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Abstract

Two-hour vigilance and sleep EEG recordings from five healthy volunteers were analyzed using a
method for identifying nonlinearity and chaos, which combines the redundancy — linear redundancy ap-
proach with the surrogate data technique. A nonlinear component in the EEG was detected, however,
inconsistent with the hypothesis of low-dimensional chaos. A possibility, that a temporally asymmetric
process may underlie or influence the EEG dynamics, was indicated. A process, that merges nonsta-
tionary nonlinear deterministic oscillations with randomness, is proposed for an explanation of observed
properties of the analyzed EEG signals. Taking these results into consideration, the use of dimensional
and related chaos-based algorithms in quantitative EEG analysis is critically discussed.

1 Introduction

During the last decade there has been a sustained interest in describing neural processes and brain-
signals, especially the electroencephalogram (EEG), within the context of nonlinear dynamics and theory of
deterministic chaos (see Rapp et al. 1989, Bagar 1990, Jansen 1991, Freeman 1992, for reviews). If the nature
of analyzed signals was actually low-dimensional, the published results could be of immense importance for
theoretical neuroscience and neurological and psychiatric clinical practice. However, confidence of results
obtained from experimental data, such as finite dimensions or positive Lyapunov exponents, and reliability of
chaos-based algorithms in general, have recently come under question, and alternative methods for identifying
possible nonlinear determinism in experimental time series have been proposed (see Weigend & Gershenfeld
1993, Palus 1995, and references therein).

This paper presents results from applying a method for identifying nonlinearity and chaos, which combines
the redundancy — linear redundancy approach with the surrogate data technique, to vigilance and sleep EEG
recordings of approximately two-hour duration from five healthy volunteers. The method consists of a test
for nonlinearity, in which a null hypothesis of a linear stochastic process is tested by statistics based on
nonlinear and linear redundancies (Palus 1995). The presence of a signature of chaos, positive Kolmogorov-
Sinai entropy (KSE), is assessed using the marginal redundancy approach (Palug 1993). Employing these
methods (briefly introduced in Sec. 2, for details we refer to Palug 1993, 1995, 1994a), a nonlinear component
was detected in all analyzed EEG records, however, signatures of low-dimensional chaos were absent. Similar
results have been published by Theiler & Rapp (1995), Prichard & Theiler (1994), Theiler et al. (1992) and
Casdagli (1992). These authors rejected low-dimensional chaos, however, in some cases they also reported
very weak evidence for nonlinearity. In this study very long EEG recordings were analyzed, which could be



the source of greater statistical power of the perfomed tests and thus the stronger evidence for nonlinearity,
than in the other studies. We also indicate that the EEG may possess temporal asymmetry as a nonlinear
property.

A process, that merges nonstationary nonlinear deterministic oscillations with randomness, is proposed for
an explanation of observed properties of the analyzed EEG signals. Taking these results into consideration,
the use of dimensional and related chaos-based algorithms in quantitative EEG analysis is critically discussed.

2 Principles of the Methods

Consider n discrete random variables X7, ..., X, with sets of values =1, ...,=Z,, respectively. The prob-
ability distribution for an individual X; is p(z;) = Pr{X; = z;}, z; € Z;. We denote the probability
distribution function by p(z;), rather than px,(z;), for convenience. Analogously, the joint distribution for
the n variables X,..., X, is p(z1,...,2,). The redundancy R(X;;...;X,), in the case of two variables
also known as mutual information I(X;; X»), quantifies average amount of common information, contained
in the n variables X1,..., X,:

R(Xi;..iXn) = 3 oo P(ml’-"’mn)log%' v

T1€E, T, €EEL
The marginal redundancy o(X1,...,X,—1;X,) quantifies the average amount of information about the
variable X,,, contained in the n — 1 variables X;,..., Xn—1:

p(z1,- -, ZTn)
X1,y Xpn—1;X0) = T1,---,Tn)lo . 2

The relation
0(X1, -y Xno1: Xn) = R(X15...; Xn) = R(X15...; Xn1) 3)

can be derived by simple manipulation.

