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Abstract

We consider the inviscid incompressible limit of the compressible Navier-Stokes system on a
large domain, the radius of which becomes infinite in the asymptotic limit. We show that the
limit solutions satisfy the incompressible Euler system on the whole physical space R? as long
as the radius of the domain is larger than the speed of acoustic waves inversely proportional to
the Mach number. The rate of convergence is estimated in terms of the Mach and Reynolds
numbers and the radius of the family of spatial domains.
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1 Introduction

Scale analysis provides a valuable insight in the behaviour of complex fluid systems in the regime,
where some of the characteristic dimensionless parameters become small or infinitely large. We
consider a scaled COMPRESSIBLE NAVIER-STOKES SYSTEM:

0o + div,(pu) = 0, (1.1)
1
O¢(ou) + div,(ou ® u) + gvxp(g) = vdiv,S(V,u), (1.2)
2
S(V,u) = V,u + Via — gdivxu]l, (1.3)

supplemented with the no-slip boundary condition



ulsn,, =0, (1.4)

where Q; C R? is a smooth, bounded, simply connected domain.

Motivated by Kelliher, Lopes, and Nussenzveig-Lopes [5], where the authors consider the inviscid
limit of the incompressible Navier-Stokes system on a family of domains Q,; = MQ, M — oo, we
consider a family of domains {2/} />0 enjoying the following properties:

e )y C R? are simply connected, bounded C? domains, uniformly for M — oo;

e there exists a > 0 such that
{:c €R ‘ lz| < aM} C (1.5)

e there exists # > 0 such that
00, < 802, (1.6)

where | - |5 denotes the standard two-dimensional Hausdorff measure.

Our goal is to identify the triple singular limit, where
e — 0, v — 0, while M — oo.

The present situation is more complex than that considered in [5] as the compressible Navier-Stokes
system in the low Mach number limit generates rapidly oscillating acoustic waves, at least for the
so-called ill-prepared initial data.

Similarly to Masmoudi [9], [10], Wang and Jiang [12], and others, our approach is based on the
relative entropy (modulated energy) inequality put in the general framework introduced in [3]. We
consider the ill-prepared initial data in the form

0(0,7) = 00 = 1+ 05, u(0,) = ug,, (17)
Qé}g — ggl) in L*(R?), up. — ug in L*(R* R?) as ¢ — 0. (1.8)

Remark 1.1 The far-field value of the density has been set to 9 = 1 for the sake of simplicity. The
general case 9 > 0 can be handled with obvious modifications.

In particular, the initial perturbation of the density is proportional to the Mach number. Under
such circumstances, the relative entropy inequality specified in Section 3 yields similar bounds for
any (weak) solution of (1.1 - 1.8) uniform for ¢ € [0, 7.
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Formally, it is easy to identify the limit system for e, — 0, M — oo. Indeed, ¢ = 0., um,
u = u., ) being a solution of the problem (1.1 - 1.8), we expect that

o—1, u—v,

where v is a solution of the incompressible Euler system

Ov+v-V,v+ VIl =0, div,v =0 in R*. (1.9)

The principal difficulties of a rigorous proof of such a scenario are:

e The target Euler system is defined on R?® while the primitive system (1.1 - 1.8) on €, the
solution v is not an admissible test function in the relative entropy inequality.

e The same problem occurs with the solutions of the associated acoustic system.

The afore-mentioned difficulties require introducing a corrector in the relative entropy inequality.
A careful analysis of the extra terms in the relative entropy inequality due to the presence of the
corrector as well as estimates of the actual convergence rate in terms of the singular parameters
g,u, M are the main novelties of the present paper.

The paper is organized as follows. In Section 2, we collect the necessary preliminaries and
formulate our main result. Next, in Section 3, we introduce the relative entropy inequality and use
it to derive uniform bounds on the family of solutions independent of the parameters ¢, v, and M.In
Section 4, we analyze the behavior of acoustic waves. The cut-off operators are introduced in Section
5. The proof of the main result is completed in Section 6.

2 Main result

We consider the class of finite energy weak solutions of the compressible Navier-Stokes system (1.1-
1.4) satisfying, besides the standard weak formulation of the equations (1.1 - 1.3), the energy in-
equality

1 9 1 T
- —H d //Sz:xddt 2.1
[ [P+ SH@] ) dotv [ (Vo) Voudo (2.)
1 1
< [905|uos|2+H(905)] dz for a.a. 7 > 0,
Qu L2777 ’ g2 ’
where we have set

H(p) = Q/g 2 g,
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2.1 Solutions of the primitive system

Suppose that the pressure p = p(p) satisfies

/
p € C[0,00) N C3*(0,00), p(0) =0, p'(0) >0 for o >0, glgglo ];7(_91) = Poo, (2.2)

where

3
S 2.3

Then the (primitive) Navier-Stokes-Fourier system (1.1 - 1.4) admits a global in time finite energy
weak solution for any finite energy initial data, see [2], Lions [§].

