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Abstract

We study possible interrelations between the 300 year record of the yearly sunspot
numbers and the solar inertial motion (SIM) using the recently developed technique
of synchronization analysis. Phase synchronization of the sunspot cycle and the SIM
is found and statistically confirmed in three epochs (1734–1790, 1855–1875 and
1907–1960) of the whole period 1700–2000. These results give quantitative support
to the hypothesis that there is a weak interaction between the solar activity and
the SIM.

Key words: sunspot cycle, solar inertial motion, phase synchronization,
hypothesis testing, surrogate data
PACS: 05.45.Tp, 05.45.Xt, 95.75.Wx, 96.60.Qc

1 Introduction

Regularities and irregularities in the solar activity cycle [1] are among the most
intriguing and poorly understood aspects of the Sun. Dynamo theory [2–4],
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describing complex magnetohydrodynamic plasma motions inside the Sun, has
resulted in many models which reproduce basic features of solar activity [5–7].
However, the nature of the solar cycle is far from being understood. Attempts
have been made to identify signatures of low-dimensional chaos in the sunspot
data [8–10], however, the used algorithms have been found unreliable when
applied to noisy and possibly nonstationary experimental data.

The hypothesis that the gravitational forces exerted upon the Sun by the giant
planets in the solar system can influence the solar activity cycle has been
discussed for decades [11–14], however, until now possible connections were
only described in qualitative or indirect ways. The recently developed concept
of phase synchronization in complex systems [15–19] provides a highly efficient
method for the detection and quantitative assessment of a weak interaction
between two processes represented by possibly nonlinear, noisy, nonstationary
and relatively short time series. In this paper we present such a synchronization
analysis of the sunspot numbers and the solar inertial motion. We find with
high statistical significance that there are decadal epochs where these two
oscillatory phenomena are probably phase synchronized. This result provides
the first quantitative evidence that the motion of the giant planets has some
influence on the dynamics of the solar cycle.

2 Solar Inertial Motion and Sunspots: The Data

In reaction to movements of the planets in the solar system, the Sun moves
around the barycenter (the center of mass) of the solar system, as already
noted by Newton in his Principia: “ ... since that center of gravity (center
of mass of the solar system) is continually at rest, the Sun, according to
the various positions of the planets, must continually move every way, but
will never recede far from that center.” [20]. This movement, called the solar
inertial motion (SIM hereafter), is confined to a region with a diameter of 4.34
solar radii, that is 0.02 AU (astronomical units) or 3×106 km. For comparison,
the eccentricity of the Earth’s orbit is 5 × 106 km. The SIM mainly reflects
movements of the two largest planets — Jupiter (orbit period of about 11.86
years) and Saturn (about 29.45 years), which account for 93% of the total
planetary mass, however, other planets influence the SIM, too. As a result,
the trajectory of the Sun around the barycenter (which is often outside the
Sun) is a complicated composition of loops and arcs (Fig. 1). Similar motions
of other stars yield a part of the oscillatory Doppler shift of their spectral
lines, which is also an important signature of extrasolar planets [21].

The SIM, i.e., the temporal evolution of the coordinates x, y, z of the Sun rela-
tive to the barycenter has been calculated using the procedure of Shirley [22].
The solar motion is largely determined by the positioning of the giant planets
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Fig. 1. Trajectory of the SIM in the period 1949–2100 A.D. The barycenter of the
solar system is located at + and the positions of the Sun are marked by ×+ . The
orbital rotation of the Sun is anti-clockwise. The shadowed circle shows the solar
disk in January 2002, when the barycenter was clearly outside the Sun.

Jupiter, Saturn, Uranus, and Neptune. Thus the core of the solar motion pro-
gram used here is an algorithm for the heliocentric ecliptic of date planetary
positions published by Van Flandern and Pulkkinen [23], listing nearly 300 pe-
riodic terms for longitude, latitude, and distance from the Sun of the 4 giant
planets. Clemence [24] gives formulae for calculating the position of the solar
system barycenter. The planetary positions are corrected for precession and
obliquity, to refer to the ecliptic of 1950.0. Planetary mass values are those
employed in the Jet Propulsion Laboratory development ephemeris DE-102
[25].