When the discrete variables X1, ..., X,, are obtained from continuous variables on a continuous proba-
bility space, then the redundancies depend on a partition £ chosen to discretize the space. Various strategies
have been proposed to define an optimal partition for estimating redundancies of continuous variables (see
Palus 1995, Weigend & Gershenfeld 1993, and references therein). Here we use the “marginal equiquantiza-
tion” method described in detail in (Palus 1993, 1995). Pompe (1993) also describes this kind of partitioning.

Now, let the n variables X,..., X,, have zero means, unit variances and correlation matrix C. Then, we
define the linear redundancy L(X1;...; X,) of X1, Xs,..., X, as

L(Xi5. 5 Xn) = =3 D log(or), (4)

where o; are the eigenvalues of the n x n correlation matrix C.

If X1,...,X, have an n-dimensional Gaussian distribution, then L(Xy;...;X,) and R(X;;...;X,) are
theoretically equivalent (Morgera 1985).

Based on (3) we define the linear marginal redundancy A(X1,..., X,—1;X,), quantifying linear depen-
dence of X,, on X4,...,X,_1, as

AMXy, .o, X135 Xn) = L(Xy5. .5 Xn) — L(Xy5. .5 Xpma). (5)

In practical applications one deals with a time series {y(¢)}, considered as a realization of a stochastic
process {Y(¢)}, which is stationary and ergodic. Then, due to ergodicity, all the subsequent information-
theoretic functionals are estimated using time averages instead of ensemble averages, and the variables X;
are substituted as

Xi = y(t+ (i — 1)7). (6)



Due to stationarity the redundancies

R™(7) = R(y(t);y(t +7);...;y(t + (n = 1)7)), (7)
o (1) = oy (@), y(t +7),..,y(t + (n = 2)7);y(t + (n — 1)7)), (8)
L™(r) = L(y(@);y(t + 7);- .5 y(t + (n — 1)7)), (9)
AMT) = Ay @),y + 7). y(E+ (n = 2)7);9(t + (n — 1)7)) (10)

are functions of n and 7, independent of .

The surrogate-data based nonlinearity tests consist of computing a nonlinear statistic from data under
study and from an ensemble of realizations of a linear stochastic process, which mimics “linear properties”
of the studied data. If the computed statistic for the original data is significantly different from the values
obtained for the surrogate set, one can infer that the data were not generated by a linear process; otherwise
the null hypothesis, that a linear model fully explains the data, is accepted. For the purpose of such test
the surrogate data must preserve the spectrum! and consequently, the autocorrelation function of the series
under study. An isospectral linear stochastic process to a series can be constructed by computing the Fourier
transform (FT) of the series, keeping unchanged the magnitudes of the Fourier coefficients, but randomizing
their phases and computing the inverse FT into the time domain. Different realizations of the process are
obtained using different sets of the random phases.

To evaluate the test, the test statistic is defined as the difference between the redundancy obtained for the
original data and the mean redundancy of a set of surrogates, in the number of standard deviations (SD’s)
of the latter. Thus both the redundancies and redundancy-based statistics can be evaluated as functions of
the lag 7 and the embedding dimension n.

The redundancy R™(7) (or, o™(7)), based on probability distributions, measures general dependences
among the series {y(t)} and its lagged versions, whereas the linear redundancy L™(7) (or, A"(7)), based
on correlations, reflects only their linear relations. Comparing the plots of R"(7) and L™(r) (or ¢™(7) and
A™(7)) can provide an informal test for important nonlinearities in the studied data (Palus et al. 1993).
This approach, in (Palus 1995) referred to as qualitative testing, or, qualitative comparison, can bring some
additional information to the results of the quantitative (surrogate data based) test. Moreover, one can not
always construct good surrogate data. That is, despite theoretical expectations, in numerical practice linear
properties of the surrogates may differ from those of the data under study. Changes in linear properties are
reflected in nonlinear statistics as well, and thus may result in spurious detection of nonlinearity in linear
data (Palug 1995). Therefore, we also evaluate the statistic based on the linear redundancy L™(7), which
specifically reflects changes in linear properties. Then, only those significant differences in the nonlinear
statistic can reliably count for nonlinearity, which are not detected in the linear statistic (Palus 1995).

