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�Zitná 25,

CZ-11567 Praha 1, Czech Republic

e-mail: krejci@math.cas.cz

Masayoshi Tomizuka
Department of Mechanical Engineering,

University of California,

Berkeley, CA 94720

e-mail: tomizuka@me.berkeley.edu

Robust Performance Enhancement
Using Disturbance Observers
for Hysteresis Compensation
Based on Generalized
Prandtl–Ishlinskii Model
This paper presents an approach employing disturbance observers to enhance the
performance of inverse-based hysteresis compensation based on the generalized
Prandtl–Ishlinskii model in feedback control reference-tracking applications. It is first
shown that the error resulting from inexact hysteresis compensation is an L1-bounded
signal. Hence, a disturbance observer (DOB) is designed to cancel its effect and improve
the closed loop robust tracking performance in the presence of plant dynamics uncer-
tainty. The design of the DOB makes use of an equivalent internal model-based estima-
tion of exogenous disturbances, where the internal model dynamics is designed to have at
least an eigenvalue at the origin. The synthesis is then formulated as an H1 weighted-
sensitivity optimization for static output feedback (SOF) gain of a Luenberger observer.
A linearization heuristic is then implemented to solve the bilinear-matrix-inequality
(BMI) constrained semidefinite program (SDP) for a (sub)optimal static gain. Simulation
results indicate that tracking performance is indeed improved using the combined
inversion-based compensation and the DOB. [DOI: 10.1115/1.4023762]

1 Introduction

Smart material-based actuators exhibit strong hysteresis
nonlinearities, causing performance degradation and potential
instability of their closed-loop systems [1]. Lately, a variety of
control methods have been developed in the literature for compen-
sation of hysteresis nonlinearities (see Refs. [1–13]). The majority
of such techniques can be classified as inverse-based, and
noninverse-based compensation. In the inverse-based approach,
an “estimated” inverse of the hysteresis is employed to compen-
sate its effect. On the other hand, noninverse compensation
regards the hysteresis nonlinearity as a disturbance modeled by a
given operator-based hysteresis model [14]. This, however, can be
valid for a number of hysteretic actuators operated at low frequen-
cies in well-known excitation conditions (e.g. temperature,
mechanical, stress level, etc.). Nevertheless, different experimen-
tal studies show that hysteresis effects are not “simple” nonlinear-
ities to be considered as disturbances [15]. Thus, to effectively
compensate hysteresis effects operating at different excitation fre-
quencies and eliminate potential limit cycles resulting from inex-
act compensation, it is essential to employ an inverse-based
compensation of the hysteresis.

A generalized Prandtl–Ishlinskii model and its inverse have
been presented to characterize and compensate for hysteresis non-
linearities [16,17]. This model extends the classic operator-based
Prandtl–Ishlinskii model to describe symmetric as well as
asymmetric and saturated hysteresis loops. Unlike the Preisach
and Krasnosel’skii–Pokrovskii models, the generalized Prandtl–
Ishlinskii model has the uniquely attractive property of being ana-
lytically invertible. This analytic invertibility of the generalized
Prandtl–Ishlinskii model may serve as an effective means for

inverse-based hysteresis compensation utilizing feedforward com-
pensators (see Ref. [18] for details).

The work in this paper focuses on closed-loop robust tracking
performance for SISO feedback systems employing inverse
model-based hysteresis compensation. In this setting, the nominal
plant is assumed to be a linear time-invariant (LTI) system pre-
ceded by the hysteresis nonlinearity. A compensator applying the
inverse generalized Prandtl–Ishlinskii model is used to compen-
sate the hysteretic effects. Nevertheless, model mismatch between
the hysteresis nonlinearity and the estimate of its inverse often
leads to inexact compensation. Thus, to account for inaccuracies
due variations in the operating conditions, uncertainty in the actu-
ator dynamics and exogenous disturbances, a disturbance observer
(DOB) is used. In DOB-based control, an inner loop employing
unity-DC gain low pass filter Q sð Þ is added into the main feedback
system to estimate input disturbances and cancel them subse-
quently [19–23].

The DOB synthesis in this paper relies on the equivalence of
DOB structure shown in Fig. 3 and that of state estimation of an
augmented state space system utilizing an internal model for the
exogenous disturbance with at least one eigenvalue at the origin
(see Theorem 1). The equivalence between classic internal model
approach [24] and the DOB structure is shown in [21]. However,
a design procedure for an optimal DOB is not given there. Thus,
using the latter approach, DOB synthesis is formulated as an H1
weighted sensitivity optimization of a static output feedback
(SOF) gain of a Luenberger observer. This is appealing for the fol-
lowing reasons: (i) the design of the outer loop controller achiev-
ing nominal tracking performance, and the DOB inner loop can be
carried out separately. Specifically, robust disturbance rejection is
optimized in the presence of a given outer controller which ensure
robust performance of the overall closed-loop system. (ii) The
DOB filter Q sð Þ having unity dc-gain can be designed with more
flexibility in regards to its order, bandwidth, and roll-off rate,
which greatly enhances disturbance rejection performance and
robustness of the overall system. Also, having unity dc-gain over
wide enough bandwidth, disturbance rejection could be achieved
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for a large class of disturbance signals without precise knowledge
of the disturbance model as long as the frequency content lies
within the DOB bandwidth. This simple fact is central to the de-
velopment of robust disturbance rejection in the sequel since it is
not straight forward to construct an accurate signal model for the
hysteresis compensation error in feedback applications. (iii) The
synthesis optimization is cast as semidefinite programming (SDP)
which can be solved very efficiently using reliable and readily
available software [25]. This offers a great advantage over the
Riccati equation-based solution to H1 optimization which fails to
exist in the presence of uncontrollable and/or unobservable
jx-axis poles present in internal model-based synthesis [26].