Here we use the coordinates of the center of the Sun relative to the solar
system barycenter with the solar system invariable plane as the reference x-y
plane. Two rotations convert the 1950 ecliptic frame positions into invariable
plane coordinates. The new positive x direction corresponds to the node of the
invariable plane on the 1950 ecliptic, at longitude 107o16′38.96”. The inclina-
tion correction is 1o39′16.47”. Having computed the coordinates x, y, z, any
function descriptive of the Sun’s motion can be found. Here we analyze the
radius of curvature, ρ, of the Sun’s orbit, computed from the components of
the SIM velocity and acceleration, i.e., from the first-order and second-order
temporal derivatives of the Sun’s coordinates x, y, z:

ρ = v3/
√

(ẏz̈ − żÿ)2 + (żẍ− ẋz̈)2 + (ẋÿ − ẏẍ)2, (1)

where the dots mean temporal derivatives and the velocity v is defined as

v =
√

ẋ2 + ẏ2 + ż2. (2)
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Fig. 2. Top panel: Radius of curvature of the trajectory of the solar inertial motion
(SIM), calculated according to (1) from the Sun’s coordinates relative to the solar
system barycenter with the invariable plane as the reference x–y plane, for the
period 1700–2000. Middle panel: Yearly sunspot numbers for the period 1700–2000.
Bottom panel: Phase difference between the instantaneous phases of the radius of
curvature of the SIM trajectory and the (band-pass filtered) sunspot cycle. The
solid vertical lines are the borders of the epochs in which the sunspot cycle is phase
synchronized with the SIM. These epochs are 1734–790 (marked as I), 1855–1875
(marked as II) and 1907–1960 (marked as III).

Using Shirley’s algorithm [22], the coordinates x, y, z were generated with
daily sampling in order to obtain smooth estimates of their first-order and
second-order derivatives. Then the values of the curvature radius ρ as given
by (1) were computed and averaged in order to obtain the series {ρ(t)} (where
t = 1, 2, . . . stands for time) with yearly sampling (Fig. 2, top panel), which
can be analyzed together with the series {S(t)} of the yearly sunspot numbers
from the period 1700–2000 (Fig. 2, middle panel) [26]. It should be mentioned
that ρ oscillates with a period of about 20 years. Therefore, we have to test
for a possible 2:1 synchronization of SIM and solar activity [see eq. (6) below].
Prior to further processing, the sunspot series has been filtered by a simple
moving average (MA) band-pass filter: First, the MA’s from a 13-sample (year)
window have been subtracted from the data in order to remove slow processes
and trends, and then a 3-sample MA smoothing has been used in order to
remove high-frequency components and noise.

3 Synchronization Analysis: The Method

Based on the concept of phase synchronization of chaotic oscillators [15,19],
a new technique has been developed to analyze complex, even non-stationary,
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bivariate data [16–18]. First, we calculate the instantaneous phases φS(t) and
φρ(t) of the sunspot cycle and the SIM’s curvature radius, respectively. The
instantaneous phase and amplitude of a signal s(t) can be determined by using
the analytic signal concept of Gabor [27], recently introduced into the field of
nonlinear dynamics within the context of chaotic synchronization [15,16]. The
analytic signal ψ(t) is a complex function of time defined as

ψ(t) = s(t) + jŝ(t) = A(t)ejφ(t), (3)

where the function ŝ(t) is the Hilbert transform of s(t),

ŝ(t) =
1

π
P.V.