If a time series {y(t)} was generated by an m-dimensional chaotic system, then for n > m and under
some conditions the marginal redundancy ¢"(7) decreases with 7 as

¢"(7) = Hy — |7|h, (11)

where h is the Kolmogorov-Sinai entropy (KSE) of the underlying dynamical system, and H; is a constant
related to precision (quantization) of data (Fraser 1989, Palus 1993). Fulfilling the conditions for (11) can be
limited by an available amount of data (Palug 1994a, Palus submitted). Therefore we propose a comparison
of the slopes of the redundancy ¢"(7) and the linear redundancy A™(7) (or, the slopes of 9"(7) obtained from
the data under study and o"(7) from its surrogates) to find whether the decrease of ¢"(7) is a nonlinear

1 Also, preservation of histogram is usually required. A histogram transformation used for this purpose is described in (Palus
1995) and references within.



(possibly chaotic) phenomenon, or can be explained by a linear stochastic process. The latter case renders
a hypothesis of deterministic chaos improbable.

3 Material and Methods

Five paid, physically and psychically healthy volunteers (see Tab. 1), chosen from a larger group by

passing standard EEG-study criteria, participated in the experiment after signing the informed consent.
The five subjects were recorded in two different states:
1. Relaxed vigilance with closed eyes. Vigilance was assured by the volunteers’ participation in a simple
mental task: Subjects were asked to listen to a text recorded on a tape-recorder and to count occurrences of
the conjunction “but”. (For brevity, the term “vigilant state” will be used henceforth to refer to this state.)
2. Sleep evoked by a 1 or 2 mg dose (according to individual sensitivity) of flunitrazepam (tablets). (Hence-
forth referred to as “sleep state”.)

Eight channels of EEG data, sampled by 256-Hz frequency and 12-bit precision, were recorded from the
positions O1, O2, T5, Tg, F7, Fs, P, and F,, using the common Goldman reference electrode. Each record
consists of ninety 90-second segments (90 x 23,040 samples).

The marginal redundancies A" (7) and ¢"(7) and the related linear and nonlinear statistics were calculated
from the redundancies L"(7) and R™(7), estimated from the data and the surrogates (30 realizations of the
surrogates for each dataset). Due to the segmentation of the data, the n-tuples y(¢);y(t +7);...;y(t + (n —
1)7) were constructed only inside the individual segments, whereas final probability distributions and the
correlation matrices were averaged through all the segments. For the qualitative comparisons, the original-
data redundancies R"(7)[o] and L™(7)[o] were computed from entire 23,040-sample segments, which gives
the effective series length N = 2,037,600, given embedding dimensions n = 2 — 5, a lag range 1 - 100
and the segmentation. In the surrogate data tests 16,384 (16k)-sample subsegments were used, employing
fast Fourier transform (Press et al. 1986), requiring a series length equal to a power of two. This yields
the effective series length V = 1,438, 560, applicable for the redundancy estimations. The surrogate data
were generated for each segment separately, i.e., using 16,384 samples. Gaussianization (Palus 1995) was
performed in the quantitative analysis; before the analysis, the data were filtered using a notch filter in the
frequency domain, in order to eliminate interference from the recording equipment.

All the redundancies were computed for embedding dimensions n = 2 — 5 using ) = 4 — 16 marginal
equiquantal (equipopulated) bins. In the qualitative testing, the redundancies were also computed with Q
up to 64, but » was only 2 and 3.