2.2 Solutions of the target system

We suppose that the limit velocity field uy introduced in (1.8) is sufficiently smooth and confined to
a compact set, specifically,

uy € C™(R*; R®) for a certain m > 4, supp[uo] compact in R”.

As is well known, see e.g. Kato and Lai [4], the limit Euler system (1.9), endowed with the initial
datum
V(O, ) = Vg = H[UO]7 (24)

where H denotes the standard Helmholtz projection onto the space of solenoidal functions, possesses
a smooth solution
v € C*([0, Tax); W™ F2(R* R¥)), k= 1,..,m — 1 (2.5)

defined on a maximal time interval [0, Tax), Tmax > 0.

Remark 2.1 As a matter of fact, it is enough to assume uy € W™2?(R3; R3), with m > g Com-
pactness of supplug| is assumed solely for the purposes of the proposed singular limit.

2.3 Acoustic system

Acoustic system is determined by the “compressible part” of the system (1.1), (1.2). Formally, we
can rewrite (1.1), (1.2) in the form of Lighthill’s acoustic analogy:

-1
5&@ 5 + div,(ou) = 0,

o—1

2, (on) + p (V. 272 — ¢ [udiv,s(V,u) — div, (ou ® ) — V, (p(g) _pyme=t p<1))] |
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where the quantity on the right-hand side of the second equation is termed Lighthill’s tensor, see
Lighthill [6], [7]. Accordingly, we consider the acoustic system in the form

edis+ AV =0, ed,V,V +aV,s =0, a=p'(1) >0, (2.6)

supplemented with the initial data
8(07 ) = Q(()1)7 VI\I[([L ) - VI\I[O = Uy — H[u()] (27)

2.4 Main results

We are ready to state our main result:

Theorem 2.1 Let the pressure p satisfy the hypotheses (2.2), (2.8). Let {Qu}uso be a family of
uniformly C?-domains in R such that (1.5), (1.6) hold for M = M(g),

eM(e) — o0 as e — 0. (2.8)

Let the initial data [goc, Uoe] for the compressible Navier-Stokes system (1.1 - 1.4) be of the form

0(0,-) = 00 = 1+ 0, u(0,) = ug, |02l 2ne(ms) + 0]l L2(m5:m5) < D (2.9)

In addition, suppose we are given functions U, Q(()l) such that
uy € C"(R*; R?), Q(()l) € C™(R?), laol|cm (rs;Rr3) + HQ(()l)HCm(RZS) <D, m >4, (2.10)

supplug], supplo’] compact in R*. (2.11)

Let Tiyax > 0 be the life-span of the smooth solution v of the Euler system (1.9), endowed with the
initial datum vo = H[ug|, and let 0 < T < Tyax. Let [s, V] be the solution of the acoustic system
(2.6), with the initial data (2.7).

Then

H\/_Q<u S v) (1) (2.12)

L2 (e R) + H (Q ; 1) (7', ) - 8(7’, )

1 1
< C(D7T7 (I) {HUO,& - u0||L2(QM;R3) + Hgé,g) o Qg :

L24+L7 ()

1 1/2
o <y+€ * 5M(5)> ] ’

T€[0,T], 0<a<l1, e¢—0,

for any weak solution [p,u] of the compressible Navier-Stokes system (1.1 - 1.4).
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Corollary 2.1 In addition to the hypotheses of Theorem 2.1, assume that
g[(fg - le) m LZ(R?’), U — U in LQ(R?’; R3) as € — 0.

Then
ess sup |lo — 1f|r2qv(x) — 0 as e — 0,
te(0,T)
u-— t,- 0ase —0 2.13
ess sup |VB(u = V)t a0 05 = (213)

for any 0 < 6 < T and any compact K C R3.

Remark 2.2 The acoustic waves represented by the pair are [s,V,V] enjoy dispersive estimates
specified in Section 4 below. On the other hand, however, the acoustic equation conserves enerqy;
whence (2.13) holds only on compact subsets of the physical space.

The rest of the paper is devoted to the proof of Theorem 2.1 and Corollary 2.1.

