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Equations of a barotropic gas

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0

Pressure-density state equation

p = p(%), p(%) = a%γ

Initial conditions

%(0, ·) = %0, %u(0, ·) = (%u)0
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Euler-Fourier system

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇x(%ϑ) = 0

Internal energy balance

3

2

[
∂t(%ϑ) + divx(%ϑu)

]
− ∆ϑ = −%ϑdivxu
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Global existence of weak solutions

1-D case

Existence of global-in-time bounded weak solutions via compensated
compactness
DiPerna [1983], Chen, P.L. Lions, Perthame, Souganidis etc.

2,3-D cases

Existence of infinitely many global-in-time bounded weak solutions
via convex integration
DeLellis, Székelyhidi [2008], Chen, Chiodaroli, Kreml, EF etc.



Admissibility criteria for compressible Euler system

Total energy

E (t, x) =
1

2
%|u|2 + H(%), H(%) = %

∫ %

1

p(z)

z2
dz

Energy balance (differential form)

∂tE + divx(Eu + pu) ≤ 0

Energy balance (integral form)

∂t

∫
Ω

E dx ≤ 0,

∫
Ω

E (t) dx ≤ E0 for any t > 0



Dissipative solutions

Relative “entropy” (energy)

E
(
%,u

∣∣∣ r ,U
)

=
1

2
%|u−U|2 + H(%)− H ′(r)(%− r)− H(r)

Relative entropy inequality∫
Ω

E
(
%,u

∣∣∣ r ,U
)

(τ, ·) dx ≤
∫

Ω

(
%,u

∣∣∣ r ,U
)

(0, ·) dx

+

∫ τ

0

∫
Ω

R(%,u, r ,U) dx dt
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Remainder

Remainder in the relative entropy inequality

R(%,u, r ,U)

=
[
% (∂tU + u · ∇xU) · (U− u) +

(
p(r)− p(%)

)
divxU

]
+
[
(r − %)∂tH

′(r) + (rU− %u) · ∇xH ′(r)
]



Some properties of weak and dissipative solutions

Weak strong uniqueness

Admissible weak solutions are dissipative - the energy inequality
implies the relative energy inequality. Strong solutions are unique in
the class of admissible weak solutions - weak and strong solutions
emanating from the same initial data coincide as long as the latter
exists.

Global existence

For given initial data, there exist (infinitely many) weak solutions.
For any density distribution %0, there is a velocity field u0 such that
the compressible Euler system admits (infinite many) admissible
weak solutions.
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Riemann problem

Riemann data

%0 =

 %L for x1 ≤ 0

%R for x1 > 0

u1
0 =

 u1
L for x1 ≤ 0

u1
R for x1 > 0

Second velocity component

u2
0 ≡ 0

Ill posedness - Chiodaroli, DeLellis, Kreml

There exist infinitely many admissible weak solutions for certain 2D
Riemann problem. There exist infinitely many admissible weak
solutions that emanate from certain Lipschitz initial data.



Stability of rarefaction waves

Almost regular solutions

%, u ∈W 1,∞
loc ((0,T )× RN) ∩ L∞(0,T ; W 1,1

loc RN))

Boundedness of the velocity gradient

∇xu +∇t
xu ≥ −MI

Uniqueness

The solution %, u is unique in the class of bounded admissible weak
solutions. 1− D rarefaction waves are unique as solutions of the
multi-D Euler system.
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Another application of the relative entropy

Problematic term

(u−U) · (∇xU +∇t
xU) · (u−U) ≥ 0

Pressure convexity

(p(%)− p′(r)(%− r)− p(r))divxU ≥ 0
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Maximal dissipation criterion?

Energy dissipation rate (entropy production rate)

∂t

(
1

2
%|u|2 + H(%)

)
+ divx

[(
1

2
%|u|2 + H(%) + p(%)

)
u

]
= −σ

σ ≥ 0

Criterion à la Dafermos 1974

Admissible solutions should “maximize” the energy dissipation rate σ
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Šťastné narozeniny Hugo !
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