4 Results

Figure 1 presents the analysis results of the EEG of Subj. 2 recorded in position O; in the vigilant state.
In the qualitative comparison there are practically no differences between the linear marginal redundancy
A"(7) (Fig. 1la) and the marginal redundancy ¢"(7) (Fig. 1b). The result of quantitative analysis is different:
There are several highly significant differences (about 10 SD’s) detected in the statistic based on nonlinear
redundancy (Fig. 1d). The possibility that these significances are spurious (caused by imperfect surrogates)
is ruled out by the results in the statistic based on linear redundancy, where no significant differences
(differences between -1 and 1 SD) were found (Fig. 1c). The hypothesis of a linear stochastic process was
thus rejected.

Looking at the nonlinear redundancy statistic (Fig. 1d) in detail, one can see that the significant differ-
ences are periodically distributed and located in the lags in which p"(7) has its minima. This means that
0™(7) is significantly greater than zero also in its minima, which is not apparent from Fig. 1b, esp. in the case
of 0?(7). Thus, ¢?(7) > 0 and the variables z(t) and z(¢ +7) are dynamically (deterministically) connected
for the whole range of considered lags, i.e., up to 100 samples, or, 390 msec. In the case of the surrogates,
0?(7) vanishes in its minima. For other lags the differences between the EEG data and the surrogates are
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Figure 1: (a) Linear marginal redundancy and (b) marginal redundancy, as functions of time lag, for the
vigilance EEG of Subj. 2 recorded from position O;. The four different curves in each figure are the
redundancies for different embedding dimensions, n = 2 — 5, reading from bottom to top. (c) Linear
redundancy statistic, and (d) nonlinear redundancy statistic, as functions of time lag and for embedding
dimensions n = 2 — 5, for the same EEG record.



not significant. This phenomenon, typical for nonlinear deterministic oscillations (Palug 1995), will be called
periodic nonlinearity.

The long-term decreasing trend in ¢"(7) is exactly reflected also in linear A"(7); and is fully explained
by the isospectral linear stochastic process, because there is no indication of a decreasing pattern in the
time-lag dependence of differences (Fig. 1d; cf. Fig. 3d in Palu§ 1994a).

The results in Figs. 1b and 1d were obtained using ) = 4 marginal equiquantal bins. The tests using
finer partitions, possible due to large amount of available data, were also performed (see Sec. 3). Using
finer partitions, however, did not bring any new information either in the qualitative comparison, nor in the
quantitative analysis (Palug 1994b). This phenomenon is typical for all EEG data analyzed.

Results similar to those depicted in Fig. 1 and described above, were obtained from the EEG signals
of all five subjects, recorded in the vigilant state from positions O1, Oz, T5, T4, P, and F, i.e., from all
channels except the two frontal ones, F7 and Fg. For the sleep state and the above six channels we can
also present one typical example. The analysis results obtained from the EEG of Subj. 1, recorded in the
sleep state from position O;, are presented in Fig. 2. In general, the sleep EEG’s are less coherent than
the vigilance ones, the values of the redundancies are about ten-times smaller and decrease faster, i.e., the
coherence length? is shorter. The results of the nonlinearity tests, however, are the same as those for the
vigilance EEG, described above: No qualitative differences between ¢"(7) computed from the EEG and from
the surrogates® were found (Figs. 2a,b). No significant differences (from -1 to 1.6 SD’s) were found in the
linear redundancy statistic (Fig. 2c¢); but several highly significant differences (tens of SD’s) were detected
in the nonlinear redundancy statistic (Fig. 2d). These significant differences are located in the lags in which
0"(7) has its minima.

Properties of the EEG signals recorded in the frontal loci (F7 and Fg; note that F, was included in the
above 6 channels) in both the vigilant and sleep states are similar to those obtained from other channels in
the sleep state, with two differences:

1. In addition to the periodic nonlinearity, significant differences in “short” lags, i.e., in the lags 1 — 2
samples (4 — 8 ms) or 1 — 3 samples (4 — 12 ms) were detected (Fig. 3b). We will henceforth refer to this
phenomenon as “short-lag nonlinearity”.

2. In three subjects in both the vigilant and sleep states, this short-lag nonlinearity was the only significant
difference detected (Fig. 3a). We observed, however, that the spectra of these records are dominated by slow
activity?. When this slow activity was eliminated by a digital filter in spectral domain, a typical pattern of
periodic nonlinearity emerged. The short-lag nonlinearity, however, was not eliminated.