∞∫

−∞

s(τ)

t− τ
dτ. (4)

(P.V. means that the integral is taken in the sense of the Cauchy principal
value.) A(t) is the instantaneous amplitude and the instantaneous phase φ(t)
of the signal s(t) is

φ(t) = arctan
ŝ(t)

s(t)
. (5)

Here we use a discrete version of the Hilbert transform (4) with a finite (25
sample) summation window instead of the infinite integration interval in (4).
Having the instantaneous phases φS(t) and φρ(t) of the sunspot cycle and the
SIM’s curvature radius, respectively, we define the instantaneous 2:1 phase
difference

∆φ(t) = 2φρ(t)− φS(t). (6)

In the classical case of periodic self-sustained oscillators phase synchronization
is defined as phase locking, i.e., the phase difference is constant. In the case
of phase-synchronized chaotic or other complex systems fluctuations of phase
difference typically occur. Therefore, the criterion for phase synchronization
is that the absolute values of ∆φ must be bounded [15]. When the instan-
taneous phases are not represented as cyclic functions in the interval [0, 2π)
but as monotonously increasing functions on the whole real line, then also
the instantaneous phase difference ∆φ(t) is defined on the real line and is an
unbounded (increasing or decreasing) function of time for asynchronous states
of systems, while epochs of phase synchronization appear as plateaus in the
∆φ(t) vs. time plots.
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4 Results and their Statistical Evaluation

In Fig. 2, bottom panel depicting ∆φ(t) (6), one can identify three plateaus
in the periods 1734–1790, 1855–1875, and 1907–1960 (marked as I, II, and
III, respectively). For obtaining quantitative evidence that these periods are
epochs in which the sunspot cycle is phase synchronized with the SIM, we use
ideas of Stratonovich [28] and consider phase locking in a statistical manner,
i.e. as appearance of a peak in the distribution of the cyclic relative phase
(phase difference)

∆ψ = ∆φ mod 2π. (7)

We estimate ∆ψ distributions as histograms with 16 bins on the interval
[0, 2π). The histograms for the above epochs I, II and III (Fig. 3, solid lines)
are strongly localized around particular values and are clearly different from
a uniform distribution which should be generated by phase differences of non-
synchronized systems. Considering, however, the small amounts of samples in
the scrutinized epochs, the differences from a uniform ∆ψ distribution should
be statistically evaluated. Employing the concept of surrogate data [10,29,30],
we generate 131,000 independent realizations of the Barnes model [31],

zi = α1zi−1 + α2zi−2 + ai − β1ai−1 − β2ai−2, (8)

si = z2
i + γ(z2

i − z2
i−1)

2, (9)

where α1 = 1.90693, α2 = −0.98751, β1 = 0.78512, β2 = −0.40662, γ = 0.03
and ai are independent, identically distributed Gaussian random variables
with zero mean and standard deviation SD=0.4.

The model (8,9) effectively mimics main statistical properties of the sunspot
cycle, however, by construction is independent of the SIM. It is not used here
to model the physics of the solar cycle, but to produce realizations of a process
with similar frequency content as the sunspot cycle. These artificial data will
be processed in order to assess whether such a process could randomly produce
epochs which appear like phase synchronized with the SIM, like those observed
using the real sunspot data. Each realization of the Barnes model is processed
in the same way as the original sunspot numbers, so we can estimate the
ranges of frequency (relative count) values in each histogram bin.

Using 131,000 surrogate realizations yields 131,000 histograms for any of the
epochs I, II, and III. Each histogram is estimated using the same number of
samples as the related histogram of ∆ψ of the sunspots vs. ρ. Then for each
histogram for every bin there are 131,000 count values which are sorted, their
distribution is constructed and values for the mean and selected percentiles
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Fig. 3. Histograms of the cyclic relative phases (phase differences) ∆ψ of the sunspot
cycle and the radius of curvature, ρ, of the SIM trajectory (thick solid lines) for
the epochs 1734–1790 (I), 1855–1875 (II) and 1907–1960 (III). Also shown are the
histograms of related surrogate (Barnes model vs. ρ) sets: Dashed lines correspond
to average histograms and dash-and-dotted lines, from bottom to top, show the
95th, 97.5th and 99th percentiles of the frequency value distributions in each of the
16 histogram bins.

