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Abstract The sharp interface limit of a diffuse interface theory of phase transitions is considered
in static situations. The diffuse interface model is of the Allen–Cahn type with deformation, with
a parameter ε measuring the width of the interface. Equilibrium states of a given elongation and
a given interface width are considered and the asymptotics for ε r 0 of the equilibrium energy
is determined. The interface energy is defined as the excess energy over the corresponding two
phase state with a sharp interface without the interface energy. It is shown that to within the term
of order o�ε� the interface energy is equal to σε where the coefficient σ is given by a new formula
that involves the mechanical contribution to the total energy. Also the corresponding equilibrium
states are determined and shown to converge to a sharp interface state for εr 0Ø
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1 Introduction

By the Allen–Cahn model with deformation we mean a model of a phase transforma-
tion in a solid which in addition to the displacement of the body introduces an extra
scalar field φ called the phase field. The phase field is an internal state variable which
takes different values in the two phases of the body and which changes continuously
but steeply across the phase interface, which is therefore “diffuse.” Throughout the
paper, we consider the 1 dimensional static case in which the body is an interval
�0Ù 1� of material points x and the displacement u is given by a scalar valued func-
tion u ¨ u�x� of the scalar variable xØ The displacement u gives rise to the strain
e�x� ¨ uÞ�x� where the prime denotes the differentiation with respect to xØ

The evolution equation for this model is a generalization of the Allen–Cahn
equation [1].
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States of the body are determined by the displacement u over the body and the
phase field φ over the body. The total energy of the state �uÙφ� is given by

F ε�uÙφ� ¨
1

�
0

ε2φÞ2�x�/2 + f �uÞ�x�Ùφ�x�� dxÛ (1.1)

here ε is a small parameter that will eventually tend to 0 and f is a given function of
the indicated variables called the coarse grain energy. It will be seen that the quadratic
term in the integrand gives rise to the interfacial energy which is approximatively
proportional to εØ Setting formally ε ¨ 0 gives the theory in which the interfacial
energy is neglected.

For a given strain eÙ the value of φ corresponding to the pure phase of the
strain e is determined by the pointwise minimization of f �eÙφ� with respect to φ.
For the two-phase system it is appropriate to assume that for a given e there are
exactly two local minima φi�e�, i ¨ 1 or 2Ù of which one is an absolute minimum.
The absolute minimum indicates the stable phase corresponding to the strain e just
mentioned while the nonabsolute local minimum the unstable phase complementary
to the stable phase. A point x X �0Ù 1� is in the phase i where i ¨ 1 or 2 if φ�x� is close
to the value φi�e�x��Ø One can introduce the energy fi of the phase i by

fi�e� ¨ f �eÙφi�e��
where i ¨ 1 or 2 and e runs over the set of all reals. Typically each of the functions fi
describes a potential well. The minimum energy

w�e� ¨ min f1�e�Ù f2�e�(
is typically a double well potential as shown in Figure 1.1.

w

eE1 E2

Fig. 1.1.

Given the elongation λ, the equilibrium state is obtained by seeking the infimum

E ε�λ� ¨ inf!F ε�uÙφ� Ú the state �uÙφ� satisfies u�0� ¨ 0Ù u�1� ¨ λ)Ø (1.2)
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Fig. 1.2.

Conditions will be given below under which the infimum is a minimum. The state
�uÙφ� which realizes the infimum is the equilibrium state under the given elongation.

In the present paper, we examine the properties of the function Eε�λ� and the
minimizers in (1.2) for ε r 0. It turns out that for small values of ε ± 0Ù the typical
shape of the function Eε�ċ� is shown by the bold line in Figure 1.2. This is justified
by considering first the energy of the theory with ε ¨ 0 and then the theory with ε ± 0
as follows.

In Figure 1.2, the line segment �A1ÙA2� is the part of the common tangent to the
graph of w. The graph of the convex envelope wco of w consists of the graph of w
outside the segment �E1ÙE2� while in that segment the graph of w is replaced by the
segment �A1ÙA2�Ø Setting ε ¨ 0 and using definition (1.2) one obtains the well known
common tangent construction of the gibbsian thermostatics saying

E0�λ� ¨ wco�λ�
for all elongations λØ The underlying interpretation is that for λ outside the interval
�E1ÙE2� the minimum is achieved by the single phase homogeneous state of strain λ
which represents the pure phase. For λ X �E1ÙE2� the infimum is realized by a two
phase state which mixes particular amounts of the pure phase states A1 and A2 in such
a way as to satisfy the constraint that the elongation be λØ The mentioned amounts
are linear (affine) functions of λ and the resulting minimum energy is linear (affine)
in �E1ÙE2�Ø

If ε ± 0 is small then the infimum energy is realized on homogeneous single phase
states for λ outside the interval �E1ÙE2�while the bold line inside the interval �E1ÙE2�
corresponds to a mixture of two phase states satisfying the elongation constraint and
bearing the interfacial energy which shifts the graph above the common tangent
segment, as will be shown in the present paper. Furthermore, the homogeneous single
phase states minimize the energy slightly beyond the point A1 and slightly before the
point A2 as the two phase state has a bigger energy due to the contribution of the
interface.
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We define the interfacial energy corresponding to the parameter ε as the excess
energy over the energy wco�λ� of the theory with ε ¨ 0Ø The main result of the paper
says that under natural assumptions the interfacial energy of a two phase equilibrium
state is asymptotically linear in ε for εr 0. More precisely it will be proved that for
any ε ± 0 and λ X R we have