An example of this phenomenon is presented in Fig. 3. The analysis results of the vigilant-state EEG of
Subj. 1, recorded in position Fy, are depicted in Figs. 3a, ¢c. (We do not present ¢"(7) from the surrogates,
which is not qualitatively different from ¢™(7) obtained from the EEG, nor the linear redundancy statistic,
in which no significant differences were found.) In the nonlinear statistic the only significant differences are
located in the lags 1 — 2 samples (Fig. 3a). The lag-dependence of ¢™(7) (Fig. 3c), however, is similar to
that presented in Fig. 2b, showing the typical sleep-state result. After eliminating the slow activity from
the signal, the lag dependence of ¢"(7) is close to the typical vigilance pattern (Fig. 1), but the coherence
length is shorter (Fig. 3d). Results from the quantitative test are also typical, i.e., the significant differences
in the minima of ¢"(7) were detected, but with addition of significant differences in the lags 1 and 2 samples
(Fig. 3b).

In general, the properties of EEG signals recorded in frontal positions Fr and Fy are not different from
the properties of other EEG signals described above. The only difference is the short-lag nonlinearity, which
is typical for these channels, but can also be found in different locations (Tab. 1).

Defining qualitative differences between ¢"(7)[o] from the original data and ¢"(7)[s] from the surrogates

2Under the coherence length we understand here such time lag v that ¢?(7) > 0 significantly V7 < 7, where v, 7 > 0.

3The comparison of ¢”(7) computed from the EEG data with g™ (7) from the surrogates is equivalent to the comparison of
A" (1) with ¢"(7) from the EEG, and may be even more reliable (Palus 1995). Therefore we will use the former in all remaining
tests presented here. ¢™(7) from the surrogates means the mean values of 9™ (7) obtained from 30 realizations of the surrogates.

4Unfortunately we were not able to determine whether it was slow EEG activity or eye artifacts, but the latter are more
probable.
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Figure 2: Marginal redundancy for (b) the sleep EEG of Subj. 1 from position O; and (a) its surrogates,
as functions of the time lag. The four different curves in each figure are the redundancies for different
embedding dimensions, n = 2 — 5, reading from bottom to top. (c) Linear redundancy statistic, and (d)
nonlinear redundancy statistic, as functions of the time lag and for embedding dimensions n = 2 — 5, for the
same EEG record.
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Figure 3: (a, b) Nonlinear redundancy statistic and (c, d) marginal redundancy for the vigilance EEG of
Subj. 1 from position Fy, (a, c) before and (b, d) after high-pass filtering, as functions of time lag and for
embedding dimensions n = 2 — 5.
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Figure 4: (a) Linear A\?(7) and (b) nonlinear marginal redundancy ¢*(t) for the sleep EEG of Subj. 5 from
position P, (full lines) and its surrogates (mean value — dashed lines, mean + SD — dotted lines). (c, d):
The same as (b), but (c) for the vigilance EEG of Subj. 1, position Oy and (d) for the simulated data with

gradually changing fast frequency during oscillatory episodes, discussed in Sec. 5.



Subject 1 2 3 4 5
Age 43 40 44 31 20
Sex F F M F M

O: —vigl | P P P P P
O —sleep || P P P P S|P
Oy — vigil || P P P P P
O —sleep || P P P P S|P
Ts —vigil | P S|P S|P P S|P S
Ts —sleep || P P S|P S|P S|P S
Tg—vigil | P S|P S|P P S|P S
Ts —sleep || P P S|P S|P S|P S
P, —vigil || P P P P S|P S
P, —sleep || P P P P S|P
F, —vigil | P P P P S|P S
F, —sleep || P P P S|P S|P
F;—vigil |[F S|P S|F S|F S|P S
F; —sleep |F S|P S|F S|F S|P S
Fg—vigil |[F S|P S|F S|F S|P S
Fg —sleep |F S|P S|F S|F S|P S