3 Relative entropy

Motivated by [3], we introduce the relative entropy functional

_ 1 2 1 /
along with the relative entropy inequality
t=T1
{5 (g, ulr, U)L:o (3.1)

Sty // $(Vou — V,U) : (Vou — V,U) de df < /TR(Q,u,r, U) dt,
0 Qs 0
with the remainder R

R (0,u,r, U) = /Q 0(0U +u-V,U) - (U—u)) dr+ u/ S(V,U): (V,U - V,u) do (3.2)

M Q]\/[
1 1 .
22 Ja,, ((7“ —0)0,P(r) + V.P(r) - (rU — QU)> do — 2 Jo (p(g) — p(r))dwa dz,
where P = H'.

As shown in [1], any finite energy weak solution [p, u] to the compressible Navier-Stokes system
(1.1 - 1.4) satisfies the relative entropy inequality for any pair of sufficiently smooth “test” functions

r> 0, U|@QM = 0.



3.1 Uniform bounds

Before stating the uniform bounds on the family of solutions [o, u], it is convenient to introduce the

following decomposition:
h = hess + hre37

where
hess = X(Q>h7 hres =1- X(Q)a
with
X € CX(0,00), 0 < x <1, x(p) =1 for all pin a certain neighborhood of p = 1.

Taking » = 1, U = 0 in the relative entropy inequality (3.1) we deduce the following uniform
bounds:

ess sup [[y/au(t, ) z(@ums) < (D), (3.3)
te[0,T]
o—1
ess sup [ (¢, )} < ¢(D), (3.4)
t€[0,T] € essIlL2(Qpr)
and
€ss sup (lees(tv ')HLl(QM) + nges(t? ')HLl(QM)) < 5QC(D)' (35)

t€[0,T]

4 Energy and dispersive estimates for the acoustic system
As already pointed out, the behavior of acoustic waves is governed by the standard wave equation
eds + AV =0, €d;V,V +aV,s =0, a=7p'(1) >0,

supplemented with the initial data

5(0,-) = 0", VaW(0,-) = V,Wo = ug — Huy).

4.1 Finite speed of propagation

For s we obtain )
e20?,s —als =0, s(0,-) = Q(()l), 95(0,-) = —= AUy, (4.1)
' €

Since, by virtue of (2.11), both Q(()l) and AWV, have compact support we deduce that

s(t,x), AV(t,z) =0 for z > c+ \/aE for all ¢ > 0. (4.2)
£



4.2 Energy estimates
The acoustic system conserves energy, specifically,

d 2 2

T /R3 (as + |V, V| ) (t,-)dx dt = 0. (4.3)
Moreover, in view of (4.2) and the hypotheses (2.8), (2.11), we also have

d 2 2

dt/QM (as” + [V, ¥[?) (t,-) dz dt = 0. (4.4)

Higher order energy estimates give rise to

1
||Vx\lf(7', ')||Wk,2(R3;R3)+||S<T, ')||Wk,2(R3) < C||v$\110||wk,2(R3;Ra)+||Qé )||Wk,2(R3), k= 0, 1, cee, M, (45)

for any 7 > 0.

4.3 LP — L7 estimates

Finally, we recall the well-known L” — L9 estimates
T 7(%7%) (1)
1928 (7, Mooy + s Msiasy < ¢ (14 2) "7 (IVePollwraqoy + 6 lwnan) (46)

11
k>3, 2<p<oo, —+-=1,
p

see Strichartz [11].

5 Cut-off operators

In accordance with the hypotheses (1.5), (2.8), the acoustic waves emanating from a compact set
(cf. (2.10), (2.11)) will never reach the boundary 92, in a finite time lap (0,7"). Consequently, by
virtue of (4.2),

V¥aay, = Va¥Poloq,, for all t € (0,7).

Similarly, as the Eulerian velocity is determined by the Biot-Savart law
v = —curlA™[curl[v]],

v is a curl of a harmonic function outside a bounded ball.



We introduce the cut-off functions
Wi = =1V — 1 Va o, (5.1)
where 71y, satisfy
n € CX(R?), 0 <y <1, maloa,, = 1, nu(z) = 0 whenever dist[z, 0Qy,] > 1. (5.2)
It follows from the previous discussion that both v and V, ¥, behave like ﬁ on OS2y, therefore,
by virtue of the hypothesis (1.6), we get
100w (7, | oy + 1War (7, ) lwasury < MG for 1 < p < oo (5.3)
for any 7 € (0,7).

6 Convergence

Our goal in this section is to show the estimate (2.12) stated in Theorem 2.1. We start with a proper
choice of the test functions in the relative entropy inequality (3.1). Specifically, we take

r=1+es, U=v+V, ¥+ wy,

where v is the solution of the Euler system (1.9), and s, V, VU represent the oscillatory component
solving the acoustic wave equation (2.6). The corrector w); introduced in Section 5 satisfies the
boundary condition

WM|3QM = _(V + VI\P”BQM;

whence r and U are admissible in (3.1).
In the remaining part of this section, we analyze term by term the relative entropy inequality
(3.1).

