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a b s t r a c t

A hybrid model is proposed for characterization of the hysteresis nonlinearity of the well-known play
operator. The proposed model holds the hysteresis nonlinearity and the memory effects of the play
operator. Simulation results are also presented to show the capability of the hybrid model to present the
hysteresis nonlinearity with memory effects.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Smart actuators and ferromagnetic materials invariably exhibit
hysteresis, which is a path-dependent memory effect where the
output relies not only on the current state but also on the past
output history [1–8]. The presence of the hysteresis in smart
actuators, such as piezoceramic, magnetostrictive and shape
memory alloy (SMA) actuators has been widely associated with
various performance limitations. These include the oscillations in
the responses of the open-as well as closed-loop systems, and
poor tracking performance and potential instabilities in the
closed-loop system [5–12]. Considerable continuing efforts are
thus being made to seek methods for effective compensation of
hysteresis effects in order to enhance the tracking performance of
smart actuators. The characterization and modeling of the hyster-
esis properties of smart actuators, however, is vital for designing
efficient compensation algorithms.

A number of models have been reported to describe hysteresis
properties in different smart actuators and ferromagnetic materi-
als. The reported hysteresis models may be classified into physics-
based models and phenomenological models [5]. The physics-
based models are generally derived on the basis of a physical
measure, such as energy, displacement, or stress–strain relation-
ship. Phenomenological models include the Preisach model
and the Prandtl–Ishlinskii model have been widely applied for
ll rights reserved.
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modeling and compensation of hysteresis effects, see for example
Refs. [2,3,13–15]. In this paper, a hybrid model is proposed for
characterization of the hysteresis nonlinearity of the well-known
play operator.
2. The play operator

In this section, we give an alternative characterization in terms
of hybrid systems of the play operator, which is the main building
block of all rate independent hysteresis models with return point
memory (cf. [2]), in particular the Preisach and the Prandtl–
Ishlinskii models.

2.1. Classical approach

According to Ref. [4], the output of the play operator Γr ½v; η�ðtÞ
with threshold r40 and initial condition η∈½�r; r� is defined first
for continuous inputs v(t) that are monotone (non-decreasing
or non-increasing) in each interval t∈½ti�1; ti� of a partition
0¼ t0o …otm ¼ T by the formula

Γr ½v; η�ðtÞ ¼maxfvðtÞ�r;minfvðtÞ þ r;Γr½v; η�ðti�1Þgg ð1Þ
for t∈½ti�1; ti�, with initial condition Γr ½v; η�ð0Þ ¼ vð0Þ�η. Fig. 1
shows a digram for the play operator.

The definition is then extended to the whole space C½0; T � of
continuous functions by density, see Ref. [4]. The argument of the
operator is written in square brackets to indicate the functional
dependence, since it maps a function to another function. The
play operator can be visualized by the motion of a piston within
a cylinder of length 2r. The position of the center of the piston
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Fig. 1. A diagram of the play operator.
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is represented by the coordinate v(t), while the cylinder position is
given by Γr½v; η�ðtÞ.

An equivalent variational approach, see Ref. [14], defines the
play as the solution operator, which with a given absolutely
continuous function v : ½0; T �-R and initial condition η∈½�r; r�
associates the solution zðtÞ ¼ Γr½v; η�ðtÞ of the variational inequality

jv�zj≤r;
zð0Þ ¼ vð0Þ�η;

_zðtÞðvðtÞ�zðtÞ�ρÞ≥0 ∀ρ∈½�r; r�;

9>=
>; ð2Þ

to be satisfied almost everywhere in (0, T).

2.2. Hybrid dynamical systems

Hybrid systems are a special class of dynamical systems that
exhibit characteristics of both continuous time and discrete time
systems. In this work, in particular, we consider the notion of
hybrid systems given in Refs. [16,18]. Driven by Ref. [18], a hybrid
system H is given by

H
_x ¼ f ðx;uÞ ðx;uÞ∈C
xþ ¼ gðx;uÞ ðx;uÞ∈D
y¼ hðx;uÞ

8><
>: ð3Þ

with state x∈Rn, input u∈Rm and output y∈Rp. The sets C⊂Rn � Rm

and D⊂Rn � Rm define the flow and jump sets, respectively; the
maps f : Rn � Rm-Rn and g : Rn � Rm-Rn define the flow map
and jump map, respectively. Finally, the function h : Rn � Rm-Rp

defines the output y.
Solutions to hybrid systems H are given by pairs of hybrid arcs

and hybrid inputs defined over extended time domains called
hybrid time domains. A set S⊂R≥0 �N is a hybrid time domain
if for all ðT ; JÞ∈S, the set S∩ð½0; T � � f0;1;…JgÞ can be written as