E ε�λ� ¨
8>><>>:
w�λ� if λ Z �E1ÙE2�Ù
wco�λ� + εσ + o�εÙ λ� if λ X �E1ÙE2�

(1.3)

where σ ± 0 is a constant given by an explicit formula in terms of f (see (2.8), below)
and

o�εÙ λ�/εr 0 as εr 0 for any λ X �E1ÙE2�Ø
Moreover, the equilibrium states of a given elongation will be described explicitly
for any ε ± 0 and it will be proved that for εr 0 and λ X �E1ÙE2� they approach the
mixture of the two pure phase states separated by a sharp interface corresponding to
ε ¨ 0Ø These results show that for ε ± 0 the present theory approximates that with the
sharp interface which bears the energy of the magnitude εσ Ø

The scaling with respect to ε as in (1.1) and the above interpretation is different
from the one adopted in the literature so far. In the absence of deformation the standard
scaling amounts to dealing with the sequence of functionals

H ε�φ� ¨
1

�
0

εφÞ2�x�/2 + h�φ�x��/ε dx

where h is a nonnegative double well potential vanishing only at ±1Ø The relationship
between the theory with ε ± 0 and its sharp interface limit is well understood both
in the dynamical situations (see [2, 4, 10] and the references therein) and statical
situations [8–9], in any dimension. The main static result asserts that the gamma
limit of Hε is proportional to the area of the interface, via a coefficient σ given by

σ ¨
1

�
−1

√
2h�η� dηØ (1.4)

The interpretation is that in the limit the state is a mixture of the states φ ¨ ±1 with
definite relative weights. Introducing the energy

F ε�φ� ¨ εH ε�φ� ¨
1

�
0

ε2φÞ2�x�/2 + h�φ�x�� dx

we obtain the scaling similar to (1.1) and the mentioned gamma limit can be rephrased
as the assertion that

F ε�φ� ¨ εσ � the area of the interface + o�εÙφ�
with

o�εÙφ�/εr 0 as εr 0 for any φØ
This form of the result is analogous to (1.3)2Ø

In the theory with deformation Leo, Lowengrub & Jou [7], Fried & Gurtin [5],
Garcke [6] consider the following sequence of functionals
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H ε�uÙφ� ¨
1

�
0

εφÞ2�x�/2 + h�φ�x��/ε + f �e�x�Ùφ�x�� dx (1.5)

ε ± 0Ù where h is a double well potential with minima at ±1, f is the coarse grain
energy, and e is the strain tensor. (Bodies of arbitrary dimension n ³ 1 are considered
in the cited papers.) It turns out that the limit of Hε is proportional to the area of the
(sharp) interface with the coefficient of proportionality given by (1.4). We observe
that the limit is identical to the case neglecting the deformation, with the coefficient
σ independent of f Ø In contrast, the coefficient σ as in (1.3)2 [Equation (2.8), below]
depends on f in an essential way. The separation of variables as in (1.5) seems to be
hard to motivate in view of the results of the present paper.

2 Assumptions

Any pair �uÙφ� X H Ú¨ W 1Ù2��0Ù 1�ÙR2� is referred to as state; then u is interpreted
as the displacement and φ as a phase field. For ε ³ 0Ù we define the energy of the state
�uÙφ� by

F ε�uÙφ� ¨
1

�
0

ε2φÞ2�x�/2 + f �uÞ�x�Ùφ�x�� dx (2.1)

where f Ú R2 r R is a given twice continuously differentiable function subject to
Hypotheses H1–H4 listed below. These hypotheses imply that the right hand side
of (2.1) defines an absolutely convergent integral. For a given λ X R we define the
collection of states

D�λ� ¨ !�uÙφ� X W 1Ù2��0Ù 1�ÙR2� Ú u�0� ¨ 0Ù u�1� ¨ λ)
of elongation λ and the effective energy corresponding to the elongation λ, the main
object of the present paper, by

E ε�λ� ¨ inf!F ε�uÙφ� Ú �uÙφ� X D�λ�) (2.2)

for every ε ± 0Ø
We denote the generic variable of f by �eÙ η� X R2 with e the small strain and

define the response function for the stress by

� ¨ De f
where De f denotes the derivative of f with respect to its first argument eØ We
furthermore put

| ¨ Dη f
where Dη f denotes the derivative of f with respect to its second argument ηØ

We make the following four hypotheses:
H1 For each φ X R the function f �ċÙφ� is strictly convex in the sense that ��ċÙφ� is

strictly increasing; moreover, the range of ��ċÙφ� is RØ
H2 There exist constants cjÙ j ¨ 1ÙÜ Ù 4Ù with c1 ± 0Ù such that

c1�e2 + η2� + c2 ² f �eÙ η� ² c3�e2 + η2� + c4 (2.3)
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|��eÙ η�| + ||�eÙ η�| ² c3�e2 + η2� + c4 (2.4)

for all �eÙ η� X R2Ø
H3 There exist numbers SÙG and points �EiÙΦi� X R2Ù i ¨ 1Ù 2Ù with E1 ° E2Ù

Φ1 ° Φ2Ù such that
f �eÙ η� ³ G + Se (2.5)

for all �eÙ η� X R2 with the equality holding if and only if �eÙ η� ¨ �EiÙΦi� for
some i ¨ 1Ù 2Ø

H4 The function w Ú Rr RÙ defined by

w�e� ¨ min!f �eÙ η� Ú φ X R)Ù e X RÙ
[with the minimum existing by (2.3)1], is continuously differentiable at E1 and
E2Ù and the restrictions of w to the intervals �−ðÙE1� and �E2Ù ð� are convex.