The main contributions of this paper are: (1) L1-boundedness
for inverse-based hysteresis compensation error is analytically
demonstrated for a generalized Prandtl–Ishlinskii model, which in
turn is treated as a bounded exogenous disturbance whose effect
can be rejected using the DOB; (2) hysteresis compensation is sys-
tematically treated using powerful tools from robust control
theory, building upon results of the H1 framework to guarantee
closed-loop robust performance [8,27]; (3) the design of the DOB
filter Q sð Þ is reduced to an SOF controller which has a simpler
structure than that of Q sð Þ in conventional DOB work. The design
framework developed in this paper makes fairly nonrestrictive
assumptions on the plant characteristics. Furthermore, a number
of robust state estimation/disturbance rejection approaches
studied in the literature can be systematically recovered using
the DOB design approach in this paper. This can be done by
choosing appropriate internal model dynamics for the exogenous
disturbances [28].

The paper is organized as follows. In Sec. 2, a generalized
Prandtl–Ishlinskii model with its inverse are given. This
section also derives a bound on inexact hysteresis compensation.
Section 3 discusses the closed-loop DOB-based hysteresis error
compensation to be investigated. An overview of DOBs and their
relation to internal model-based state estimation is developed in
Sec. 4. A synthesis approach utilizing SDP optimization is then
presented. Section 5 is devoted to optimization synthesis results
and closed-loop simulation of a number of hysteresis compensa-
tion scenarios.

2 A Generalized Prandtl–Ishlinskii Model and its

Inverse

In this section, the generalized Prandtl–Ishlinskii model and
its inverse are presented. This model has been used for different
hysteresis nonlinearities in smart actuators [14,17]. It is proved
that the error resulting from inexact feedforward inverse-based
compensation of the generalized Prandtl–Ishlinskii model is an
L1-bounded signal.

2.1 Generalized Prandtl–Ishlinskii Model. For a given
input vðtÞ 2 C½0;T� (i.e. continuous function), the output w(t) of
the generalized Prandtl–Ishlinskii model can be expressed as
wðtÞ ¼ H½v�ðtÞ ¼ G½dðvÞ�ðtÞ, where G is the Prandtl–Ishlinskii
model given by the Stieltjes integral

G½u�ðtÞ ¼ pð0ÞuðtÞ þ
ð1

0

Fr½u�ðtÞdpðrÞ ¼ �
ð1

0

@

@r
Fr½u�ðtÞð ÞpðrÞdr

(1)

where p(r) is a nondecreasing left-continuous density function,
Fr½u�ðtÞ is output of the play operator with threshold r> 0 and
input uðtÞ ¼ dðvðtÞÞ. The function d : R! R is an envelope
function which, together with its inverse d�1 : R! R, is strictly
increasing, continuous and odd. Here, it is also assumed that both
d and d�1 are Lipschitz continuous. The integration by parts in
Eq. (1) holds under the convention F0½u�ðtÞ ¼ uðtÞ, which is
compatible with Eq. (2). It is recalled that the output of each indi-
vidual play operator Frj

is defined for monotone (nondecreasing

or nonincreasing) functions u in each interval ½ti�1; ti� of a parti-
tion 0 ¼ t0 < � � � < tm ¼ T by

Frj
½u�ðtÞ ¼ maxðvðtÞ � rj;minðuðtÞ þ rj;Frj

½u�ðti�1ÞÞÞ (2)

for t 2 ½ti�1; ti�, with initial condition Frj
½u�ð0Þ ¼ maxðuð0Þ

�rj;minðuð0Þ þ rj; 0ÞÞ corresponding to no initial memory. The
definition can be extended to the whole space C[0, T] by density
argument as in Ref. [7]. If p(r) is a piecewise constant step func-
tion of the form

pðrÞ ¼
Xl

j¼0

pj; r 2 ½rl; rlþ1Þ; l ¼ 0;…;N (3)

where 0 ¼ r0 � r1 � � � � rN � rNþ1 ¼ 1 is a given sequence of
thresholds and pj are constant positive weights, then the Prandtl–
Ishlinskii model can be expressed as

G½u�ðtÞ ¼
XN

j¼0

pjFrj
½u�ðtÞ ¼ p0uðtÞ þ

XN

j¼1

pjFrj
½u�ðtÞ (4)

which is the classical discrete Prandtl–Ishlinskii model. For the
identity envelope function dðvÞ ¼ v, the generalized Prandtl–
Ishlinskii model H reduces to the classical Prandtl–Ishlinskii
model presented in Ref. [7]. Lipschitz-continuity of the general-
ized Prandtl–Ishlinskii model is ensured since the function d is
itself Lipschitz-continuous.

2.2 Inverse Generalized Prandtl–Ishlinskii Model. The
reported studies involving inverse compensation generally exhibit
compensation errors, even when the exact inverse is employed.
This error has been attributed to the characterization errors of the
generalized Prandtl–Ishlinskii model. The resulting model gener-
ally exhibits some degree of error between the model output and
the measured characteristics. The estimated hysteresis models
have been employed to construct the inverse of the Preisach,
Krasnosel’skii–Pokrovskii and Prandtl–Ishlinskii models [29].

Indeed, the exact inverse operator v ¼ H�1½w� to w ¼ H½v�
¼ G½dðvÞ� can be written in the form

H�1½w�ðtÞ ¼ d�1ðG�1½w�ðtÞÞ (5)

where d�1 : R! R is the inverse of d, and G�1 is the inverse
Prandtl–Ishlinskii operator of G given by Ref. [7]

G�1½w�ðtÞ ¼ g0wðtÞ þ
XN

j¼1

gjFsj
½w�ðtÞ (6)

The weights gj and thresholds sj, j ¼ 0;…;N, of the exact inverse
G�1, putting r0 ¼ s0 ¼ 0, can be written as [7]

sj � sj�1 ¼
Xj�1

i¼0

piðrj � rj�1Þ (7)

g0 ¼
1

p0

; gj ¼ �
pj

p0 þ
Xj

i¼1

pi

 !
p0 þ

Xj�1

i¼1

pi

 ! (8)

It is assumed that the function d�1 and the weights gj and
thresholds sj of the inverse G�1 are not exactly known, but only
their approximations d̂�1, ĝj, and ŝj are available. We propose an
estimated inverse generalized Prandtl–Ishlinskii model in the
form

Ĥ�1½w�ðtÞ ¼ d̂�1ðĜ�1½w�ðtÞÞ (9)
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where

Ĝ�1½w�ðtÞ ¼ ĝ0wðtÞ þ
XM

j¼1

ĝjFŝj
½w�ðtÞ (10)

and find an upper bound for the compensation error. In practical
applications, it will be convenient to take M < N in order to
reduce the computational complexity.