Table 1: Basic characteristics of the subjects and results of the analysis. Sex: F — female, M — male. Location
— state : vigil — the vigilant state, sleep — the sleep state. Analysis results: P — periodic nonlinearity, F' —
periodic nonlinearity detected after high-pass filtering, S — short-lag nonlinearity.

is sometimes problematic. Above we have stated that no such differences were found in analysis of the
studied EEG data. This is true in the sense of the definition of qualitative differences given in (Palus 1995),
which emphasizes differences in ranges of lags in which " (7) is positive, locations of extrema and long-term
trends of p"(7). Looking at more subtle details, however, one can discover an interesting feature, which
differs the nonlinear oscillations in the EEG from trivial periodic nonlinearity, described in (Palug 1995).
For such a detailed comparison, we have plotted in one figure (Fig. 4b) ¢?(7)[o] from the sleep EEG data
of Subj. 5, recorded in position P, (full line) and g?(7)s] from its surrogates (mean — dashed line, mean +
SD — dotted lines). We can observe an asymmetry in the peaks of ¢™(7)[o] compared with those of ¢"(7)[s].
The fact that this is a nonlinear phenomenon and not an artifact of imperfect surrogates, is demonstrated
by comparing A2(7)[o] and A?(7)[s] (Fig. 4a, the same line-type codes as in Fig. 4b): these coincide, thus
linear properties of the surrogates are the same as those of the EEG data.

This phenomenon can be found also in other subjects in both the vigilant and sleep states, but in most
cases the difference is very small and almost invisible. Another example, when this asymmetry is well de-
tectable, is the vigilant-state EEG from the position O; of the Subj. 1 (Fig. 4c). In Fig. 4d this phenomenon
is observed in numerically generated data, discussed in Sec. 5.

In summary, all the EEG records possess a nonlinearity. In particular, a type of periodic nonlinearity
was detected in all the EEG records (although in some of the EEG’s from frontal channels F7; and Fy it was

not detected in the raw data, but after high-pass filtering). EEG’s from the frontal channels F7 and Fg and
from certain other channels also possess the short-lag nonlinearity. These results are summarized in Tab. 1.

5 Discussion of the Results

Periodic nonlinearity, detected in practically all the EEG records analyzed, was characterized by significant
differences located in the lags in which the redundancy ¢"(7) has its minima, while the relations between y(t)
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and y(t+7) in other lags were well reproduced by the linear stochastic surrogates. Also, the linear stochastic
surrogates mimic the EEG signals very well from the viewpoint of qualitative comparison. This kind of
behavior was observed in periodic processes related to dynamics on limit cycles or tori, while “specifically
nonlinear dynamics”, like evolution on strange attractors, was characterized by both qualitative differences
and significant results of the quantitative tests in entire ranges of studied lags (Palus 1994a, 1995). On the
other hand, regular periodic processes have zero Kolmogorov-Sinai entropy and thus no long-term decreasing
trend in o"(7) (Palus 1993). Dynamical information loss, measured by a long-term decrease in " (7),
however, is not a phenomenon specific only to chaotic dynamics, but can be caused by any kind of dynamical
noise, such as that in autoregressive processes (Palus 1994a, Palu§ submitted), or by a nonstationarity or
fluctuation in some parameter of a dynamical system, that might otherwise be regular, i.e., have zero KSE
(Palu§ 1993). The long-term decreasing trend in ¢™(7) detected in all EEG records analyzed, has been found
consistent with the linear stochastic hypothesis. Thus, studied EEG signals can be a mixture of nonlinear
deterministic oscillations, linear stochasticity and/or nonstationarity. In particular, in a numerical study the
following simulated time series were constructed:

Episodes of two-frequency oscillations of the form

y(t) = Asin(wit) sin(wst), (12)

where wy = 27 /T represents fast dominant oscillations (e.g., 71 = 0.1 sec.) and wy = 27 /T represents a
slower “envelope” (e.g., To = 0.5 — 1.0 sec.);

were randomly distributed in a background of Gaussian noise. Durations of the episodes were random,
varying from 0.875 to 2.275. Also other parameters were randomized:

The amplitude A as A; = Ay + a4, the argument of the “envelope sine” as wot + & and the fast frequency w;
as wy(t) = wy + o4, where a4, & and o; are Gaussian deviates with zero means and variances of about 20% of
Ap, 27 /3 and 10% of wy, respectively. Finally, the spectra of these artificial signals are more realistic (i.e.,
more closely resembling real EEG spectra), when background noise is not white, but filtered into 1/f type.
Tuning the above parameters (the variances of the random components, the durations of the episodes, the
frequency of episode occurrence, and the type of the background noise) one can produce signals, which, when
analyzed, yield results practically indistinguishable from the results obtained from various EEG recordings.
An example of results from such an artificial time series is presented in Fig. 5: p"(7) of the simulated
data (Fig. 5b) and of its surrogates (Fig. 5a), the linear redundancy statistic (Fig. 5c) and the nonlinear
redundancy statistic (Fig. 5d). These results are practically the same as those obtained from the vigilance
EEG recordings from all but the frontal channels (Fig. 1). By changing the background noise, in particular,
by increasing the spectral power of slow frequencies relatively to the power of the main wi-oscillations, the
“vigilant-state artificial EEG” can be changed into the “sleep-state artificial EEG”; i.e. the results become
similar to those presented in Fig. 2.

When the fast oscillation frequency w; is randomized as described above (or constant) no asymmetries
such as those in Fig. 4 are observed. In an additional study we found that such asymmetries may occur when
the frequency w; changes gradually during the oscillatory episode. In particular, we used linearly changing
period T3 as Ti(t) = Ty + ct, where t is the time from the beginning of an oscillatory episode. The sign of
the parameter ¢ determines on which side of a peak of ¢?(7) the asymmetry occurs: when c is negative the
asymmetry is located on the left side of the peaks, as in the cases presented in Fig. 4; when ¢ is positive, the
asymmetry is located on the right side. Thus, if the asymmetries detected in the real EEG data were indeed
caused by this mechanism, related c¢’s are negative and 77’s decrease, or the dominant frequency (alpha)
increases during the oscillatory episodes (alpha spindles).

The above described process is obviously asymmetric with respect to time. Although the actual dy-
namical mechanisms underlying the EEG can be different®, the temporal asymmetry can be detected in
the real EEG dynamics®. Recently, Chialvo & Millonas (1995) have pointed out the importance of tempo-
rally asymmetric fluctuations for biological energy transduction. Possible existence and a role of temporally

5A generalized Wiener process with a nonzero drift can be considered as a plausible stochastic alternative to the above
deterministic drift in 71 (w1).

6The asymmetry in the peaks of ¢2(7) is not necessarily equivalent to the temporal asymmetry of the underlying process
(time series), and the redundancy g¢? (mutual information T) is not a measure suitable for detecting the temporal asymmetry,

11



MARGINAL REDUNDANCY

20 40 60 80 100

(): LINEAR 30 [ (0 NONLINEAR

DIFF [SD’s]

0 20 40 60 80 100 0 20 40 60 80 100
LAG LAG

Figure 5: Marginal redundancy for (b) the simulated time series discussed in Sec. 5 and (a) its surrogates, as
functions of time lag. The four different curves in each figure are the redundancies for different embedding
dimensions, n = 2 — 5, reading from bottom to top. (c) Linear redundancy statistic, and (d) nonlinear
redundancy statistic, as functions of time lag and for embedding dimensions n = 2 — 5, for the same
simulated series.
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asymmetric processes in the brain dynamics could be an interesting subject of research.

The simulated time series, which combine nonstationary deterministic oscillations with randomness,
namely, in which oscillatory episodes with some randomized parameters are randomly distributed in a noisy
background, can mimic all properties of the real EEG signals analyzed”. Of course, this is not evidence
that this “model” explains real EEG dynamics, although it seems more probable that the hypothesis of
low-dimensional chaos. Without insisting on a particular model or hypothesis, we can conclude, that in
the analyzed EEG recordings nonlinearity was detected, however, not consistent with the hypothesis of
low-dimensional chaos. Considering this result, applications in computerized EEG analysis of algorithms,
designed for characterization of low-dimensional chaotic systems, should be critically reassessed.