HereH1 is the basic convexity assumption. It will be seen thatH1 in conjunction with
the form of the integral in (2.1) and the coercivity assumption (2.3)1 guarantee that
the infimum in (2.2) is achieved. The corresponding minimizer is the equilibrium
state of the given elongation. The role of the coercivity in H2 has already been
commented; the quadratic growth conditions in H2 guarantee that the minimizer
in (2.2) satisfies the Euler Lagrange equations which is our main tool in analysing
the asymptotic behavior of the model for ε r 0Ø Condition H3 says that the plane
P ¨ !�eÙ ηÙ z� Ú �eÙ η� X R2 Ú z ¨ G + Se) is the tangent hyperplane to the graph of
f which touches that graph at exactly two points, viz., at �EiÙΦi� for i ¨ 1Ù 2Ù and
moreover, the graph of f is ‘above’ PØThe points �EiÙΦi� are obtained by the common
tangent construction. They represent the phases that can coexist in a single state in
the theory with ε ¨ 0Ø It will be seen that for λ X �E1ÙE2� the equilibrium state of
elongation λ corresponding to εr 0 aprroaches a simple two phase state with phases
�EiÙΦi� present in amounts that lead to the total elongation λØ Finally, H4 is a simple
assumption that guarantees that the convex envelope wco of w is given by

wco�e� ¨
8>><>>:
w�e� if e X R∼ �E1ÙE2�Ù
G + Se if e X �E1ÙE2�Ù

(2.6)

e X RÙ see Remark 4.1 (below). The function wco is the infimum energy for ε ¨ 0 by
the common tangent construction of gibbsian thermostatics.

Hypothesis H1 allows us to define the Gibbs function g Ú R2 r R by

g�sÙφ� ¨ f �È�sÙφ�Ùφ� − sÈ�sÙφ�
for every �sÙφ� X R2 where È�sÙφ� is the unique point with ��È�sÙφ�Ùφ� ¨ sØ We
note that

|�È�sÙφ�Ùφ� ¨ Dφ g�sÙφ�Ø (2.7)

By Remark 4.1 (below), the function Q Ú Rr RÙ defined by

Q�η� ¨ g�SÙ η� − GÙ
η X RÙ is nonnegative (and vanishes at E1 and E2). We can thus define the interface
constant σ by

σ Ú¨
Φ2

�
Φ
1

√
2Q�η� dηØ (2.8)
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3 The main results

The following three theorems, the main results of this paper, show that for εr 0 the
diffuse interface model can be approximated by the sharp interface model with the
interface energy εσ Ø The proofs are given in Section 4.

Theorem 3.1. If λ X R and ε ± 0 then

E ε�λ� ¨
8>><>>:
w�λ� if λ Z �E1ÙE2�Ù
wco�λ� + εσ + o�εÙ λ� if λ X �E1ÙE2�

(3.1)

where
o�εÙ λ�/εr 0 as εr 0 for any λ X �E1ÙE2�Ø

Moreover,
wco�λ� ° E ε�λ� ² min!w�λ�Ùwco�λ� + εσ) (3.2)

for λ X �E1ÙE2�Ø
Thus if λ is outside the Maxwell interval �E1ÙE2�Ù the effective energy E�λ� coincides
with w�λ�Û this value of E�λ� corresponds to a homogeneous state �uÙφ� X D�λ� in
which the strain uÞ is λ and φ is constant delivering the minimum value of f �λÙφ�ØOn
the other hand, if λ X �E1ÙE2� then the effective energy E�λ� is above the maxwellian
value wco�λ�Ù but is bounded as in (3.2) and asymptotically for ε r 0 is given by
(3.1)2. This corresponds to a creation of a two phase state in which the strain is ' E1
on a region of length r and ' E2 on a region of length 1 − r where

rE1 + �1 − r�E2 ¨ λÙ (3.3)

separated by a single interface of energy εσ Ø
The following result gives an explicit description of the states minimizing the

right hand side of (2.2):

Theorem 3.2. For each λ X R and ε ± 0 there exists an �uÙφ� such that

F ε�uÙφ� ¨ E ε�λ� and �uÙφ� X D�λ�
and one of the following two possibilities occurs:
(i) φ is constant; then �u�x�Ùφ�x�� ¨ �λxÙ¤� for all x X �0Ù 1� where ¤ is such that

w�λ� ¨ f �λÙ¤� and
E ε�λ� ¨ w�λ�Û

(ii) there exists a minimizer with φ is strictly increasing; then there exists s X R such
that with α Ú¨ φ�0�Ù β Ú¨ φ�1� the function q�ċ� Ú¨ g�sÙ ċ� − g�sÙ α� is positive on
�αÙ β�Ù

x/ε ¨
φ�x�
�
α

dη√
2q�η�

Ù u�x�/ε ¨
φ�x�
�
α

È�sÙ η�dη√
2q�η�

(3.4)

for every x X �0Ù 1�Ù and

E ε�λ� ¨ g�sÙ α� + sλ + ε
β

�
α

√
2q�η� dηØ (3.5)
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If λ X R∼ �E1ÙE2� then Possibility (i) occurs; if λ X �E1ÙE2� and

ε ° �w�λ� − wco�λ�	/σ (3.6)

then Possibility (ii) occurs.