2.3 Error of the Inverse Compensation. In this subsection,
we estimate the error of the inverse compensation when the
approximate generalized Prandtl–Ishlinskii model is applied to
compensate for the hysteresis in the generalized Prandtl–Ishlinskii
model. We first introduce the functions / and /̂

/ðsÞ ¼
Xj

k¼0

gk; s 2 ½sj; sjþ1Þ; j ¼ 0;…;N (11)

/̂ðsÞ ¼
Xj

k¼0

ĝk; s 2 ½ŝj; ŝjþ1Þ; j ¼ 0;…;M (12)

again with sNþ1 ¼ ŝMþ1 ¼ 1. It is convenient to rewrite the iden-
tities in Eq. (6) and (10), using the integration by parts formula, in
terms of integrals analogous to Eq. (1)

G�1½w�ðtÞ ¼ /ð0ÞwðtÞ þ
ð1

0

Fs½w�ðtÞd/ðsÞ

¼ �
ð1

0

@

@s
Fs½w�ðtÞð Þ/ðsÞds (13)

Ĝ�1½w�ðtÞ ¼ /̂ð0ÞwðtÞ þ
ð1

0

Fs½w�ðtÞd/̂ðsÞ

¼ �
ð1

0

@

@s
Fs½w�ðtÞð Þ/̂ðsÞds (14)

Hence, Fs½w�ðtÞ ¼ 0 for s > jjwjj1 :¼ supt w tð Þ, and jð@=@sÞ
Fs½w�ðtÞj � 1 almost everywhere. It follows that

jĜ�1½w�ðtÞ � G�1½w�ðtÞj �
ðjjwjj1

0

j/̂ðsÞ � /ðsÞjds (15)

Let v(t) be an input signal and wðtÞ ¼ G½dðvÞ�ðtÞ be the output.
The approximate inversion error between v(t) and v̂ðtÞ
¼ d̂�1ðĜ�1½w�ðtÞÞ can be estimated as follows

jjv� v̂jj1 ¼ jjd�1ðG�1½w�Þ � d̂�1ðĜ�1½w�Þjj1
� jjd�1ðĜ�1½w�Þ � d̂�1ðĜ�1½w�Þjj1
þ jjd�1ðG�1½w�Þ � d�1ðĜ�1½w�Þjj1

� jjd�1 � d̂�1jj1 þ Ld

ðjjwjj1
0

j/̂ðsÞ � /ðsÞjds (16)

where Ld is the Lipschitz constant of d�1.

3 Problem Statement: Inversion-Based Hysteresis

Compensation With DOBs

This paper is concerned with improving the performance of
inversion-based hysteresis compensation using disturbance
observers (DOBs). Shown in Fig. 1 is the inversion-based hystere-
sis compensation without DOB. The plant is comprised of a stable
SISO LTI system P sð Þ and the hysteresis nonlinearity H :ð Þ whose
output is denoted by g tð Þ. Moreover, the feedback controller is

composed of an internally stabilizing SISO LTI system and a
nonlinearity Ĥ�1 :ð Þ giving an estimate of the inverse of H :ð Þ. In
Fig. 1, the signals r tð Þ and n tð Þ are reference input and measure-
ment noise, respectively.

The presence of model uncertainty and variation in operating
conditions result in inexact hysteresis compensation, and the dif-
ference gðtÞ � uðtÞ will not necessarily vanish. More specifically,
we have [29–31]

g tð Þ ¼ H Ĥ�1 u½ �
� �

tð Þ ¼ u tð Þ þ dH t; u tð Þð Þ 8t � 0 (17)

where u tð Þ is the nominal control input and dH : Rþ �R! R is
a time varying nonlinearity representing the compensation error.
By hypothesis, the operator H is Lipschitz continuous in C[0, T],
and it follows from Eq. (16) that dH 2 L1.

In addition to hysteresis compensation error, the more general
case of having a bounded exogenous disturbance dex at the plant
input is now considered; g tð Þ ¼ H Ĥ�1 u½ � þ dex

� �
tð Þ. Suppose that

LH > 0 is the Lipschitz constant of H, it follows that

H Ĥ�1 u½ � þ dex

� �
tð Þ � H Ĥ�1 u½ �

� �
tð Þ

�� �� � LH dex tð Þj j
) H Ĥ�1 u½ � þ dex

� �
tð Þ

�� �� � LH dex tð Þj j þ u tð Þ þ dH t; u tð Þð Þj j
(18)

where Eq. (17) is substituted for H Ĥ�1 u½ �
� �

. The output y tð Þ in the
presence of dex can be written as

y tð Þ ¼
ðt

0

g t� sð ÞH Ĥ�1 u½ � þ dex

� �
sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

g sð Þ

ds 8t � 0 (19)

where g tð Þ is the impulse response of the stable LTI system P sð Þ.
From Eq. (18), it follows that

sup
t�0

jy tð Þj � jjgjjL1
LHjjdexjj1 þ sup

t�0

ju tð Þ þ dH t; u tð Þð Þj
� �

(20)

where jjgjjL1
:¼
Ð1

0
jg tð Þjdt. The righthand side of Eq. (20) is

finite if and only if the transfer functions
1

�CðsÞ
P sð Þ

1

� 	�1

are

asymptotically (exponentially) stable [8], which together with
Eq. (16) guarantees that supt�0 ju tð Þ þ dH t; u tð Þð Þj is uniformly

bounded.
Henceforth, d tð Þ lumps together the effect of inexact hysteresis

compensation error and the exogenous disturbance dex tð Þ. Conse-
quently, closed-loop tracking accuracy is greatly improved if the
undesirable perturbation term d tð Þ could be eliminated using a
DOB. Introducing DOB in the feedback system, the analysis
in the sequel focuses on the feedback system depicted in Fig. 2.
Specifically, the next section studies in detail DOB-based robust
disturbance rejection such that the estimate d̂ cancels the effect of
hysteresis compensation error and exogenous disturbances, in the
presence of plant dynamics uncertainty.