Some authors (Mayer-Kress & Layne 1987, Koukkou et al. 1993, Wackermann et al. 1993) no longer insist
on interpreting their results, such as finite dimension estimates, as evidence for underlying low-dimensional
chaos, but propose these measures, particularly the correlation dimension (CD) (Grassberger & Procac-
cia 1983), as measures for relative characterization of different EEG recordings. Although these authors
demonstrate that such CD estimates can have some discriminating power with respect to EEG’s recorded in
different physiological or psychological conditions, considering that the underlying processes can be stochas-
tic, these low numbers, formally obtained from dimensional algorithms, are probably spurious and have no
theoretically justified meaning and interpretation. Moreover, it can hardly be established, how robust or
sensitive the measures such as CD are, when used in the relative characterization of processes, dimensionality
of which can be effectively infinite. For these reasons we do not consider the dimensional and Lyapunov
exponents algorithms, based on the particular hypothesis of a low-dimensional attractor, to be promising
in the computerized EEG analysis. Nonlinear methods, which can quantify some really existing property
of a process under study, should be used. For instance, differences in coherence lengths of various EEG
records can induce differences in estimates of CD or Lyapunov exponents. The coherence length of a pro-
cess is related to its entropy rate and thus can be directly quantified, e.g., by an “approximate entropy”
(Pincus et al. 1991), or by “coarse-grained entropy rates” (Palu§ submitted), which can be applied to both
deterministic—chaotic and stochastic systems, and are designed specifically for noisy, finite-precision and
finite-length experimental data.

6 Conclusion

Two-hour vigilance and sleep EEG recordings from five healthy volunteers were analyzed using a method
for identifying nonlinearity and chaos, which combines the redundancy — linear redundancy approach with
the surrogate data technique. A nonlinear component in the EEG was detected, but was found inconsistent
with the hypothesis of low-dimensional chaos. A possibility, that a temporally asymmetric process may
underlie or influence the EEG dynamics, was indicated. A process, which merges nonstationary nonlinear
deterministic oscillations with randomness, namely, in which deterministic oscillatory episodes are randomly
distributed in noisy background, has been proposed for an explanation of observed properties of the analyzed
EEG signals. Considering these findings, the use of dimensional and related chaos-based algorithms in the
quantitative EEG analysis was criticized, and measures applicable also for nonlinear stochastic processes
were proposed instead. However, any EEG study, in which the authors apply nonlinear measures, should
also present results of elaborate analysis using linear methods, and/or test hypotheses® using isospectral sur-

due to its symmetry properties (I(¢;n) = I(n;¢)). Considering £ = y(¢) and n = y(t + 7), the temporal asymmetry of a
series {y(¢)} can be detected by the significant difference between the probability distributions p(¢,n) and p(n, £), quantified
by the Kullback-Leibler information KLI = ) ¢ En [p(€,m) — p(n, €)]log[p(¢,n)/p(n, £)]. Application of this approach led to
positive detection of the temporal asymmetry in the EEG, however, yet only a part of the EEG data described in this paper
was processed using the K LI measure. Therefore the temporal asymmetry in the EEG is reported here only as a possibility,
which requires further study before it is considered a general feature of the EEG.

"Except of the short-lag nonlinearity, detected in a part of the datasets (Tab. 1).

8Let A and B be two groups of EEG recordings. Positive identification of nonlinearity in individual recordings is not
sufficient evidence for the assertion like “The groups A and B can be distinguished only by a nonlinear measure and not by
linear methods”. We propose also the comparison of the surrogates of the group A with the surrogates of the group B using
the same nonlinear measure as for the comparison of the original data.
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rogate data, in order to demonstrate that nonlinear measures are indeed necessary to quantify phenomena
under study.
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