Thus every minimizer �uÙφ� is such that either the strain uÞ and φ are constant with
φ delivering a minimum of f �λÙφ� or else it can be chosen such that φ is strictly
increasing and (3.4) hold with some s X RØ We note that if �uÙφ� is a minimizer and
�ØÙû� is defined by

Ø�x� ¨ u�1 − x� − λ�1 − x�Ù û�x� ¨ φ�1 − x�Ù
x X �0Ù 1�Ù then �ØÙû� X D�λ� and Fε�uÙφ� ¨ Fε�ØÙû� and hence also �ØÙû� is a
minimizer; if φ is increasing then û is decreasing and vice versa. The minimizers
�uÙφ� with uÞ and φ constant occur for λ outside the Maxwell interval �E1ÙE2�Û on
the other hand if λ X �E1ÙE2� and ε is sufficiently small in the sense of (3.6), then
necessarily the minimizers are of the type described (ii); these have the interface of
energy εσ as described above.

Finally, the following result shows that for λ X �E1ÙE2� and εr 0 the minimizers
approach a two phase state with the values of strain and phase field equal to �E1ÙΦ1�
and �E2ÙΦ2� on intervals �0Ù r� and �rÙ 1� where r is given by (3.3).

Theorem 3.3. Let λ X �E1ÙE2� be fixed and for each ε ± 0 satisfying (3.6) let �uεÙφε�
be a minimizer in the sense that

E ε�λ� ¨ F ε�uεÙφε� and �uεÙφε� X D�λ� (3.7)

such that φε is an increasing function; then

�uÞε �x�Ùφε�x�� r
8>><>>:
�E1ÙΦ1� if 0 ² x ° rÙ
�E2ÙΦ2� if r ° x ² 1Ù

as εr 0 where r is determined by (3.3).

4 Proofs

Remark 4.1. We have

w�Ei� ¨ G + SEiÙ g�SÙΦi� ¨ GÙ i ¨ 1Ù 2Ù (4.1)

the convex envelope wco of w is given by (2.6),

f �eÙ η� − G − Se ³ Q�η� ³ 0 (4.2)

for any �eÙ η� X R2Ù and Q vanishes only at Φ1 and Φ2Ø
Proof From (2.5) we deduce that f �EiÙφ� ³ G + SEi for any φ with the equality
holding if and only if φ ¨ ΦiØ Hence f �EiÙφ� ³ f �EiÙΦi� ¨ G + SEi for all φ from
which w�Ei� ¨ f �EiÙΦi� ¨ G + SEi which proves (4.1)1. From (2.5) we deduce that
if i X  1Ù 2( then

f �eÙΦi� ³ w�e� ³ G + Se
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for all e X R with the equalities holding throughout if e ¨ EiØ It follows by differenti-
ation that De w�ei� ¨ De f �eiÙΦi� ¨ S and hence also È�SÙΦi� ¨ EiØ The definition
of g then gives (4.1)2Ø To prove (2.6), let c Ú Rr R be given by

c�e� ¨

8>>>>>><>>>>>>:

w�e� if e ° E1Ù
G + Se if e X �E1ÙE2�Ù
w�e� if e ± E2Ù

(4.3)

e X RÙ and note that c is convex since the three regimes of (4.3) define a convex
function on the intervals specified in (4.3) and the limits of these functions and of
their derivatives at Ei from the two sides of Ei coincide. Hence also the right hand
side of (2.6) is a convex function; this function clearly does not exceed w and is the
largest convex function that does not exceed wÛ thus (2.6) holds. Further, if φ X R
then

g�SÙφ� ¨ f �È�SÙφ�Ùφ� − SÈ�SÙφ� ³ G
by (2.5) with the equality holding only if �È�SÙφ�Ùφ� ¨ �EiÙΦi� for some i ¨ 1Ù 2Ù
i.e., only if φ ¨ Φi for some i ¨ 1Ù 2Û thus Q is nonnegative and vanishes only if
φ ¨ Φi for some i ¨ 1Ù 2Ø Finally, to prove (4.2)1, we note that the function f �ċÙφ� is
convex at È�SÙφ� and since ��È�SÙφ�Ùφ� ¨ SÙ the convexity inequality reads

f �eÙ η� ³ f �È�SÙφ�Ùφ� + S�e − È�SÙφ�� ¨ g�SÙφ� + SeÛ
a rearrangement gives (4.2)1. è

Proof of (3.1)1 If λ X R and �uÙφ� X D�λ� then

F ε�uÙφ� ³
1

�
0

f �uÞ�x�Ùφ�x�� dx ³
1

�
0

w�uÞ�x�� dx ³
1

�
0

wco�uÞ�x�� dx ³ wco�λ�

by Jensen’s inequality and the conditions u�0� ¨ 0Ù u�1� ¨ λÛ taking the infimum
over all �uÙφ� X D�λ� we obtain Eε�λ� ³ wco�λ� for every λ X RØ On the other hand
let �uÙφ� X D�λ� be defined by u�x� ¨ λxÙφ�x� ¨ ¤ for every x X �0Ù 1� where ¤ is
such that f �λÙ¤� ¨ w�λ� then Fε�uÙφ� ¨ f �λÙ¤� ¨ w�λ� and hence Eε�λ� ² w�λ�Ø
To summarize, we have

wco�λ� ² E ε�λ� ² w�λ� (4.4)

for every λ X RØ If λ X R ∼ �E1ÙE2� then wco�λ� ¨ w�λ� by (2.6) and thus we have
(3.1)1. è

Proof of (3.2) Let λ X �E1ÙE2�ØBy Remark 4.1 the functionQ is nonnegative and
vanishes only at Φ1ÙΦ2Ø Let θ0 X �Φ1ÙΦ2� be arbitrary. Using Q�Φi� ¨ Q Þ�Φi� ¨ 0
for i ¨ 1Ù 2 one finds that