Fig. 1 Inversion-based hysteresis compensation scheme with-
out DOB
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4 Robust Disturbance Observers Design

Disturbance observers have been implemented successfully in a
wide range of applications including robotic manipulation, high-
accuracy hard disk drives servo systems, and machining drive
tools (see Refs. [19,21,32,33] and the references therein). Given
its importance, synthesis of robust DOBs is an active research
topic [20]. In this section, an overview of DOBs is given, robust
performance conditions are derived based on closed-loop sensitiv-
ity functions, a unified robust design approach for DOBs is devel-
oped, and an iterative synthesis algorithm using SDP optimization
is presented.

4.1 Overview of Disturbance Observers. From the discus-
sion above, the feedback system in Fig. 2 is redrawn as shown in
Fig. 3. In this figure, d collects the effects of hysteresis compensa-
tion error and exogenous disturbances. This feedback system is
comprised of a two-degree-of-freedom (2-DOF) controller, an
internally stabilizing controller C sð Þ which is assumed to be
appropriately designed for nominal tracking performance

C sð Þ ¼ Cc sI � Acð Þ�1Bc þ Dc (21)

and the DOB loop. Within the DOB loop, Q sð Þ is a stable low
pass filter with unity dc gain and desired bandwidth, and is con-
sidered the design parameter for the DOB.

In Fig. 3, the plant P sð Þ is represented by the multiplicative
uncertainty model [8]

P sð Þ ¼ Pn sð Þ 1þ D sð Þð Þ; D sð Þ; jjDjj1 � 1; stable (22)

where jj:jj1 denotes the H1 norm [8,27]. Pn sð Þ represents the
nominal plant dynamics, and is given by the state space
representation

_xp ¼ Apxp þ Bp � þ dð Þ (23a)

y ¼ Cpxp (23b)

where xp tð Þ 2 Rnp , y tð Þ 2 R, � tð Þ, and d tð Þ are the plant control
input and disturbance, respectively. The following assumptions on
Pn sð Þ ¼ Cp sI � Ap

� ��1
BP are made

(1) Pn(s) is minimum phase,
(2) Ap is Hurwitz,
(3) The pair Ap;Cp

� �
is observable.

Assumption 1 implies that the inverse of Pn(s) used in the DOB
is stable, together with Assumption 2 are sufficient for internal
stability of the DOB-based closed-loop system. Assumption 3 will
be used in the DOB design presented in subsequent sections. The
primary objective of the DOB is to produce an estimate d̂ which is
added to the nominal control input u to cancel the effect of d. The
main focus here is to design Q(s) with desired bandwidth for
robust disturbance rejection, which in turn provides robust track-
ing performance for the overall closed-loop system.

4.2 Sensitivity Function Analysis. From Fig. 3, assuming
that Pn sð Þ ¼ P sð Þ, the output y is given by

y ¼ Pn sð ÞC sð Þr þ Pn sð Þ 1� Q sð Þð Þd � Pn sð ÞC sð Þ þ Q sð Þð Þn
1þ Pn sð ÞC sð Þ

(24)

The following closed-loop sensitivity functions are defined

S sð Þ ¼ Pn sð Þ 1� Q sð Þð Þ
1þ Pn sð ÞC sð Þ (25a)

T sð Þ ¼ Pn sð ÞC sð Þ þ Q sð Þ
1þ Pn sð ÞC sð Þ (25b)

From Fig. 3, it is noted that S sð Þ ¼ �Gd!e sð Þ is the closed-loop
transfer function from d tð Þ to the tracking e tð Þ ¼ r tð Þ � y tð Þ, and
T sð Þ ¼ �Gd!� sð Þ where � and d define the interconnection varia-
bles of the nominal closed-loop and the uncertainty D sð Þ. The
expression in Eq. (25a) shows that further reduction in S(s) is
achieved by having Q sð Þ ¼ 1 over a desired frequency band.

Hence, for a stable weighting function Wu sð Þ such that
D jxð Þj j � Wu jxð Þj j for all x and for all D sð Þ, it follows that small

gain condition

jjWuTjj1 < 1 (26)

is necessary and sufficient for closed-loop robust stability for the
unstructured multiplicative uncertainty (Eq. (22)) [8]. In addition,
note that Gd!d̂ sð Þ ¼ Q sð Þ. Thus, given a stable weighting function
Wp sð Þ such that

jjWp 1� Qð Þjj1 � c; c < 1) jjWp d � d̂
� �

jjL2
� cjjdjjL2

(27)

where c > 0 is a given performance bound and d � d̂ is the dis-
turbance estimation error. Consequently, Eqs. (26) and (27) imply
that robust disturbance rejection is achieved. In particular,
jjWp 1� Qð Þjj1 � c sets a lower bound on the cut-off frequency
of the high pass filter 1� Q sð Þ. Thus, Wp sð Þ can be selected to
reflect desired bandwidth performance constraints on Q(s). The
conditions stated in Eqs. (26) and (27) will be used in subsequent
sections to formulate a weighted sensitivity optimization for the
DOB synthesis.

4.3 Q Filter Design. A typical form of the low pass filter
Q(s) used extensively in the literature is [19,21–23,32, 33]

Q sð Þ ¼ 1þ
Xm�q

k¼1

ak ssð Þk
" #

1þ
Xm

k¼1

ak ssð Þk
" #�1

(28)

where m > 0 is the desired order of Q(s) and q � m is its relative
degree. The design trade-off of Q(s) is to choose akf gm

k¼1� 0 such
that its cut-off frequency x � 1=s is large enough for better dis-
turbance rejection. However, a direct synthesis of Q(s) in Eq. (28)
is subject to

Fig. 2 Inversion-based hysteresis compensation with DOB-
based feedback controller (dashed-dot)

Fig. 3 DOB-based closed-loop system
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(Q1) Relative Degree: q must be chosen greater than or equal
to that of Pn (s) to enable Q sð ÞP�1

n sð Þ to be realizable,
(Q2) Unity DC gain: Q 0ð Þ ¼ 1 imposes that q and akf gm

k¼1 are
not independent of each other [32],

(Q3) Robust stability of the closed-loop system (i.e. Eq. (26)).
These conditions complicate the synthesis of an optimal Q(s).