in every bin are evaluated. Here we present the 95th, 97.5th and 99th per-
centiles (dash-and-dotted lines in Fig. 3) of the surrogate distribution in each
histogram bin for each of the three histograms for the epochs I, II, and III.
These percentiles are “significance levels” for rejecting the null hypothesis of
a uniform ∆ψ distribution, i.e., the hypothesis that the sunspot cycle and the
SIM are not phase synchronized. In each of the three scrutinized histograms
of the sunspot cycle vs. SIM’s ρ cyclic relative phases ∆ψ there are one or two
bins whose values are higher than the related 99th percentile of the surrogate
distributions (Fig. 3). Thus the null hypothesis that the phases of the sunspot
cycle and of the SIM are independent has been rejected with p < 0.01, where
p is the level of significance.

In addition, we quantify the histograms by using the concept of Shannon
entropy,

H = −
16∑

i=1

pi log pi, (10)

where pi is the relative frequency of occurrence of a value of the relative cyclic
phase difference ∆ψ in a particular histogram bin. The Shannon entropy is
maximized for a uniform distribution. So we test whether the Shannon en-
tropy for the scrutinized ∆ψ histograms is significantly smaller than its values
obtained from the Barnes surrogate data, which are not synchronized with the
SIM. Here we directly estimate the “significance” of the test by counting the
percentage of the surrogate data Shannon entropy values which are smaller
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than or equal to the value obtained from the tested histogram. This “signifi-
cance” is in fact a probability that such a value (as obtained from the sunspot
data vs. SIM) can randomly occur without any phase synchronization (i.e.,
that similar synchronous epochs can occur by chance in data with frequency
content similar to the sunspot data.)

Finally, we use a simple trigonometric statistic, also known as the mean re-
sultant length [32]:

γ2 = 〈cos(∆ψ(t))〉2 + 〈sin(∆ψ(t))〉2 , (11)

where 〈〉 means the temporal average. This trigonometric statistic tends to
zero for ∆ψ of asynchronous processes and to one for phase locked systems.
Again, the Barnes model is used as the asynchronous null hypothesis and
the significance evaluation is equivalent to the case of the Shannon entropy,
however, now we evaluate whether γ for the sunspots vs. ρ is significantly larger
then γ’s for the surrogates. In all the tests, employing the Shannon entropy
and the trigonometric statistic γ, the phase synchronization of the sunspot
cycle with the SIM has been confirmed with high statistical significance (from
p < 0.02 to p < 0.003).

5 More Statistical Testing

The above statistical tests support our claim that the plateaus observed in the
phase difference ∆φ(t) vs. time plot are probably caused by phase synchro-
nization between the solar inertial motion and the solar activity cycle. The
probability of a random occurrence of such plateaus in synchronization anal-
yses of independent oscillatory systems with the same frequency contents is
very low. The plateaus in the studied data, however, were selected by a visual
inspection, i.e., the segments with the highest potential for the presence of
phase synchronization were selected and then tested against segments of the
same length at the same temporal positions in surrogate data. This approach,
in the following referred to as the “simple testing”, can be biased in favour
of false detection of phase synchronization, since a segment with a higher po-
tential for synchronous behavior could occur at a different position in time in
a surrogate data realization. For a fully correct test we need to evaluate the
probability of an occurrence of a synchronous segment (a plateau) anywhere
regardless of its temporal position. It is certainly impossible to search visually
for plateaus in a large number of surrogate data realizations. Therefore, for
each tested epoch of the scrutinized data (the plateaus) we determine – in
each realization of the surrogate data – a segment of the same length which
minimizes (over the 300 year surrogate data realization) the Shannon entropy
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of the ∆ψ distribution.