θ0

�
Φ
1

dη√
2Q�η�

¨
Φ2

�
θ
0

dη√
2Q�η�

¨ ð (4.5)

which implies that there exists an increasing function θ Ú Rr �Φ1ÙΦ2� such that

t ¨
θ�t�
�
θ
0

dη√
2Q�η�

(4.6)

for every t X RØ We have
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θ�t� r Φ1 for t r −ðÙ θ�t� r Φ2 for t r ð (4.7)

by (4.5), and differentiating (4.6) using Q�θ�t�� ± 0 one finds that θ is continuously
differentiable and satisfies

θ Þ2�t� ¨ 2Q�θ�t�� (4.8)

for every t X RØ Integrating using (4.7) we obtain

�
R

θ Þ2�t� dt ¨ �
R

√
2Q�θ�t��θ Þ�t� dt ¨

Φ2

�
Φ
1

√
2Q�η� dη ¨ σ Ø

Next note that there exists at least one r X R such that
1

�
0

È�SÙ θ��x − r�/ε�� dx ¨ λ (4.9)

since the integral is a continuous function of r and it converges to E1 for r r −ð and
to E2 for r r ð by (4.7). Let �uÙφ� X H be defined by

φ�x� ¨ θ��x − r�/ε�Ù u�x� ¨
x

�
0

È�SÙφ�y�� dyÙ

x X �0Ù 1�Û we have �uÙφ� X D�λ� by (4.9). Furthermore,

ε2φÞ2�x�/2 ¨ Q�φ�x��
as a consequence of (4.8); from uÞ�x� ¨ È�SÙφ�x�� we obtain

f �uÞ�x�Ùφ�x�� ¨ g�SÙφ�x�� + SuÞ�x� ¨ ε2φÞ2�x�/2 + G + SuÞ�x�Ø
Hence

F ε�uÙφ� ¨
1

�
0

ε2φÞ2ε �x� + SuÞ�x� dx + G ¨
1

�
0

ε2φÞ2ε �x� dx + wco�λ�

where we have used that Sλ + G ¨ wco�λ� by (2.6). Estimating

1

�
0

ε2φÞ2ε �x� dx ¨
1/ε

�
0

εθ Þ2�t − r� dt ² �
R

εθ Þ2�t − r� dt ¨ εσ

we obtain
E ε�λ� ² F ε�uÙφ� ² wco�λ� + εσ Ø

Combining with (4.4) we obtain (3.2) with the nonstrict inequality sign in the left
inequality. Let us show that the equality wco�λ� ¨ Eε�λ� cannot hold. Indeed, assum-
ing this equality and referring to Theorem 3.2 (to be proved below independently of
the present argument), we find �uÙφ� X D�λ� such that

1

�
0

φÞ2�x�/2 + f �uÞ�x�Ùφ�x�� dx ¨ wco�λ� ª
1

�
0

G + SuÞ�x� dxÙ

i.e.,
1

�
0

φÞ2�x�/2 + f �uÞ�x�Ùφ�x�� − G − SuÞ�x� dx ¨ 0Ø

Since the term f �uÞ�x�Ùφ�x�� − G − SuÞ�x� is nonnegative for a.e. x X �0Ù 1� by
(2.5), we deduce that
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φÞ2�x� ¨ 0Ù f �uÞ�x�Ùφ�x�� − G − SuÞ�x� ¨ 0
for a.e. x X �0Ù 1�, which in turn implies that φ is constant, and �uÞ�x�Ùφ� X
 �EiÙΦi� Ú i ¨ 1Ù 2( for a.e. x X �0Ù 1� by (2.5). Thus φ ¨ Φi and uÞ�x� ¨ Ei for
some i X  1Ù 2(Ø But then �10 uÞ�x� dx ¨ Ei © λ in contradiction with �uÙφ� X D�λ�Ø

è
Proof of Theorem 3.2 To prove the existence of the minimizer, let ε ± 0

and λ be fixed and let �ukÙφk� X D�λ� be a minimizing sequence in the sense that
Fε�ukÙφk� r Eε�λ� for k r ðØ From the coercivity [see (2.3)1] we deduce that the
L2�0Ù 1� norms of the sequences φkÙ φÞk and uÞk are bounded; since uk�0� ¨ 0Ù we
deduce that also the L2 norm of uk is bounded. Thus passing to a subsequence (not
relabelled) we can assume that

�ukÙφk� u �uÙφ� in W 1Ù2��0Ù 1�ÙR2�
for some �uÙφ� X D�λ�. As a consequence,

�ukÙφk� r �uÙφ� in L2��0Ù 1�ÙR2�Ø
The integrand occurring in (2.1) is convex in �uÞÙφÞ� by Assumption H1 and as the
hypotheses of the lowersemicontinuity theorem [3; Theorem 3.23] are satisfied, we
have

E ε�λ� ¨ limkrð F ε�ukÙφk� ³ F ε�uÙφ� ³ E ε�λ�

and thus �uÙφ� is a minimizer.
Let �uÙφ� X D�λ� be any minimizer. Hypothesis H2 implies via [3; Theorem

3.37] that �uÙφ� satisfy the weak form of the Euler Lagrange equations

1

�
0

��uÞ�x�Ùφ�x��vÞ�x� dx ¨ 0Ù (4.10)