Thus, an alternative design method is desired where the structure
constraints (Q1) and (Q2) can be implicitly satisfied to ease the
complexity involved. In the next section, the DOB design is for-
mulated as state estimation for an augmented system, which leads
to systematic design of Q(s) based on H1 weighted-sensitivity
optimization.

4.4 DOB Equivalent Observer-Based Disturbance
Estimation. In this section, it is shown that under mild condi-
tions, the disturbance estimation based on the DOB is indeed
equivalent to the design of a Luenberger observer for an aug-
mented system incorporating an internal model of the disturbance.
Once this is established, the DOB filter Q(s) satisfying (Q1), (Q2),
and (Q3) can be obtained from the Luenberger observer gain.

Suppose the disturbance d is generated by the autonomous
system

_xd ¼ Adxd; d ¼ Cdxd; xd t0ð Þ ¼ xd0 (29)

where xd tð Þ 2 Rnd . The following assumptions are made

(4) Ad;Cdð Þ is detectable,
(5) The eigenvalues of Ad do not coincide with the zeros of the

plant Pn (s) (i.e. the disturbance state xd is observable from
the output y).

Let x ¼ ½xT
p xT

d �
T
, from Eqs. (23) and (29), the augmented state

space system is given by

_x ¼ ~Axþ ~B�; ~y ¼ ~Cx (30a)

~A ¼ Ap BpCd

0 Ad

� 	
; ~B ¼ Bp

0

� 	
; ~C ¼ Cp 0½ � (30b)

Given Assumptions 3, 4, and 5, it can be shown that

rank

kI � Ap �BpCd

0 kI � Ad

Cp 0

24 35 ¼ np þ nd (31)

for all eigenvalues k 2 C of ~A. Hence it follows from the PBH
observability rank condition [27], that the augmented system in
Eq. (30) is detectable [20,28]. Thus, there exists L 2 Rnpþnd such
that

_̂x ¼ ~A� L ~C
� �

x̂þ ~B L

 � �

y

� 	
(32)

is an asymptotically stable state observer for the system in
Eq. (30). Moreover, using state transformation [20], it can be
shown that the eigenvalues of the overall closed-loop system com-
prised of Pn sð Þ;C sð Þ and the state observer (Eq. (32)), are given
by

det kI � Aclð Þ ¼ det
kI � Ap � BpDcCp

� �
�BpCc

BcCp kI � Ac

" #

� det
kI � Ap � L1Cp

� �
�BpCd

L2Cp kI � Ad

" #
(33)

where L ¼ LT
1 LT

2


 �T
with L1 2 Rnp and L2 2 Rnd . This clearly

allows a stabilizing controller C(s) to be designed separately of

the state estimator. We now consider the following two cases for
disturbance estimation:

(1) Observer-based: from Eq. (32), the estimate d̂ is given by

d̂ ¼ �G1 sð Þ� þ G2 sð Þy (34a)

where

G1 sð Þ
G2 sð Þ

� 	
¼ ~Cd sI � ~A� L ~C

� �� ��1 � ~B;
L

� 	
(34b)

where ~Cd ¼ 0 Cd½ �.
(2) DOB-based: from Fig. 3, the estimate d̂ is given by

d̂ ¼ �Q sð Þ� þ Q sð ÞP�1
n sð Þy (35)

For the synthesis of the low pass filter Q(s) having unity dc
gain, the following key assumption is made:

(6) Ad has at least one of its eigenvalue at the origin.
With the assumptions above, the equivalence between the

DOB-based estimate in Eq. (35) and the observer-based estimate
in Eq. (34) is stated next.

Theorem 1. Given that Assumptions 3, 4, 5, and 6 are satisfied,
the expressions in Eqs. (34) and (35) for d̂ are equivalent; that is
Q sð Þ ¼ G1 sð Þ and Q sð ÞP�1

n sð Þ ¼ G2 sð Þ. In particular, Q 0ð Þ
¼ G1 0ð Þ ¼ 1.

Proof. See pages 543–546 of Ref. [21] for details. h
In particular, the structure constraints (Q1) and (Q2) are satis-

fied and Q sð Þ ¼ G1 sð Þ is a low-pass filter with unity dc gain.
Thus, once L is obtained, Q(s) is evaluated using G1 sð Þ in
Eq. (34). Specifically, L is desired to be the (sub)optimal solution
to the weighted sensitivity H1 optimization

min
L

c; subject to :
WuT

Wp 1� Qð Þ

� 	���� ����
1
� c; c < 1 (36)

The feedback interconnections associated with Eq. (36) is
shown in Fig. 4, where the observer transfer function

Pobs sð Þ ¼
~A ~B 0 I;eCd 0 0 0

� ~C 0 I 0

�������
264

375, the reference input r, and the mea-

surement noise n are set to zero. The transfer function of the
weighted plant PW (s) is given by

PW sð Þ ¼
AW B1 B2

C1 D11 D12

C2 D21 0

�������
375

264 (37)

Fig. 4 Weighted plant Pw sð Þ
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Finally, for internally stabilizing C sð Þ, stable Wu sð Þ and Wp sð Þ, the
above discussion states that AW ;B2ð Þ is stabilizable and AW ;C2ð Þ
is detectable. Hence, assumptions of the standard H1 problem are
satisfied [27,34,35].

Thus, optimal DOB synthesis is equivalent to robust Luen-
berger observer satisfying the H1 weighted-sensitivity objectives
in Eq. (36). This results in an optimization problem over a much
simpler structure, namely the static output feedback (SOF) gain of
the Luenberger observer, which can be efficiently synthesized
using SDP optimization [35,36]. Hence, with proper choice of the
weighting functions Wu sð Þ and Wp sð Þ, robust disturbance rejection
is achieved via the optimal synthesis of the Luenberger observer.

Remark. It must be emphasized that the disturbance signal gen-
erator in Eq. (29) [24] is only a mathematical tool used in the fore-
going analysis of the DOB design, to guarantee unity DC gain of
Q(s). In particular, the hysteresis compensation error as well as
exogenous disturbances in subsequent simulations are not gener-
ated by Eq. (29).