⋃
J�1

j ¼ 0
ð½tj; tjþ1�; jÞ

for some finite sequence of times 0¼ t0 ≤t1 ≤t2…≤tJ . A hybrid
arc x : dom x-Rn is such that dom x is a hybrid time domain
and t↦xðt; jÞ is absolutely continuous on the interval ftðt; jÞ∈domxg.
A hybrid arc is parameterized by (t, j), where t is the ordinary-time
component and j is the discrete-time component that keeps track
of the number of jumps. A hybrid input u : dom u-Rm is such that
dom u is a hybrid time domain and, for each j∈N, the function
t↦vðt; jÞ is Lebesgue measurable and locally essentially bounded
on the interval ft : ðt; jÞ∈dom ug. Then, given a hybrid input v :
dom u-Rm and an initial condition ξ, a hybrid arc ϕ : dom ϕ-Rn
defines a solution pair ðϕ;uÞ to the hybrid system H in (3) if
ϕð0;0Þ∈C∪D, where C denotes the closure of the set C, and the
following conditions hold:
(S1)
 For each j∈N such that
Ij≔ft : ðt; jÞ∈dom ðϕ;uÞg has nonempty interior intðIjÞ,
ðϕðt; jÞ;uðt; jÞÞ∈C for all t∈intðIjÞ,
and, for almost all t∈Ij,
ðd=dtÞϕðt; jÞ ¼ f ðϕðt; jÞ;uðt; jÞÞ;
(S2)
 For each ðt; jÞ∈dom ðϕ;uÞ such that ðt; jþ 1Þ∈dom ðϕ;uÞ,
ðϕðt; jÞ;uðt; jÞÞ∈D, ϕðt; jþ 1Þ ¼ gðϕðt; jÞ;uðt; jÞÞ.
2.3. A hybrid model of the play operator

Let us consider a hybrid system HP with state x¼ ½q m�T
in which q∈f�1;0;1g is a discrete state and m∈R is the memory,
input u∈R2 given by u¼ ½v _v�T and output w∈R described by the
following equations:

HP

_x ¼ 0 ðx;uÞ∈C

xþ ¼
q�sgnð _vÞ
jqjvþ rq

" #
ðx;uÞ∈D

w¼ jqjvþ rqþ ð1�jqjÞm

8>>>><
>>>>:

ð4Þ

in which r40 is the threshold,

C ¼ fðx;uÞ∈f�1;0;1g � R� R2g
D¼ fðx;uÞ∈f�1;0;1g � R� R2:

ðv≥mþ r and q¼ 0 and _v≥0Þor
ðv≤m�r and q¼ 0 and _v ≤0Þor
ðq≠0 and q _v40Þg ð5Þ

are the flow and jump domains and the function sgn :
R-f�1;0;1g is the standard sign function defined as

sgnðsÞ ¼
1 s40
0 s¼ 0
�1 so0:

8><
>:

Observe that, in the above hybrid model, the input u includes
both the standard continuous input v and its first order derivative
_v which should then be available to properly define the systemHP .

The output of the hybrid system HP can be shown to match the
output of the operator provided that the internal state of the
hybrid model satisfies some conditions. This is precisely stated by
means of the following result.

Theorem 1. Let Γr ½v; η� be the play operator defined by (1), and let w
be the output of the hybrid systemHP defined in (4) with initial states
q(0), m(0) such that vð0Þ�wð0Þ ¼ η. Assume that _vðtÞ is a left
continuous piecewise constant function, that is,

_vðtÞ ¼ ui for t∈ðti�1; ti�; i¼ 1;…;h; ð6Þ
continuously extended to t¼0, where 0¼ t0o…oth ¼ T is a fixed
partition of [0, T], and u1;…;uh are fixed constants. Then

wðtÞ ¼ zðtÞ :¼ Γr½v; η�ðtÞ ∀t∈½0; T�:

Proof. By the choice of initial conditions, we have wð0Þ ¼ zð0Þ.
We continue by induction over i¼ 1;…;h. Assuming that wðti�1Þ ¼
zðti�1Þ for some i, we check that wðtiÞ ¼ zðtiÞ. This is obvious
if _vi ¼ 0. Then w is in the flow regime and all state variables q, m
and the input v are constant, hence w(t) is constant in the whole
interval ½ti�1; ti� and remains equal to z(t) by virtue of (6).
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Assume now that ui40. We have by (6) for t∈½ti�1; ti� that
zðtÞ ¼maxfzðti�1Þ; vðtÞ�rg: ð7Þ