For the correct application of this “testing with entropy minimization” ap-
proach, however, it is important to test all three segments simultaneously, i.e.,
to search for three disjoint segments minimizing the Shannon entropy of the
∆ψ distribution estimated from the same number of ∆ψ samples as the num-
ber of samples in the tested epoch. While using the simple testing approach,
the simultaneous and the individual testings give the same results, the in-
dividual testing with the entropy minimization decreases the significance for
either the short epoch II or the epoch I. The segment I is characterized by a
slightly wider ∆ψ histogram and thus by a higher Shannon entropy than the
other epochs. It is not clear whether this “weaker” synchrony in the epoch I is
an actual phenomenon or just a consequence of a worse quality of the sunspot
data from the 18th century. The requirement of the simultaneous occurrence
of three segments in each surrogate data realization, as it is observed in the
real sunspot data, is strong enough to reject the hypothesis that the plateaus
occurred by chance.
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Fig. 4. Histograms of the cyclic relative phases (phase differences) ∆ψ of the sunspot
cycle and the radius of curvature, ρ, of the SIM trajectory (thick solid lines) for the
epochs 1734–1790 (I), 1855–1875 (II) and 1907–1960 (III) together with histograms
of the related surrogate (Barnes model vs. ρ) segments which minimize the Shannon
entropy of the ∆ψ distribution. Dashed lines correspond to average histograms
and dash-and-dotted lines, from bottom to top, show the 95th, 97.5th and 99th
percentiles of the frequency value distributions in each of the 16 histogram bins.

Applying this strengthened testing approach for evaluation of the histograms
of the cyclic relative phase ∆ψ (Fig. 4) we can see that the significance levels
(percentiles) are at higher positions than in the previous simple test (cf. Fig.
3). This decreases the significance of the results for the epoch I to p < 0.025,
which is, however, still highly significant. In the epochs II and III there is
always one bin whose value is clearly higher than the 99th percentile of the
surrogate distribution (Fig. 4). Thus the null hypothesis of uniform ∆ψ dis-
tribution, i.e., the hypothesis that the phases of the sunspot cycle and of the
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SIM are independent, has been rejected with p < 0.01. Applying the test
with the Shannon entropy (10) and the trigonometric statistic (11), the phase
synchronization of the sunspot cycle with the SIM has been confirmed with
statistical significance from p < 0.03 to p < 0.07.

The phenomenon of phase synchronization could be mimicked by a trivial
phase locking if two oscillatory processes have the same constant frequencies
(or different constant frequencies in a rational ratio). In order to demonstrate
that this is not the case in the present study, in Fig. 5 we present histograms
of instantaneous frequencies fρ of the SIM curvature radius ρ, (Fig. 5a; the
histogram of 2fρ is plotted) and fS of the sunspot cycle (Fig. 5b, solid line).
Simultaneously, we can assess the adequacy of the Barnes model (8,9) as sur-
rogate data for the sunspot cycle. The variability of histograms of the instan-
taneous frequencies obtained from 300-year realizations of the Barnes model
is presented by the 5th and the 95th percentiles (dashed lines in Fig. 5b) of
the relative count value distributions in each bin of these histograms. The
same percentiles together with the mean surrogate histogram (solid line) are
presented in Fig. 5c. Both the SIM and the sunspot cycle are narrow-band
oscillatory processes, however, their frequencies are variable. The variability
of the sunspot cycle frequency does not differ from that of realizations of the
Barnes model. Nevertheless, we repeated all the above described tests using
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Fig. 5. Histograms of the instantaneous frequencies of (a) the radius of curvature,
ρ, of the SIM trajectory (the frequency multiplied by two is used), (b) the sunspot
cycle (solid line) and (c) the Barnes model — the solid line corresponds the mean
histogram of 131,072 300-year realizations. The dashed lines in (b) and (c) show the
5th (lower dashed line) and the 95th (upper dashed line) percentiles of the Barnes
model surrogate frequency value distributions in each of the 16 histogram bins.