4.5 The Optimization Task Using Semi-Definite
Programming. Given c > 0, it follows from the bounded real
lemma [27,34], that Eq. (36) is solvable for a stabilizing gain L if
and only if there exist positive definite symmetric matrices
PT ¼ P 	 0 and RT ¼ R 	 0 satisfying

N1 0

0 I

� 	T AWRþ RAT
W RCT

1 B1

C1R �cI D11

BT
1 DT

11 �cI

264
375 N1 0

0 I

� 	

 0 (38a)

N2 0

0 I

� 	T AT
WPþ PAW PB1 CT

1

BT
1 P �cI DT

11

C1 D11 �cI

264
375 N2 0

0 I

� 	

 0 (38b)

PR ¼ I (38c)

where N1 and N2 are matrices of the null spaces of BT
2 DT

12


 �
and

C2D21½ �, respectively. The constraints in Eqs. (38a), (38b), and
(38c) are not jointly convex in P, R, and c due to the nonlinear
product PR¼ I. This gives rise to computationally intractable
bilinear matrix inequality (BMI) constrained SDP optimization
[35,36]. One way to solve this nonlinear SDP is to introduce the
nonconvex auxiliary cost J ¼ Trace PRð Þ þ c, relax the constraint

in Eq. (38c) into the linear matrix inequality (LMI)
P I
I R

� 	
� 0,

and apply the sequential linear programming matrix algorithm

(SLPMM) developed in Ref. [35]. Refer to the Appendix at the
end of the paper for details of the SLPMM.

In particular, the SLPMM generates a sequence of linear SDP
problems involving the linearization of J, which can be solved
very efficiently [25,34]. Once P, R, and c are determined, the
(sub)optimal static gain L is obtained from the feasibility problem

AT
WPþ PAW PB1 CT

1

BT
1 P �cI DT

11

C1 D11 �cI

2664
3775þ

PB2

0

D12

264
375L C2 D21 0½ �

þ
CT

2

DT
21

0

264
375LT BT

2 P 0 DT
12


 �

 0 (39)

5 Robust DOB-Based Hysteresis Compensation:

Simulation Results

5.1 Robust DOB Optimization Results. The actuator (plant)
dynamics P sð Þ is given by the lumped parameter system [6,37]

y ¼ P sð Þ � þ dð Þ (40)

where the output y is the actuator displacement ðlmÞ. The plant
P sð Þ and the nominal plant Pn sð Þ are given by

Fig. 5 Bode plots of 1=Wp sð Þ and 1�Q sð Þ (left), closed-loop sensitivity S sð Þ (right)

Fig. 6 Sample realization of the external disturbance signal
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P sð Þ ¼
Y2

i¼1

x2
i

s2 þ 2fixisþ x2
i

; Pn sð Þ ¼ x2
1

s2 þ 2f1x1sþ x2
1

(41)

where f1 ¼ 0:8 and x1 ¼ 2p 90ð Þ ðrad=sÞ. Note that d represents
the hysteresis compensation error and exogenous disturbances.
The compensator C sð Þ, designed based on Pn sð Þ, is given by a
simple proportional-integral

C sð Þ ¼ 8þ 4

s
(42)

which provides low-frequency high gain for good tracking and
nominal robustness. The weighting function Wp sð Þ is chosen as

Wp sð Þ ¼ 0:5
sþ 2p 64ð Þ

sþ 0:2
(43)

which specifies a cut-off frequency of at least 50 Hz. From
Eq. (22), the multiplicative uncertainty weight is given by
Wu sð Þ ¼ ðP sð Þ=Pn sð ÞÞ � 1. Thus, from the expressions of P sð Þ
and Pn sð Þ;Wu sð Þ is given by

Fig. 8 Example 1: (a) and (b) show the input-output relationship between the reference input
rðtÞ5 18 sin ð2ptÞ1 28 sin ð6ptÞ and the output y(t) of the closed-loop system with (a) the exact
inverse Prandtl–Ishlinskii model Ĝ�1½v �5 G�1½v �, and without (b) the inverse Prandtl–Ishlinskii
model Ĝ�1½v �5 v . (c) and (d) show tracking error e(t) of the closed-loop system for (a) and (b),
respectively.

Fig. 7 The input-output relationship between the reference rðtÞ5 18 sin ð2ptÞ1 28 sin ð6ptÞ and
the output of: (a) the Prandtl-Ishlinskii model G[r](t), and (b) the inverse Prandtl–Ishlinskii model
G�1½r �ðtÞ
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Wu sð Þ ¼ � s sþ 2f2x2ð Þ
s2 þ 2f2x2sþ x2

2

(44)

where f2 ¼ 0:2 and x2 ¼ 2400 ðrad=sÞ. The disturbance model in
Eq. (29) is given by the first-order system

Ad ¼ 0; Cd ¼ 1 (45)

i.e. an integrator 1=s. This choice implies that L ¼ LT
1 LT

2


 �T
2 R3;L2 2 R2, and L1 2 R. Moreover, this simple choice results
in the proportional-integral (PI) Luenberger observer structure
studied in Ref. [28]

_̂xp ¼ Ap � L1Cp

� �
x̂p þ BpCdd̂ þ Bp L1½ � �

y

� 	
(46a)

_̂d ¼ �L2Cdx̂p þ L2y (46b)

It can be easily verified that Assumptions 3, 4, 5, and 6 are satis-
fied. The LMIs in Eqs. (38a), (38b), and Eq. (A1) are solved using
the SEDUMI solver within the YALMIP environment [25], running
in MATLAB version 7.9 (R2009b). The optimization is terminated
after 14 iterations in 21.512 s resulting in c ¼ 0:774 and
L ¼ �117:381 0:197 17113:1½ �T . Using Eq. (34b), the DOB filter
is computed as

Q sð Þ ¼ 5:472� 109

s3 þ 6:393� 104s2 þ 1:981� 107sþ 5:472� 109
(47)

which has cut-off frequency at 49 Hz. It is clear from Fig. 5 that
Q sð Þ satisfies the robust performance bound 1� QðjxÞj j
� 1=WpðjxÞ
�� �� 8x (see Eq. (27)), and that the closed-loop sensi-

tivity function S sð Þ with the DOB (solid) exhibits additional
reduction over a wider frequency range than without the DOB
(dash-dot).

