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1. Introduction. Eigenvalue problems for differential operators have attracted
a lot of attention as they have many applications. These include the dynamic analysis
of mechanical systems [3, 15, 26], linear stability of flows in fluid mechanics [24],
and electronic band structure calculations [30]. In this paper, we concentrate on
guaranteed two-sided bounds of the principal (smallest) eigenvalue of symmetric linear
elliptic operators. The standard Galerkin method for solution of eigenproblems is
efficient and its convergence and other properties are well analysed [5, 6, 11]. It is also
well known for providing upper bounds on eigenvalues. However, in many applications
a reliable lower bound of the smallest eigenvalue is the key piece of information and,
unfortunately, the Galerkin method cannot provide it.

The question of lower bounds on the smallest eigenvalue has already been studied
for several decades. For example see [31], where the second order elliptic eigenvalue
problems with Dirichlet boundary conditions are considered. Another technique that
gives the lower bounds not only for the first eigenvalue is the method of intermediate
problems. It is based on finding a base problem and subsequently introducing inter-
mediate problems that give lower bounds for eigenvalues of the original problem and
at the same time can be resolved explicitly, see for example [8, 9, 41]. A survey of
this technique can be found in [16].

Nonconforming methods have been used for computing lower bounds on eigen-
values, see for example [4, 27, 29, 32, 42]. However, these lower bounds are valid
asymptotically only and hence these methods do not guarantee that the computed
approximation is really below the exact value. Recently, sufficient conditions for pro-
ducing lower bounds for eigenvalues of symmetric elliptic operators by nonconforming
methods have been provided in [19]. The described technique is based on satisfying
the saturation assumption and on the condition saying that the local approximation
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the support of T. Vejchodský by RVO 67985840 are gratefully acknowledged.
†Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University
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property of the underlying finite element space have to be better than its global conti-
nuity property. It is proved that the second condition is met by most commonly used
nonconforming methods such as the Wilson element, linear nonconforming Crouzeix–
Raviart element, the enriched nonconforming rotated Q1 element, the Morley element,
the Adini element, and the Morley–Wang–Xu element. The saturation assumption
is proved for the Morley–Wang–Xu element, the enriched Crouzeix–Raviart element,
and the Wilson element. Furthermore, new nonconforming methods satisfying these
properties are proposed. However, no numerical experiments are presented.

Further, let us point out a recent result [28], where two-sided a priori bounds for
the discretization error of eigenvectors are given.

The method of a priori-a posteriori inequalities that can be used for computation
of lower bounds on eigenvalues was described and published in [22, 23, 35]. However,
in these original publications C2-continuous test and trial functions have been used in
order to compute the actual lower bound. These functions are difficult to work with
and therefore, we couple the original method of a priori-a posteriori inequalities with
the complementarity technique, where a certain flux function has to be reconstructed,
see, e.g., [2, 14, 18, 33, 38, 40]. This flux reconstruction can be done in many ways. We
choose the most straightforward approach that can be handled by standard Raviart–
Thomas–Nédélec finite element method.

Moreover, we generalize the original method of a priori-a posteriori inequalities
to the case of a compact operator between a pair of Hilbert spaces. This generaliza-
tion is especially useful for computing two-sided bounds of the optimal constant in
Friedrichs’, Poincaré, trace, and similar inequalities. It is based on the fact that the
optimal constant in these inequalities is inversely proportional to the square root of the
smallest eigenvalue of the corresponding symmetric linear elliptic partial differential
operator.

Further, the generalization we have made enables to set up an abstract framework
in the Hilbert space setting. The abstract results then easily apply to symmetric linear
elliptic partial differential operators and consequently to the optimal constant in the
inequalities of Friedrichs’–Poincaré type. Furthermore, as a byproduct of the abstract
setting, we obtain a simple proof of the validity of an abstract inequality of Friedrichs’–
Poincaré type in the Hilbert space setting. The particular choices of the pair of Hilbert
spaces, corresponding scalar products, and the compact operator then naturally yield
the validity of Friedrichs’, Poincaré, trace, Korn’s and other inequalities.

The main motivation for our interest in two-sided bounds of the constants in
Friedrichs’, Poincaré, trace, and similar inequalities stems from the need of these
bounds in a posteriori error estimation for numerical solutions of partial differential
equations. In particular, the existing guaranteed upper bounds on the energy norm of
the error utilize a kind of complementarity technique, see, e.g., [2, 12, 20, 33, 38, 40].
Estimates of this kind contain constants from Friedrichs’, Poincaré, trace, and similar
inequalities. Optimal values of these constants are often unknown and therefore suit-
able approximations have to be used in the error estimates. These approximations
have to provide upper bounds on these constants in order to guarantee that the total
error estimator is an upper bound on the error. Moreover, they have to be accurate
due to the accuracy and efficiency of the error estimates.