6.1 Initial data

We have,
[5 (Q,ll’?“, U)} (0) = /Q ;Qo’€|u07€ — H[ug] — V. ¥y — wy (0, )] da (6.1)

M

1
+ ) o (He+edd) —eH'(1+eapd) (e - o) = H(L+ 20f))) da
M

1 1
< ¢(D) [[[ug.c = ol 720,89 + Wt (0, )2y + 062 — 06 172000

1
1 1
<dD) {”uﬂva — o720, m) + 062 — 06" I 2(00) + M2] ’

where the last inequality follows from (5.3).
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6.2 Estimates of the remainder in the relative entropy inequality
6.2.1 Dissipation

By virtue of Korn’s inequality, we obtain

v /0 /Q 8(V,U) ¢ (VU = Vou) da di

< ;/O/Q (8(V,U) —s(V,u)) : (V,U — V,u) do dt+cu/ / S(V,U)[? de dt.

Thus the relative entropy inequality (3.1) reduces to:
E (g, ulr, U) (1,-) (6.2)

+2 /T/ S(Vou — V,U) : (Vou — V,U) dz dt
2Jo Jau

1 1 1
<dD) [Iluo,a — o Fa(ayyiey + llobe — 087 122(0) + M2]
v [T [ (VP I Vo)

+// (U +u-V,U) - (U-w) de dt

1 T
;2/0 /QM ((r = 90.P(r) + V.P(r) - (rU - ou)) da dt - —/ /QM p(r))div,U de dt.
1
<¢(D,T) [Huo,a — o2y + 11062 = €6 [F20,) + 775 + ]
+/0 /QMQ(atU—FU'VIU)-(U—u)) dx dt
1 T
;2/0 /QM ((7’ — 0)OP(r)+ V,P(r)- (rU — Qu dx dt — —/ /QM )lemU dzx dt.

11



6.2.2 Convective terms
We write -
/0 /QMQ((‘?tU—i—u~VxU) (U~ ) de dt

—// (0U+U-V,U) - (U-u) dxdt—/OT [ oV, U (U—w)- (U~ drat,

where the term

/T vaU.(U—u)-(U—u)dxdtg/T/ olu — UP|V,U| dz dt
0 JQnp 0 JQur

can be controlled in terms of the data, specifically,

/ / olu — UV, U| de dt </ [Vov + Vowss + V20| €t (6.3)

Next, we have

/OT/Q Q(atU+U~V$U>.(U_u)) de dt

- u) %) (VI\II + wM) dz dt

:/OT/QMQ(U_u> ) (atV—FV'Vg;V) dz dt+/OT/QMQ v

+/ / ® (VU +wyy) : Vv de dt
QM
+/ / v: (V20 4 Vowy) do dt
QM
2
2// ) - VoIV 0 4 w2 da dt.

Now observe that, in view of the uniform bounds (3.3 - 3.5), the last three integrals above can

be controlled by

¢(D) /0 (V09 g sy + W sl d for some p € (2,00) large enough — (6.4)

o1 1 1
SC(D,T)<€ +M2a) a—l—— > 5

Indeed it follows from (3.3 - 3.5) that
ess sup |lou(t, )|l r24 ey rs) < (D) for a certain ¢ > 1,
te(0,T)

12



while

ess sup [[V(t,)llwrenwroe(rre) < (D).
te(0,7)

The desired bounds on V,¥, w), follow from (4.6), (5.3), respectively.
Furthermore, we have

/ /Q u)- (O +v-V,v) de di = / /Q VLI de dt (6.5)
" u

_/ ou- VI dz dt — / oU - V.11 dz dt.
Qs 0 JQn

Thus using the weak formulation of the continuity equation we get

T T t=1
/ ou - V,IT dz dt = — / 0T de+ | [ oIl da (6.6)
0 JQun 0 JQn Qpr t=0
r 1 1 t=r
:_5/ 4 8tde+5[ e de} :
Q]w g Q]\l € t=0

where, in view of (3.4), (3.5) (2.5), the last two integrals are of order ¢(D,T)e. As for the second
integral on the right-hand side of (6.5), using U = 0 on 012 and div,v = 0 we have

/T QU-Vdewdt’ <e
0 JQnp

/T Q_lU-Vdexdt‘Jr
0o Jay €

/T UV, do dt
0 JQun

(D, T)e +

Mdiv, U do dt‘
M
< C(Dv T)E + C(D) /0 ”A‘I;HLOO(QM) + ||diVIWM||L°C(QM) de

o(D,T) ( In(l + &7 + 1)