The closed-loop system with the overall DOB-based feedback
systems and the uncertain plant (Eq. (41)), is depicted in Fig. 2.
The exogenous disturbance dex is modeled as a band limited white

Fig. 9 Example 2: (a) and (b) show the input-output relationship between the reference
input rðtÞ5 18 sin ð2ptÞ1 28 sin ð6ptÞ and the output y(t) of the closed-loop system with (a)
Ĝ�1 5 0:9G�1, and (b) Ĝ�1 5 0:5G�1. (c) and (d) show the tracking error e(t) of the closed-loop
system with (c) Ĝ�1 5 0:9G�1, and (d) Ĝ�1 5 0:5G�1. (e) and (f) show the tracking error e(t)
considering Ĝ�1 5 0:7G�1 with (e) the DOB, and without (f) the DOB.
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noise (see Fig. 6). Simulation results are performed for both the
Prandtl–Ishlinskii model and its inverse and the generalized
Prandtl–Ishlinskii model and its inverse.

5.2 Simulation Results for the Closed-Loop System With
the Prandtl–Ishlinskii Model. In this section, the simulation is
performed for the closed-loop system in Fig. 2 with the Prandtl–
Ishlinskii model G. This model represents a special case of the
generalized Prandtl–Ishlinskii model when dðvÞ ¼ v, analytically

H½v� ¼ G½v� (48)

Figure 7 shows the output of the Prandtl–Ishlinskii model G[r](t)
and the output of inverse Prandtl–Ishlinskii model G�1½r�ðtÞ for
the reference input rðtÞ ¼ 18 sinð2ptÞ þ 28 sinð6ptÞ. This refer-
ence input can show major and minor hysteresis loops when
applied as an input for the Prandtl–Ishlinskii model G. We use the
following parameters for the Prandtl–Ishlinskii model G: n¼ 10,
ri¼ {4, 8, 12, 16, 20, 24, 28, 32, 36, 40}, g0 ¼ 0:1; gi ¼ {0.0462,
0.069, 0.1029, 0.1535, 0.2291, 0.3417, 0.51, 0.761, 1.1, 1.7,}. The
parameters of the inverse Prandtl–Ishlinskii model G�1 computed
using Eqs. (7) and (8) are: si¼ {0.4, 0.985, 1.8459, 3.1186,
5.00, 7.8085, 11.9784, 18.1875, 27.4386, 41.2279}, ĝ0 ¼ 10,
ĝi ¼ f�3:16;�2:1918; �1.5030, �1.0231, �0.6930, �0.4678,
�0.315, �0.2118, �0.1423, �0.0955}. A number of studies pro-
posed linear controllers to compensate for the error of the inverse
compensation when the estimated inverse hysteresis model is
applied as a feedforward compensator (i.e. open-loop inverse-
based); see, e.g., Ref. [38]. In this study, the controller C sð Þ is
given by Eq. (42). The simulation results show significant
improvement in hysteresis compensation and tracking error

e(t)¼ r(t) – y(t) when the inverse-based scheme and the DOB are
both employed.

5.2.1 Example 1. In this example, we consider the closed-
loop system in Fig. 2 with and without the exact inverse Prandtl–
Ishlinskii model. Figure 8 shows simulation results for the output
y(t) with and without the exact inverse of the Prandtl–Ishlinskii
model. The results show that the Prandtl–Ishlinskii model
Ĝ�1½v� ¼ G�1½v� yields linear input-output relationship between
the reference input rðtÞ ¼ 18 sinð2ptÞ þ 28 sinð6ptÞ and the output
y(t), while the output y(t) without the inverse Prandtl–Ishlinskii
model Ĝ�1½v� ¼ v shows high oscillations. The figure shows high
tracking error e(t)¼ r(t) – y(t) with undesirable high limit cycle
oscillations in the absence of the inverse Prandtl–Ishlinskii model
Ĝ�1½v� ¼ v.

5.2.2 Example 2. This example refers to the overall closed-
loop system in Fig. 2. In this example, we consider
Ĝ�1 ¼ 0:9 G�1 and Ĝ�1 ¼ 0:5 G�1. Figure 9 shows better per-
formance for the closed-loop system with the estimated inverse
Prandtl–Ishlinskii model Ĝ�1 ¼ 0:9 G�1. Figure 9(e) and Fig. 9(f)
show the tracking error e(t) with and without the DOB, when the
estimated inverse Prandtl–Ishlinskii model Ĝ�1 ¼ 0:7 G�1 is
applied. The results show 50% improvement in the tracking error
performance of the closed-loop system. It is obvious that the
tracking error in Fig. 9(f) is comparable to that of exact hysteresis
compensation in Fig. 8(c).

5.3 Simulation Results for the Closed-Loop System With
the generalized Prandtl–Ishlinskii Model. In this section, we
present simulation results for the closed-loop system in Fig. 2
with the generalized Prandtl–Ishlinskii model H and its estimated

Fig. 10 (a) and (b) show the input-output relationship between the reference input
rðtÞ ¼ 18 sin ð2ptÞ þ 28 sin ð6ptÞ and (a) the output of the generalized Prandtl–Ishlinskii model
H[r](t), and (b) the output of the inverse generalized Prandtl–Ishlinskii model H�1½r �ðtÞ. (c) shows
the input-output relationship between the reference input r(t) and the output of the inverse com-
pensation H � Ĥ ½r �ðtÞ, (d) shows the error of the inverse compensation egðtÞ5 r ðtÞ � H � Ĥ�1½r �ðtÞ
with Ĥ�1 5 H�1 (solid line), Ĥ�1 5 0:9 H�1 (dashed-dotted line), Ĥ�1 5 0:8 H�1 (dotted line), and
Ĥ�1 5 0:7 H�1 (dashed line).
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inverse Ĥ�1. We use the Prandtl–Ishlinskii model G in the previ-
ous subsection and the following function d

dðvÞ ¼ C½v� ¼
Xm

i¼0

niSqi
ðvÞ (49)

where

Sqi
ðvÞ ¼ maxðv� qi; 0Þ (50)

gi are constants, and qi are thresholds such that

0 ¼ q0 � q1 � � � � � qm (51)