The method presented in this paper provides accurate upper bounds on these
constants. In addition, this method naturally considers the dependence of the op-
timal constants on the equation coefficients and on the boundary conditions. This
dependence can be strong [39] and its capturing might be crucial for accuracy and
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robustness of a posteriori error bounds.
The rest of the paper is organized as follows. Section 2 introduces a general vari-

ational eigenvalue problem in the Hilbert space setting. It uses the spectral theory
of compact operators to prove several properties of this eigenvalue problem including
the existence of the principal eigenvalue. In Section 3 we naturally prove the abstract
inequality of Friedrichs’–Poincaré type and show the relation between the optimal con-
stant and the principal eigenvalue. Further, we briefly describe the Galerkin method
that yields an upper bound on the principal eigenvalue and concentrate on the method
of a priori-a posteriori inequalities and on an abstract complementarity result leading
to a lower bound on the principal eigenvalue. Sections 4–6 apply the abstract results
to the case of Friedrichs’, Poincaré, and trace inequality and fully computable two-
sided bounds on the optimal constants in these inequalities are obtained. Presented
numerical experiments illustrate accuracy of the method and dependence of the op-
timal constants on a nonhomogeneous diffusion parameter. Finally, Section 7 draws
the conclusions.

2. Variational eigenvalue problem in the Hilbert space setting. Let V
and H be two real Hilbert spaces with scalar products (·, ·)V and (·, ·)H , respectively.
The norms induced by these scalar products are denoted by ‖ ·‖V and ‖ ·‖H . Further,
let γ : V → H be a continuous, linear, and compact operator. The center of our
interest is the following eigenvalue problem. Find λi ∈ R, ui ∈ V , ui 6= 0 such that

(ui, v)V = λi(γui, γv)H ∀v ∈ V. (2.1)

First, let us show that eigenvalues λi of (2.1) are positive.
Lemma 2.1. If ui ∈ V is an eigenvector corresponding to an eigenvalue λi of

(2.1) then γui 6= 0 and λi > 0.
Proof. Since ui 6= 0, we have by (2.1) that 0 6= ‖ui‖2V = λi‖γui‖2H . Thus, γui 6= 0

and λi has to be positive.
Below we show that eigenvalues λi and eigenvectors ui of (2.1) correspond to

eigenvalues and eigenvectors of a compact operator, respectively. Consequently, these
eigenvalues form a countable sequence that can be ordered as λ1 ≤ λ2 ≤ · · · . To show
this correspondence, we define a solution operator S : H → V . If f ∈ H is arbitrary
then the mapping v 7→ (f, γv)H is a continuous linear form on V and, hence, the Riesz
representation theorem yields existence of a unique element Sf ∈ V such that

(Sf, v)V = (f, γv)H ∀v ∈ V. (2.2)

Consequently, the solution operator S is linear and continuous.
The composition of operators S and γ is a linear, continuous, and compact oper-

ator Sγ : V → V , see [34, Theorem 4.18 (f)]. In addition, this operator is selfadjoint,
because definition (2.2) yields

(Sγu, v)V = (γu, γv)H = (γv, γu)H = (Sγv, u)V = (u, Sγv)V . (2.3)

Therefore, we can use the Hilbert–Schmidt spectral theorem for Sγ, see [17, Theo-
rem 4, Chapter II, Section 3] and obtain that V can be decomposed into a direct sum
of two subspaces

V =M⊕ ker(Sγ), (2.4)

where ker(Sγ) = {v ∈ V : Sγv = 0} is the kernel of Sγ and M is generated by all
eigenvectors of the operator Sγ corresponding to nonzero eigenvalues. Let us recall
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that ui ∈ V , ui 6= 0 is an eigenvector of Sγ corresponding to an eigenvalue µi ∈ R if

Sγui = µiui. (2.5)

Furthermore, the Hilbert–Schmidt spectral theorem implies that the system u1, u2, . . .
of eigenvectors corresponding to nonzero eigenvalues of (2.5) is countable and orthog-
onal in V . A simple consequence of (2.2) and (2.5) is the orthogonality of images
γui, i = 1, 2, . . . in H. In this paper we consider the following normalization of these
eigenvectors:

(γui, γuj)H = δij ∀i, j = 1, 2, . . . , (2.6)

where δij stands for the Kronecker’s delta.
Now, let us observe that eigenproblems (2.1) and (2.5) correspond to each other

and, therefore, the spectral properties of the compact operator Sγ translate to the
properties of the eigenproblem (2.1).

Lemma 2.2. Considering the above setting, the following statements hold true.
1. Number λi ∈ R is an eigenvalue corresponding to the eigenvector ui ∈ V of

(2.1) if and only if µi = 1/λi is a nonzero eigenvalue corresponding to the
eigenvector ui of the operator Sγ, see (2.5).

2. The number of eigenvalues λi of (2.1) such that λi ≤ M is finite for any
M > 0.

3. The value λ1 = inf
u∈V,u6=0

‖u‖2V /‖γu‖2H is the smallest eigenvalue of (2.1).

Proof. 1. Definition (2.2) yields identity (γui, γv)H = (Sγui, v)V for all v ∈
V . Hence, the equality (2.1) can be rewritten as (ui, v)V = λi(Sγui, v)V , which is
equivalent to (2.5) with µi = 1/λi provided that λi 6= 0 and µi 6= 0. Since Lemma 2.1
guarantees λi > 0 for all i = 1, 2, . . . , the only condition is µi 6= 0.

