h-terms in the zero curvature condition
(5). Thus the zero curvainteractions. ture condition would give us (4). The
problem is to compute Ωq precisely. Then one could find a solution to (4)
using the Lax pair (19) which comply with the solution in [9] solution under
an appropriate limit.
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