The inverse memoryless model is expressed as

C�1ðvÞ ¼
Xm

i¼0

eiSwi
ðvÞ (52)

where

wi ¼
Xi

j¼0

njðqi � qjÞ (53)

e0 ¼
1

n0

(54)

and

ei ¼
�ni

n0 þ
Xi

j¼1

nj

 !
n0 þ

Xi�1

j¼1

nj

 ! (55)

We use the following parameters for the memoryless model C:
m¼ 3, n0 ¼ 0:65;n1 ¼ 0:2;n2 ¼ 0:3;n3 ¼ 0:4;q1 ¼ 7:56;q2 ¼ 12;
q3 ¼ 17:69. The parameters of the inverse memoryless model

C�1 computed using Eqs. (54) and (55) are w1¼ 4:94;
w2¼ 8:688;w3¼ 15:2315;e0¼ 1:5385;e1¼�0:361;e2¼�0:3069,
and e3¼�0:2244. We use the reference input rðtÞ¼ 18sinð2ptÞ

Fig. 11 Example 3. (a) and (b) show the input-output relationship between the reference input
rðtÞ5 18 sin ð2ptÞ þ 28 sin ð6ptÞ and the output of the closed-loop system y(t) with the DOB and
with (a) the exact inverse generalized Prandtl–Ishlinskii model Ĥ�1½v �5 H�1½v �, and without (b)
the inverse generalized Prandtl–Ishlinskii model Ĥ�1½v �5 v . (c) and (d) the tracking error e(t) of
the closed-loop system of (a) and (b), respectively. (e) and (f) show the tracking error e(t) of the
closed-loop system with the DOB (solid line) and without the DOB (dashed line) with (e)
Ĥ�1 5 0:95 H�1, and with (f) Ĥ�1 5 0:7 H�1.
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þ28sinð6ptÞ. The output of the generalized Prandtl–Ishlinskii

model H[r](t) and its inverse Ĥ�1½r�ðtÞ are shown in Figs. 10(a)

and 10(b). The output of the inverse compensation H � Ĥ�1½r�ðtÞ
when the estimated inverse generalized Prandtl–Ishlinskii model

Ĥ�1½r�ðtÞ is applied as a feedforward compensator to compensate
for the hysteresis nonlinearities of the generalized Prandtl–-
Ishlinskii model H[r](t) is shown in Fig. 10(c). The figure shows
hysteresis nonlinearity between the reference input r(t) and the

output of the compensation H � Ĥ�1½r�ðtÞ. Figure 10(d) shows the

time history of the compensation error egðtÞ¼ rðtÞ�H � Ĥ�1½r�ðtÞ.

5.3.1 Example 3. This example refers to the overall closed-
loop system in Fig. 2. Figures 11(a)–11(d) show the output of the

closed-loop system y(t) and the tracking error e(t) with and with-
out the exact inverse generalized Prandtl–Ishlinskii model. The
tracking error e(t) of the closed-loop system with the estimated
inverse generalized Prandtl– Ishlinskii model Ĥ�1 ¼ 0:95 H�1

and Ĥ�1 ¼ 0:7 H�1 with and without the DOB are shown in
Fig. 11(e) and Fig. 11(f), respectively.

5.3.2 Example 4. This example refers to the overall closed-
loop system in Fig. 2. Figure 12 shows the input-output relation-
ship between the reference r(t) and the output of the closed-loop
system y(t) with the estimated inverse generalized Prandtl–
Ishlinskii model of Ĥ�1 ¼ H�1; Ĥ�1 ¼ 0:9 H�1; Ĥ�1 ¼ 0:8 H�1;
Ĥ�1 ¼ 0:7 H�1, Ĥ�1 ¼ 0:4 H�1, and Ĥ�1 ¼ 0:1 H�1:

Fig. 12 Example 4. The input-output relationship between the reference input
rðtÞ5 18 sin ð2ptÞ þ 28 sin ð6ptÞ and the output of the closed-loop system y(t) with (a) Ĥ�1 5 H�1,
(b) Ĥ�1 5 0:9 H�1, (c) Ĥ�1 5 0:8 H�1, (d) Ĥ�1 5 0:7 H�1, (e) Ĥ�1 5 0:4 H�1, and (f) Ĥ�1 5 0:1 H�1.
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6 Conclusions

This paper studied performance enhancement for inverse-based
hysteresis compensation using disturbance observers to account
for exogenous disturbances and inexact hysteresis compensation.
The approach presented brings together established hysteresis
compensation techniques and tools from robust control theory,
leading to guaranteed robust closed-loop performance. Moreover,
simulation results indicate that the closed-loop system, with the
combined inverse-based compensation and the DOB, shows better
performance than the feedforward inverse-based approach which
suffers from potential limit-cycle oscillations.
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Appendix: SLPMM Algorithm

The SLPMM algorithm is given the following iterations:

(1) Solve the initialization feasibility problem: Find P0 	 0;
R0 	 0 and c0 > 0 which satisfy Eqs. (38a) and (38b), and
the SDP relaxation

P I
I R

� 	
� 0 (A1)

(2) For k¼ 0,1,2, … , solve

min
P	0;R	0;c>0

JL :¼ Trace PRk þ PkRð Þ þ c (A2)

subject to: c < 1, Eqs. (38a), (38b), and (A1),

(3) Set dPk ¼ P� Pk; dRk ¼ R� Rk and dck ¼ c� ck.
Compute

ak ¼ argmin
0�a�1

Trace Pk þ adPkð Þ Rk þ adRkð Þ½ � þ ck þ adckð Þ

(A3)

(4) Set Pkþ1 ¼ Pk þ akdPk;Rkþ1 ¼ Rk þ akdRk and ckþ1 ¼ ck

þ akdck.
(5) If a termination condition is satisfied, stop. Otherwise, go to

step 2.

The line search in Eq. (A3) computes the step size a 2 01½ � to
ensure successive reduction in the value of JL

1. It is shown in Ref.
[35] that for a nonempty constraint set, the SLPMM generates
strictly decreasing bounded sequences Pkf g; Rkf g, and ckf g which
converge to a (sub) optimal solution lying in the boundary of the
constraint set, i.e., PR¼ I. For more details refer to Ref. [35] and
the references therein.
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