the amplitude-adjusted Fourier transform surrogate data [29,30] which almost
exactly preserve the spectrum and thus the frequency distribution. The ob-
tained results were fully consistent with those obtained in the above tests with
the Barnes model.
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According to a referee’s recommendation we have repeated the tests with sur-
rogate data constructed from the sunspot data by random permutations of
individual cycles. We performed the randomization in the wrapped phase rep-
resentation — the mixing of individual “saw-teeth” of the phase rising from
−π to π is technically simpler than the mixing of individual cycles of the raw
data. Each phase “saw-tooth” contains information about the cycle length
(consists of the same number of samples as the original cycle) as well as about
the intra-cycle dynamics. Random reordering of the cycles (−π to π “saw-
teeth” in the phase representation) provided a new type of surrogate data
used in the same tests as the previously considered realizations of the Barnes
model and the AA FFT surrogates. Application of the simple testing approach
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Fig. 6. Histograms of the cyclic relative phases (phase differences) ∆ψ of the sunspot
cycle and the radius of curvature, ρ, of the SIM trajectory (thick solid lines) for the
epochs 1734–1790 (I), 1855–1875 (II) and 1907–1960 (III) together with histograms
for the related surrogate data (sunspot data with randomly permutated cycles vs. ρ)
segments which minimize the Shannon entropy of the ∆ψ distribution. Dashed lines
correspond to average histograms and dash-and-dotted lines, from bottom to top,
show the 95th, 97.5th and 99th percentiles of the frequency value distributions in
each of the 16 histogram bins.

yielded results fully consistent with those obtained in the testing with the
Barnes model surrogate data. Some differences can be observed when these
“cycle mixing” surrogates are used in the testing with the entropy minimiza-
tion approach. The histograms of the sunspot cycle vs. SIM’s ρ cyclic relative
phases ∆ψ with the related percentiles (significance levels) for the “cycle mix-
ing” surrogates are presented in Fig. 6. One can see that with the entropy
minimization the “cycle mixing” surrogates do not provide enough variability
for the percentile values to converge to a single value independent of ∆ψ. Us-
ing the highest estimate for the percentiles, however, the ∆ψ histograms for
all three epochs significantly differ from a uniform distribution with p < 0.05.
(Using the “local” estimates of the percentiles, p < 0.05 holds for the epoch
I, while p < 0.01 holds for the epochs II and III.) The significance of the tests
with the Shannon entropy (10) and the trigonometric statistic (11) decreased
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to values about p < 0.1. Using this type of surrogate data the significance of
test results decreases, i.e., the value of p giving the probability of random oc-
currence of a synchronous segment increases. Not only the truly synchronous
segments contribute to the increased p value, but due to a recurrent behaviour
of the SIM, the sunspot cycles from the epoch I would synchronize with the
SIM in the segment III and vice versa, as well as various combinations of these
cycles could contribute to the increase of the p value. It is also interesting to
note that the phase difference between the SIM and the solar cycle in segments
I and III is between 4 and 5 radians, while the preferred phase difference in
the “cycle mixing” surrogate data is 0 or 2π (Fig. 6). Nevertheless, the his-
tograms of the cyclic relative phases ∆ψ of the sunspot cycle and the radius
of curvature, ρ, of the SIM trajectory differ from the corresponding ∆ψ dis-
tributions for these surrogate data and ρ on the significance level p < 0.05,
which supports the claim that in the tested epochs, the SIM and the solar
activity are phase synchronized.

6 Possible Physical Mechanisms Underlying the Synchronization

In this section we briefly discuss possible physical interaction mechanisms of
the SIM with the solar activity cycle.