We now classify all possible cases by the value of qðti�1Þ.
 0.5
(i)
0z
qðti�1Þ ¼�1. Then wðti�1Þ ¼ zðti�1Þ ¼ vðti�1Þ�r, w is in the flow
regime, and we conclude that wðtÞ ¼ zðtÞ ¼ vðtÞ�r for all
t∈½ti�1; ti�.
(ii)
−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

v

qðti�1Þ ¼ 1. Then w is in the jump regime, and we have
vðti�1þÞ¼ vðti�1Þ, qðti�1þÞ¼ 0, mðti�1þÞ¼ vðti�1Þ þ r, and
wðti�1þÞ ¼wðti�1Þ ¼ vðti�1Þ þ r. For t4ti�1, w is in the flow
regime as long as vðtÞ�mðti�1þÞor (note that v is increas-
ing in ½ti�1; ti�). Hence, wðtÞ ¼ zðtÞ ¼ vðti�1Þ þ r as long as
vðtÞ�rovðti�1Þ. If vðtnÞ�r¼ vðti�1Þ for some tn∈½ti�1; tiÞ, then
w switches to the jump regime at t ¼ tn with vðtnþÞ¼ vðtnÞ,
qðtnþÞ¼�1, mðtnþÞ¼ 0, and we argue as in (i).
(iii)

1

qðti�1Þ ¼ 0. Then wðti�1Þ ¼ zðti�1Þ ¼mðti�1Þ. Similarly as in (ii),
w is in the flow regime as long as vðtÞ�mðti�1Þor. The same
argument as in (ii) yields the assertion.
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Fig. 3. (a) Shows the output of the play operator z (1) with r¼0.5 and
vðtÞ ¼ sin ðtÞ þ 0:5 sin ð2:4tÞ, (b) shows the output of the hybrid hysteresis operator
w defined in (4) with r¼0.5 and vðtÞ ¼ sin ðtÞ þ 0:5 sin ð2:4tÞ.
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Repeating the same procedure for uio0, we complete the proof. □

Remark. For r¼0, the play operator reduces to the identity map-
ping Γ0½v; η� ¼ v. This is true also for the hybrid operator (4). □

Remark. As a consequence of Theorem 1, we see that the hybrid
operator is a rate-independent hysteresis operator, that is, the
values of the output do not depend on the input speed. Further-
more, Fig. 1 illustrates the meaning of the state variables q and m:
q¼1 (q¼�1) characterizes the irreversible motion along the
descending (ascending) branch z¼v+r (z¼v�r), q¼0 corresponds
to the reversible horizontal motion inside the dead region
v�rozovþ r. The value of m keeps the information about the
last motion of z (return point!). □

Remark. For the proposed hybrid dynamical model of hysteresis,
the requirement on the knowledge of both the input v and its first
order derivative _v can be satisfied by means of a dynamic
extension of the input v itself. In particular by defining a new
input u′∈R and new continuous state v′∈R, it is possible to add the
continuous dynamics _v′¼ u′ to the hybrid system and use the state
v′ as the input for the hysteresis operator. □

3. Numerical example

In this example we compare the output of the play operator z
(1) and output of the proposed hybrid system w (4) considering
the harmonic input vðtÞ ¼ sin ðtÞ þ 0:5 sin ð2:4tÞ, where t∈½0;20�,
and the threshold r¼0.5. The initial conditions are zð0Þ ¼
0 5 10 15 20
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Time (S)

q

Fig. 2. Shows the time history of q of the hybrid hysteresis operator.

0 5 10 15 20
−1

Time (S)

Fig. 4. Shows the time history of outputs z(t) (dotted line) and w(t) (dashed line).
wð0Þ ¼ �0:4, m(0)¼�0.4, and q(0) ¼ 0. The selected input signals
v(t) can show minor reversible branches in the input-output
characteristics of the play operator. Fig. 2 shows the time history
of q of the hybrid hysteresis operator. As shown in Figs. 3 and 4,
the hybrid operator and the play operator have undistinguishable
outputs. In Fig. 5, in order to show the rate-independency of the
hybrid operator, we use the input vðtÞ ¼ sin ð10tÞ þ0:5 sin ð24tÞ,
where t∈½0;2�. Fig. 6 shows the output of the hybrid operator with
r¼0. The simulation results in this example are carried out using
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Fig. 6. Shows the output of the hybrid hysteresis operator with vðtÞ ¼ sin ðtÞ þ
0:5 sin ð2:4tÞ and r¼0.
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Fig. 5. (a) Shows the time history of the output w with r¼0.5 (1) and
vðtÞ ¼ sin ð10tÞ þ 0:5 sin ð24tÞ, (b) shows the input–output relationship for the
hybrid hysteresis operator presented in (a).
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the Hybrid Simulator V-6 available in [17] for hybrid systems
defined as in [16].
4. Conclusion

This work has shown how hybrid dynamical systems can be
employed to characterize a class of hysteresis nonlinearities with
memory effects. The proposed hybrid model in particular is proved
to be able to represent the well-known play hysteresis operator.
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