1

�
0

ε2φÞ�x�ψÞ�x� + |�uÞ�x�Ùφ�x��ψ�x� dx ¨ 0 (4.11)

for every v X C 10�0Ù 1� and every ψ X C 1��0Ù 1��where (4.11) follows for ψ X C 10�0Ù 1�
directly from [3; Theorem 3.37] and generally for ψ X C 1��0Ù 1�� by a straightforward
extension of the proof of [3; Theorem 3.37]. Equation (4.10) implies that there exists
a s X R such that

s ¨ ��uÞ�x�Ùφ�x��Ù uÞ�x� ¨ È�sÙφ�x�� (4.12)

for a.e. x X �0Ù 1�Ø Integrating by parts, we rewrite the second condition as

1

�
0

�ε2φÞ�x� −
x

�
0

|�uÞ�y�Ùφ�y�� dy	ψÞ�x�dx + ψ�1�
1

�
0

|�uÞ�y�Ùφ�y�� dy ¨ 0Ø

The arbitrariness of ψ X C 1��0Ù 1�� then gives

ε2φÞ�x� ¨
x

�
0

|�uÞ�y�Ùφ�y�� dy (4.13)

for a.e. x X �0Ù 1� and



12

1

�
0

|�uÞ�y�Ùφ�y�� dy ¨ 0Ø

From (4.12)2 and the continuity of φ we deduce that u X C 1��0Ù 1�� and with this
knowledge (4.13) implies that φ X C 2��0Ù 1��Ù

ε2φÞÞ�x� ¨ |�uÞ�x�Ùφ�x�� (4.14)

for every x X �0Ù 1� and
φÞ�0� ¨ φÞ�1� ¨ 0Ø (4.15)

The condition φ X C 2��0Ù 1�� and (4.12)2 finally imply u X C 2��0Ù 1��Ø Hence the
Euler Lagrange equations hold in the classical sense and this in turn implies the first
integral

ε2φÞ2�x�/2 ¨ f �uÞ�x�Ùφ�x�� − suÞ�x� − G0 ª g�sÙφ�x�� − G0 (4.16)

for x X �0Ù 1�whereG0 is a constant. By (4.15),G0 satisfies g�sÙ α�−G0 ¨ g�sÙ β�−G0 ¨
0Û this gives

g�sÙ α� ¨ g�sÙ β�
and (4.16) reduces to

ε2φÞ2�x�/2 ¨ g�sÙφ�x�� − g�sÙ α�Ø (4.17)

If φ is constant then the condition of minimization gives Assertion (i).
Assume that �uÙφ� is a minimizer with a nonconstant φØ Thus there exists a point

y X �0Ù 1� such that φÞ�y� © 0Û assume for definitenes that φÞ�y� ± 0Ø Introduce the
sets N+ÙN−Ù and N0 by

N± Ú¨ !x X �0Ù 1� Ú ±φÞ�x� ± 0)Ù N0 Ú¨ !x X �0Ù 1� Ú φÞ�x� ¨ 0)Ù
note that the sets N± are open, N0 closed, and

φÞ�x� ¨ ±
√
2q�φ�x��/ε (4.18)

if x X N±Ø Prove that N+ ¨ �0Ù 1�Ù N− ¨ ó and N0 ¨  0Ù 1(Ø Let J ¨ �aÙ b� ⊂ �0Ù 1�
be the component of N+ which contains y. The assertions above will be proved if we
show that J ¨ �0Ù 1�Ø To prove the last statement, put γ ¨ φ�a�Ù δ ¨ φ�b�Û (4.17) gives
that q is positive on �γÙ δ� and q�γ� ¨ q�δ� ¨ 0Ø The integration of (4.18) gives

x − a ¨ ε
φ�x�
�
γ

dη√
2q�η�

Ù (4.19)

and hence b − a ¨ ∆ where

∆ ¨ ε
δ

�
γ

dη√
2q�η�

Ø (4.20)

From the finiteness of the integral (4.20) we deduce that qÞ�δ� © 0 since otherwise
the Taylor expansion of q at δ shows that the integral would diverge at least as

�δγ 1/�δ − t� dtØ Moreover, since q�ψ� ± 0 for all ψ ° δ sufficiently close to δÙ we have
qÞ�δ� ° 0Ø Recalling that φ is twice continuously differentiable, from (4.18) with
the plus sign we deduce that φÞÞ�b� ¨ qÞ�δ�/2 is negative. New we distinguish the
following two possibilities: b ¨ 1 and b ° 1. The first possibility is trivial from the
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analysis that follows and let us now consider the second possibility. Assume therefore
b ° 1Ø Then the solution φ exists for all x ± b sufficiently close to bØ The conditions
φÞ�b� ¨ 0 and φÞÞ�b� ° 0 then imply that φ has a strict local maximum at x ¨ b and
therefore φ�x� ° δ and φÞ�x� ° 0 for all x ± b sufficiently close to bØ Thus we see
that we have (4.18) with the minus sign for the indicated values of xØ Moreover q ± 0
everywhere on �γÙ δ� and thus (4.17) tells us that φÞ is different from 0 and therefore
does not change its sign as long as φ�x� exists and φ�x� ± γØ Thus we have (4.18)
with the minus sign. Thus the subinterval �aÙ b� of �0Ù 1� with the positive sign of φÞ

is followed by a subinterval �bÙ c� with the negative sign of φÞ. Equation (4.18) then
shows that φ�b− ξ� ¨ φ�b+ ξ� for all ξ X �0Ù b− a�Ø The above properties of N± and
N0 and the conditions φÞ�0� ¨ φÞ�1� ¨ 0 show that the interval �0Ù 1� is divided into
m intervals of equal length such that the sign of φÞ changes alternatively on these
intervals, and moreover, φ is a restriction of an even periodic class 2 function on R
of period 2/m with φÞ�0� ¨ 0Ø Let us prove that m ¨ 1Ø Assuming m ± 1Ù we will
construct �ØÙû� X D�λ� such that