The dynamo for the solar magnetic field is assumed to operate in the convec-
tion zone, a spherical shell below the surface of the Sun with a thickness of
about 0.3 solar radii, and active regions are believed to result from the emer-
gence of magnetic flux tubes which have broken away from a toroidal field
(which is azimuthal with respect to the spin axis of the Sun) in the convection
zone and are carried up by magnetic buoyancy. The toroidal field below the
surface is generated from a poloidal one (whose field lines lie in planes contain-
ing the spin axis) by differential rotation, i.e. velocity shear resulting from the
dependence of the spin rate on radius and latitude, while the regeneration of
the poloidal field is thought to be accomplished by the alpha effect [2], namely
the generation of a mean or large-scale electromotive force by small-scale or
turbulent fluid motions that are helical due to the action of Coriolis forces. In
some models the toroidal field consists of an ensemble of flux tubes which are
stored in a layer close to the bottom of the convection zone and whose rise is
initiated by a flux tube instability [33]; in these models the action of Coriolis
forces on unstable flux tubes gives rise to an alpha effect [34]. It is common to
all models that distortions, changes or modulations of the Sun’s own rotation
should be reflected in the properties of the activity cycle. Correspondingly,
spin-orbit coupling has been suggested as an explanation for correlations be-
tween solar activity and the barycentric orbital motion of the Sun [35–37],
using as an argument the fact that the orbital angular momentum of the Sun
is of the order of 10% of its spin angular momentum and varies by an order
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of magnitude over a period of ≈ 10 years. However, no physical model of the
solar spin-orbit coupling has been elaborated yet.

Spin-orbit coupling of a celestial body can occur if its mass distribution devi-
ates from spherical symmetry, the degree of asymmetry being measured by the
gravitational quadrupole moment of the body. Such deviations from spherical
symmetry may be due to permanent deformations, tidal effects or rotational
flattening [38]. Since the Sun is in a plasma state, permanent deformations
can presumably be excluded. The tidal forces exerted by the planets at the
surface of the Sun are ∼ 10−12 of the solar surface gravity. For comparison,
the corresponding ratio for the tidal effect of the Moon on the Earth is 10−7.
Because of the weakness of the tidal forces and also because no convincing
evidence for correlations with the activity phenomena or the SIM were found,
there seems to be largely agreement now that the planetary tidal influence on
solar activity is negligible [12,37,39]. This should also apply to tidal effects
on the buoyancy instability of magnetic flux tubes and their rise through the
convection zone, since the effective gravitational potential, which determines
the behaviour of the flux tubes, deviates only by ∼ 10−12 from the unper-
turbed potential (though, as simulations for close binary stars show, tidal
perturbations ∼ 10−3 can still have significant effects [40,41]).

Then there remains the solar oblateness f = (Requatorial − Rpole)/Requatorial

∼ 10−5 [42] as a possible source of spin-orbit coupling. This oblateness corre-
sponds to a difference of 7 km between the equatorial and polar solar radii,
which is at least large compared with the height of the tides raised by the
planets (. 1 mm). For comparison, the oblateness of the Earth is ≈ 0.003
and leads to the precessional motion of the spin axis with its period of 26,000
years, which is even still under discussion as a possible driving mechanism
for the geodynamo [43]. The orbits of the planets are inclined by 3◦ to 8◦ to
the Sun’s equatorial plane (and the angle between the Sun’s equatorial plane
and the invariable plane of the solar system is 6.25◦). These inclinations in
conjunction with the solar oblateness give rise to torques on the Sun due to
the planets. According to present knowledge, the oblateness of the Sun is es-
sentially caused by rotational flattening of the outer layers, rather than by an
internal quadrupole moment. Thus merely the convection zone, perhaps only
its outer parts, will be directly affected by the planetary torques. One may
expect, then, weak large-scale circulations to be induced or existing ones to
be modulated, with an obvious potential to influence the activity cycle.

