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Abstract conservation laws

System of equations (conservation laws)

;U + div,F(U) = 0,

“Entropies”

6tE,(U) + diVXFE,.(U) = 0, | = 1, 27 L

A priori bounds

entropy

entropy flux
/E,-(U) dx bounded in terms of the initial data, i =1,2,...
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Weak vs. strong solutions
Lack of regularity

m bounds available only in LP (L)

m presence of oscillations

states

Weak solutions

m discontinuities (shocks) appearing in finite time even for initial

/ U o(r2,7) - Up(m, ) dx
Q

=/ / [U-0rp+F(U): Vyp] dx dt
T1 Q

Weak continuity
t — U(t, ) weakly continuous
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Compensated compactness - DiPerna, Tartar

Linear field equations
6tU + diVXF =0
O:Ej +diviF; <0, i=1,2,...

Nonlinear constitutive equations

F =F(U), E = E(U), F;=F;(U), i=1,2,...

Compensated compactness
m linear field equations yield constraints on possible oscillations
described by Young measure
m nonlinear constrained imposed by constitutive equations reduce
the Young measures to Dirac masses (no oscillations)
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Convex integration

Linear field equations

3tU + diVX]F = 0

Replacing constitutive equation

F = F(U) & A(U,F) = E(U) “implicit”

A(U,TF) convex, A(U,F) > E(U)

Relaxation of constitutive equation

E(U) < A(U,F) < e, e given “energy”

F = F(U) & A(U,F) = E(U) < E(U) = e
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Subsolutions

9:U + div,F =0, E(U) < A(U,F)[<le
Oscillatory increments

Owe + div,G. =0, AlU+w.,F+G,.)<e

w., G. compactly supported in @, w. — 0 weakly in L*(Q)

. 2 > - o
Ilgn_:gf/8|wa| dx > C/B(e E(U)) dx
liminf

Ee—>

=

/BE(U—i—wg) dxz/BE(U) dx+C/B(e—E(U))a dx
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Admissibility criteria

Entropy admissibility criterion - Second law

8:E(U) + div,F(U) < 0

Entropy rate admissibility criterion - Dafermos

U maximal with respect to the relation >

Uu-vVv

=

U(t,:) =V(t,-) fort <

/ E(U(t,-)) dx < / E(V)(t,-) dx for a.a. t € (7,7 + )
Q

for some § > 0
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Pointwise maximal entropy rate criterion
Maximal dissipation admissibility criterion |
U maxV

=

U(t,-)=V(t,-)fort <7

E(U(t,-)) < E(V)(t,-) fora.a. t € (1,7 + )

for some § > 0

u >'ma.x—shaurpv

-~

U(t,") =V(t,-) fort <

E(U(t,)) < E(V)(t,") for a.a. t € (1,7 + 0)

o>



Euler-Fourier system

Mass conservation

0o + divy(ou) =0

Momentum balance

O¢(ou) + divy(ou @ u) + V,(0¥) = @ (inviscid)

Internal energy balance

3 . . .
5 {&t(gﬁ) + dlvx(gﬁu)] - = —pvdivsu (heat conductive)
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Existence of weak solutions

Initial data

00, Yo, Up € C3, 09 >0, Y5 >0

Global existence

For any (smooth) initial data go, Yo, ug the Euler-Fourier system
admits infinitely many weak solutions on a given time interval (0, T)

Regularity class

0€ C? 0,09, V29 € LPforany 1< p< oo

uec Cweak([oa T]. L2) N Loo, div,u € Cl
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Ansatz

Application of the convex integration method, |

ou=v—+V,V div,y =0
Equations

O + div ((v+VX\IJ)®(v+VX\|J)

Y

) + V(O + 00) = 0

oidiv, (#)

g (9e(00) + divi (v(v + V) ) = &0
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Construction of solutions

Application of the convex integration method, Il

Fix 0 and compute the acoustic potential W

Compute ¥ = J[v] for v € L™

> (0:(09) + divi (9(v + V.0)) ) ~0 = i, <

v+ V¥
Observe that 0 < ¥ < ¥, ¥ independent of v
A Take

=)

e = x(t) - 3ol

and use a non-local variant of the results od Delellis and
Székelyhidi for the incompressible Euler system to find v



Conservative solutions to the Euler-Fourier system

Total energy conservation

1,3 (1,3
/Q<20|U| +2919) (r, )dX—/Q(290|Uo| +290190) dx

Initial data
00 € C2,95 € C?, 09>0, 9>0

Infinitely many dissipative weak solutions

For any regular initial data gg, ¥y, there exists a velocity field ug
such that the Euler-Fourier problem admits infinitely many
conservative weak solutions in (0, T)

u]
Q
1l
n
it
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Maximal dissipation criterion?
Entropy production rate

01(0s) + divy(osu) + divy (%) =0
s(e.0) = —log (5375 )
0_ _ q- sz'l9

9

Maximal dissipation

m Maximize the entropy production rate

m Maximize the total entropy [, 0s(o,?) dx
m Maximize the entropy os(o, )
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