F ε�uÙφ� ± F ε�ØÙû�Ø (4.21)

Indeed, from (4.12)2 we see that also uÞ is a restriction of a periodic class 1 function
of period 2/m and hence

1/m

�
0

φÞ2�x� dx ¨
1

�
0

φÞ2�x� dx/mÙ
1/m

�
0

uÞ�x� dx ¨ λ/mØ (4.22)

Let now �ØÙû� be defined by

Ø�x� ¨ mu�x/m�Ù û�x� ¨ φ�x/m�
x X �0Ù 1�Ø Then (4.22) give �ØÙû� X D�λ� and

1

�
0

f �ØÞ�x�Ùû�x�� dx ¨
1

�
0

f �uÞ�x�Ùφ�x�� dxÙ

while
1

�
0

ûÞ2�x� dx ¨
1

�
0

φÞ2�x� dx/m2 °
1

�
0

φÞ2�x� dx

and hence we have (4.21). This proves that �uÙφ� is not a minimizer unlessm ¨ 1ØThus
we see that if �uÙφ� is a minimizer with φ nonconstant then either φÞ ± 0 everywhere
on �0Ù 1� of φÞ ° 0 everywhere on �0Ù 1�Ø We can assume φÞ ± 0; then (4.19) reduces
to (3.4)1Ø The integration of (4.12)2 and the conditions u�0� ¨ 0Ù u�1� ¨ λ give

λ ¨
1

�
0

È�sÙφ�x�� dx (4.23)

which reduces to (3.4)2 by making the change of variables xr φØ To prove (3.5), we
note that (4.12)1 gives

f �uÞÙφ� ¨ g�sÙφ� + sÈ�sÙφ� ¨ q�φ� + g�sÙφ�0�� + sÈ�sÙφ�
and hence

F ε�uÙφ� ¨
1

�
0

2q�φ�x�� dx + g�sÙφ�0�� + sλ
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by (4.17) and (4.23). The formula (3.5) follows from

1

�
0

2q�φ�x�� dx ¨ ε
1

�
0

√
2q�φ�x��φÞ�x� dx ¨ ε

β

�
α

√
2q�η� dη

This completes the proof of (ii).
If λ X R ∼ �E1ÙE2� then the pair �uÙφ� described in Item (i) is a minimizer by

(3.1)1 and one easily finds that any other state �uÙφ� X D�λ� has Fε�uÙφ� ± w�λ�Ø If
λ X �E1ÙE2� and ε ± 0 satisfies (3.6) then the state �uÙφ� with uÞÙφ constant as in
Item (i) has Fε�uÙφ� ¨ w�λ� and assuming E�λ� ¨ w�λ� contradicts (3.2); thus the
case described in Item (ii) necessarily occurs. è

Remark 4.2. Let πÙ ρ be, respectively, the smallest and the largest point in the
interval �Φ1ÙΦ2� for which Q attains a maximum on �Φ1ÙΦ2� (the possibility π ¨ ρ
not excluded) and let ηk and �ekÙ ηk� be two sequences.
(i) If Q�ηk� r 0 and ηk ² π for all large k then ηk r Φ1Û if Q�ηk� r 0 and ηk ³ ρ

for all large k then ηk r Φ2Û
(ii) if f �ekÙ ηk�−G−Sek r 0 and ηk r Φ1 then ek r E1Û if f �ekÙ ηk�−G−Sek r 0

and ηk r Φ2 then ek r E2.

Proof (i): By (2.3)1 we have

g�sÙ η� ¨ f �È�sÙ η�� − sÈ�sÙ η� ³ c1�È 2�sÙ η� + η2� + c2 − sÈ�sÙ η� ³ c1η2 + Æ2
for any �sÙ η� X R2 where Æ2 is the minimum ew c1e

2 − se ³ Æ2 on R and hence

Q�η� ³ c1η2 + Æ3 (4.24)

for all η X R and some c1Ù Æ3 with c1 ± 0Ø Let ηk be a sequence with Q�ηk� r 0 and
ηk ² π for all large kÛ prove that ηk r Φ1 by contradiction. Hence assume that ηk
contains a subsequence, not relabelled, such that |ηk − Φ1| ³ δ for all k and some
δ ± 0Ø From Q�ηk� r 0 and (4.24) we deduce that ηk is a bounded sequence and
thus it contains a subsequence, not relabelled, such that ηk r î for some î X R.
Then the limits in Q�ηk� r 0 and in ηk ² π give Q�î� ¨ 0 and î ² πØ Since Q is
positive on �−ðÙΦ1� T �Φ1Ù π� and vanishes only at Φ1Ù this implies that î ¨ Φ1Ù
in contradiction with the starting assumption. The second assertion of (i) is proved
similarly. (ii): From (2.3)1 we obtain that

f �eÙ η� − G − Se ³ Æ1�e2 + η2� + Æ2 (4.25)

for all �eÙ η� X R2 and some Æ1 ± 0Ù Æ2 X RØ We prove that if f �ekÙ ηk� −G − Sek r 0
and ηk r Φ1 then ek r E1 by a similar contradiction as in Case (i). Namely, if for
some subsequence we have |ek − E1| ³ δ for all k and some δ ± 0Ù then the sequence
ek is bounded by (4.25) and thus it contains a subsequence such that ek r È for some
ÈÛ the limit in f �ekÙ ηk� − G − Sek r 0 then gives f �ÈÙΦ1� − G − SÈ ¨ 0 and then
È ¨ E1 by (2.5). The second assertion of (ii) is proved similarly. è