Though the interaction mechanisms discussed above are very weak, they may
lead to significant effects if they act over a sufficiently long period of time.
The relevant time-scale here is the age of the solar system (4.5 · 109 years).
The evolution of this system is characterized by an increasing synchroniza-
tion of the orbital and rotational motions of its objects, caused by spin-orbit,
orbit-orbit as well as more complicated couplings [38]. Where the coupling is
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so strong that the time-scale required to settle into a synchronized configu-
ration is less than the age of the solar system, complete synchronization can
be observed. Examples where this phenomenon was caused by spin-orbit cou-
pling include the 1:1 synchronization of the orbital and rotational periods of
the Earth’s moon and of most other natural satellites and the 3:2 spin-orbit
resonance of the planet Mercury. In other cases, where the coupling is weak,
as for small satellites orbiting far from the parent planet (like the saturnian
satellite Hyperion), only partial synchronization seems to have been reached
up to now. Similarly, the observed weak synchronization of the SIM with the
solar activity cycle may be a cumulative effect, resulting from the action of
solar spin-orbit coupling, due for instance to the solar oblateness, over the last
4.5 billion years. Also, the solar oblateness may have been significantly larger
during earlier phases of the solar evolution. An elaboration of these processes
and their quantitative assessment are beyond the scope of this study.

7 Conclusion

Using the concept of synchronization analysis, we have quantitatively demon-
strated that the solar activity cycle and the solar inertial motion are not
independent. These two oscillatory phenomena are phase-synchronized during
three epochs together accounting for almost half of the studied three-century
observational data.

It is important that techniques of nonlinear data analysis have a potential to
contribute to resolving long disputed problems such as the nature of the solar
activity cycle. In an independent study, Paluš and Novotná [44] have recently
observed nonlinear behaviour of the sunspot cycle, namely its amplitude-
frequency correlation. In this study we present quantitative evidence for a
weak interaction of solar activity and gravity, i.e., for a weak influence of the
movement of the giant planets of the solar system on the solar activity cycle.
The existence of this weak interaction with still unknown physical mechanism
does not mean that the SIM is the source of the solar cycle, neither is an ar-
gument against dynamo models. The phase synchronization is a phenomenon
emerging in an interaction of two autonomous processes [19] which could evolve
independently, or, due to a weak link, their phases could synchronize.

Recently, Winterhalder et al. [45] demonstrated that the synchronization anal-
ysis might not be specific regarding the dynamics of the underlying processes.
This means that the presented analysis provides evidence for a dependence
between the phases of the sunspot cycle and the SIM, but this does not auto-
matically imply an explanation of the dependence by the physical mechanism
of phase synchronization. The alternative hypothesis in [45], however, con-
siders transfer function systems, in which one signal is obtained just as a
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filtration of the other, primary signal. We consider phase synchronization of
two autonomous processes as the more plausible hypothesis for explaining the
observed relation between the instantaneous phases of the sunspot cycle and
the SIM. For further research and understanding of a possible coupling mech-
anism, it would be interesting to select a realistic dynamo model and propose
a way how to simulate the interaction with the SIM. It is known from nu-
merical studies of noisy oscillators and chaotic systems that even a very weak
interaction can result in phase synchronized dynamics.

A special point here is to understand why the detected phase synchronization
appears just in the observed intervals. In their previous studies, Charvátová
[14,46,47] and Charvátová & Střešt́ık [13] identified the intervals 1730–1780
and 1910–1960 (almost coinciding with the above periods I and III) as recur-
ring periods of ordered SIM (the SIM trajectories are ordered in a trefoil-like
pattern). It is possible that the synchronized epochs recurred in the past and
will recur in the future with the trefoil SIM periods which always occur after
178.7 years [13].

Acknowledgements

This study was supported by the Grant Agency of the Academy of Sciences
of the Czech Republic, projects No. IAA3042401 and A300120608, by the
Institutional Research Plans AV0Z10300504 and AV0Z30420517; and by DFG
SPP-1114 (Mathematical Methods for Time Series Analysis and Digital Image
Processing).

References

[1] K.L. Harvey (ed.), The Solar Cycle, Astronomical Society of the Pacific
Conference Series 27, San Francisco, 1992.
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