M2
where the log-term results from integrating (4.6), (5.3). Finally,
[ ] e(U=n)-a(Vow +wy) do dt
QM

:_/T ou-0,(V, ¥ +wy) de dt+/T ov - 0,(V, ¥ +wy) de di
0 Qs 0

Qnr

1 T
+f/ / 00, [V + w2 dz dt,
2 0 Qs

13



where

[ [ ov-a(ver+wy) dedi=e [ 0Ly (Vv 4 war) da
0 JQur 0

Qar g
+// v 0,(V. U 4 wiy) de dr.
0 JQn

Now, we use the acoustic equation (2.6) to rewrite

T —1 T —1
5/ / CaN AV dxdt:—a/ e Y. V,sde dt,
Qy € Qnr

€

which is controlled by

D) [N 195l @iy < (D, T)en(1 +277)

While, as M >> %,

// v-@tvx\llda:dt:/ v-n@t\IIdSw:/ v-n o0, dS, =0
0 JQun Oy Qs

Thus we may write the relative entropy inequality in the form

E (Q, u|r, U) (1,+)

1
< (D) [Ijao = vollEziy sy + 162 = 08" By + [ [V + Vowns + 929

& dt

Loo QM R3)

1 1 t=1 T
+¢(D,T) <5a + — 4+ u) + 3 U IV, V|2 dx} —/ ou- 0, VU dr dt
Qs t=0 0

M
L[ (= 00p0) 4 9.0) - (U - ) - [ /QM

6.2.3 Terms depending on the pressure

In order to bound the remaining integrals in (6.7) we first realize that

Qs Qur

Next, we get

1 T
- P ) de dt = / /
52/0 QMV (r) - (eu) dz Qus

14

V,P(r) rU dz = — / p(r)div, U d.

ou) dx dt

)dlva dz dt.



_ [T Pltes)—P(1) 1o
_/0 /QM . Vs (ou) dz dt + 5/0 /QMp(l)sz (ou) dz dt,

where the first integral on the right-hand side is controlled by the dispersive estimates. Furthermore,
using the acoustic equation, we deduce

/ [ v ou) du df — / ou-9,V, U de dt.
Q]W 0 Q]V[
Now we write |
S [ [0 = 0aPr) — plediv,U] do dt (6.9)
M
L ) p(1)
= */ / (1 — 0)P'(r)0ss dx dt +/ ———— AV dz dt — / / 0)div,wy, dz dt
g Jo Qs Qs QIM
1
===/, p(g)diver dx

+/ h

// Yo — DAY dz df — / plo) - p(l)(g—l)— P Ay qr dt,
QM Qs I

P/ )Ops da dt +/ / sP'(r)0s dx dt
Qnr

where

[ MO0 sy g,

< [ ATy dt. (6.10)

Furthermore, we have

1 . 1 ' 1 '
2 Jo,, p(o)div,wyr dz = = /QM (p(Q) _p(l))dlvaM dx + 2 o, p(1)div,wy, dz,

where, in accordance with(3.4), (3.5),
1

= /Q (p(e) — p(1))divowys da (6.11)
1 — (1 1 — (1
- g/Q [p(@) - p( )] v, o+ [ [p(@) : p( )] div, | de

while, by Green’s theorem,

/Q p(D)divewy dz = —p(l)/ (v-n+ V,¥-n) dS,

BQJW

15



—p(l)/ (div,v 4 div,ug) dz = 0.
Qm

Finally, neglecting small terms, we get

P’ )Os dx dt’ / /
Qs Qn

where the first integral will cancel out with its counterpart in (6.9), and

1)8,s dz dt + (D / AT g€ dt,

t=1

1
r)0s dx dt‘ <p'(1) {2/ s? dx
Q

M

D) [ 1AW 1oy € dt.

QM t=0

Using the energy equality (4.4) for the acoustic system, we may apply Gronwall’s lemma to (6.7)
to conclude that
E (g, u

1 1
o(D,T) [|[ug.c — o720, m9) + 1062 — 05l z2(0n)|

r,U) (r,) (6.12)

1 1 1
D,T .
+c(D, ,a)(u+6 +M+ ”’+M2>

o 1
< (D, ) [l = oy + b = o lzoun] + (D, To) (w427 + ).

which is nothing other than (2.12).
Thus we have proved Theorem 2.1. Finally, we conclude by observing that Corollary (2.1) follows
from the inequality (2.12), combined with the estimates established in Section 4.
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