Proof of Theorem 3.3 Prove first that

φε�x� r
8>><>>:
Φ1 if 0 ² x ° rÙ
Φ2 if r ° x ² 1Ø

(4.26)
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Suppose, that there exists a sequence εk r 0 and a point y with 0 ² y ° r such that
|φk�y�−Φ1| ³ δ for all k and some δ ± 0Ù where we write φk Ú¨ φεk and uk Ú¨ uεk Ø We
shall successively extract subsequences of φk without relabelling the symbols until
we obtain a subsequence with φk�y� r Φ1Û this contradiction will prove (4.26)1Û a
similar argument proves (4.26)2Ø

Thus let φk be a sequence as above. From (3.2) we deduce that Fεk�ukÙφk� r
wco�λ� ª �10 G + SuÞk�x� dx we deduce that

1

�
0

f �uÞk�x�Ùφk�x�� − G − SuÞk�x� dxr 0Û

the integrand is nonnegative by (2.5) and thus by extracting a subsequence, we have

f �uÞk�x�Ùφk�x�� − G − SuÞk�x� r 0 (4.27)

for a.e. x X �0Ù 1� which by (4.2)1 also implies

Q�φk�x�� r 0 (4.28)

for a.e. x X �0Ù 1�. Let πÙ ρ be as in Remark 4.2, let

sk ¨ sup!x X �0Ù 1� Ú φk�z� ² π for every z X �0Ù x�)Ù
tk ¨ inf!x X �0Ù 1� Ú φk�z� ³ ρ for every z X �xÙ 1�)Ù

and note that since φk is increasing, 0 ² sk ² tk ² 1Ø Passing to a subsequence if
necessary, we assume that sk r sÙ tk r 0 for some sÙ t with 0 ² s ² t ² 1Ø We
have Q�φk�x�� r 0 for a.e. x X �0Ù 1� and φk�x� ° π for every x X �0Ù s� and all
sufficiently large k and φk�x� ± ρ for every x X �tÙ 1� and all sufficiently large kÛ
hence

φk�x� r
8>><>>:
Φ1 for a.e. x X �0Ù s�Ù
Φ2 for a.e. x X �tÙ 1�

(4.29)

by Remark 4.2(i). Since the function Q is strictly positive on �πÙ ρ�Ù we have
Q�φk�x�� ³ c ± 0 every x X �sÙ t� and every k sufficiently large; if s ° tÙ this is
inconsistent with (4.28); we thus conclude that s ¨ tØ Moreover, since φk are increas-
ing functions, one deduces that the a.e. convergences in (4.29) can be replaced by the
convergences everywhere. Thus letting m ¨ s ¨ t we conclude that

φk�x� r
8>><>>:
Φ1 if 0 ² x ° mÙ
Φ2 if m ° x ² 1Ø

(4.30)

Combining (4.30) with (4.27) we obtain

uÞk�x� r
8>><>>:
E1 if 0 ² x ° mÙ
E2 if m ° x ² 1

(4.31)

by Remark 4.2(ii), also using the continuity of uÞk Ø The limit in �10 uÞk�x� dx ¨ λ then
gives mE1+�1−m�E2 ¨ λ and a comparison with (3.3) shows that m ¨ rØ Then (4.30)
implies φk�y� r Φ1Ù a contradition; this proves (4.26).

We finally prove that
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uÞε �x� r
8>><>>:
E1 if 0 ² x ° rÙ
E2 if r ° x ² 1Ø

(4.32)

Suppose that there exists a sequence εk r 0 and a point y with 0 ² y ° r such that
|uÞk�y� − E1| ³ δ for all k and some δ ± 0Ø Then for a subsequence we have (4.30)
and (4.31) with m ¨ rÙ in particular, uÞk�y� r E1Û a contradiction proving (4.32)1. A
similar argument proves (4.32)2Ø è

Proof of (3.1)2 Let ε satisfy (3.6) and let �uεÙφε� be a minimizer in the sense
of (3.7) with φε an increasing function. Inserting e ¨ uÞε �x�Ù η ¨ φε�x� in (4.2)1 and
integrating using the condition �10 uÞε �x� dx ¨ λ we obtain

1

�
0

f �uÞε �x�Ùφε�x�� dx − wco�λ� ³
1

�
0

Q�φε�x�� dxØ

Then

F ε�uεÙφε� − wco�λ� ³
1

�
0

ε2φÞ2ε �x�/2 + Q�φε�x�� dx ³ ε
φε�1�
�

φε�0�

√
2Q�η� dη

where we have used

ε2φÞ2ε �x�/2 + Q�φε�x�� ³ ε
√
2Q�φε�x��φÞε �x�

since a2 + b2 ³ 2|a||b|Ø Combining with (3.2) we thus obtain

εσ ³ F ε�uεÙφε� − wco�λ� ³ ε
φε�1�
�

φε�0�

√
2Q�η� dη

and the proof of (3.1)2 is completed by pointing out that
φε�1�
�

φε�0�

√
2Q�η� dηr σ

as εr 0 since φε�0� r Φ1 and φε�1� r Φ2 by Theorem 3.3. è
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