2. If we denote the spectrum of Sγ by σ(Sγ) then the compactness of Sγ implies
that the set [ε,∞) ∩ σ(Sγ) is finite for any ε > 0, see [34, Theorem 4.24 (b)]. The
statement follows immediately from the fact that λi = 1/µi for µi 6= 0.

3. Since Sγ is selfadjoint, see (2.3), the Courant–Fischer–Weyl min-max principle,
see, e.g., [36], implies that

µ1 = sup{(Sγv, v)V : ‖v‖V = 1} = sup
v∈V,v 6=0

(Sγv, v)V
‖v‖2V

= sup
v∈V,v 6=0

‖γv‖2H
‖v‖2V

is finite and it is the largest eigenvalue of the operator Sγ. Consequently,

λ1 = µ−1
1 =

(
sup

v∈V,v 6=0

‖γv‖2H
‖v‖2V

)−1

= inf
v∈V,v 6=0

‖v‖2V
‖γv‖2H

(2.7)

is the smallest eigenvalue of problem (2.1).

3. Abstract inequality of Friedrichs’–Poincaré type.

3.1. The proof of the abstract inequality. Properties of the eigenproblem
(2.1) can be utilized in a simple way to derive an abstract inequality of Friedrichs’–
Poincaré type. The Hilbert space versions of the particular Friedrichs’, Poincaré,
trace, Korn’s and similar inequalities easily follow from this abstract result. For
examples see Sections 4–6.
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Theorem 3.1 (Abstract inequality). Let γ : V → H be a continuous, linear, and
compact operator between Hilbert spaces V and H. Let λ1 be the smallest eigenvalue
of the problem (2.1). Then

‖γv‖H ≤ Cγ‖v‖V ∀v ∈ V (3.1)

with Cγ = λ
−1/2
1 . Moreover, this constant is optimal in the sense that it is the smallest

possible constant such that (3.1) holds for all v ∈ V .
Proof. The validity of the abstract inequality follows immediately from (2.7):

‖γv‖2H ≤ λ−1
1 ‖v‖2V ∀v ∈ V.

This inequality holds as the equality for v = u1 and thus, the constant Cγ = λ
−1/2
1 is

optimal.

3.2. Upper bound on the smallest eigenvalue. The upper bound on λ1 can
be computed by the standard Galerkin method, which is both accurate and efficient
[5, 6, 11]. This method is based on the projection of the eigenproblem (2.1) into a
finite dimensional subspace V h ⊂ V . We seek eigenvectors uhi ∈ V h, uhi 6= 0, and
eigenvalues λhi such that

(uhi , v
h)V = λhi (γuhi , γv

h)H ∀vh ∈ V h. (3.2)

Let {ϕj}j=1,...,N be a basis of the space V h. Then, we can formulate problem (3.2)
equivalently as a generalized eigenvalue problem

Ayi = λhiMyi

for matrices A and M with entries

Ajk = (ϕk, ϕj)V and Mjk = (γϕk, γϕj)H , j, k = 1, 2, . . . , N.

The eigenvectors yi ∈ RN and uhi ∈ V h are linked by the relation uhi =
∑N
j=1 yi,jϕj .

The generalized matrix eigenvalue problem can be solved by efficient methods of
numerical linear algebra [7].

The Galerkin method for eigenvalue problems is very well understood. The con-
vergence and the speed of convergence of this method is established for example in
[5, 6, 11]. It is well known [11] that the Galerkin method approximates the exact
eigenvalues from above, hence

λi ≤ λhi , ∀i = 1, 2, . . . .

In particular, the upper bound on the smallest eigenvalue λ1 and the corresponding
lower bound on the optimal constant Cγ read

λ1 ≤ λh1 and (λh1 )−1/2 ≤ Cγ . (3.3)

3.3. Lower bound on the smallest eigenvalue. In this part we concentrate
on a computable lower bound on the smallest eigenvalue λ1 of the problem (2.1).
First, we formulate an auxiliary result, which states that the images γui, i = 1, 2, . . .
of the orthogonal system of eigenvectors ui satisfy the Parseval’s identity.
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Lemma 3.2. Let ui, i = 1, 2, . . . , be the above specified orthogonal system of
eigenvectors of the operator Sγ corresponding to nonzero eigenvalues. Let these eigen-
vectors be normalized as in (2.6). Let u∗ ∈ V be arbitrary. Then

‖γu∗‖2H =

∞∑
i=1

|(γu∗, γui)H |2.

Proof. Due to the decomposition (2.4), there exist unique components uM∗ ∈
M and u0

∗ ∈ ker(Sγ) such that u∗ = uM∗ + u0
∗. Since Sγu0

∗ = 0, we have 0 =
(Sγu0

∗, u
0
∗)V = (γu0

∗, γu
0
∗)H by (2.2) and hence γu0

∗ = 0. Consequently, γu∗ = γuM∗ .
System γui, i = 1, 2, . . . , forms an orthonormal basis in γM. Thus, we can use

the standard Parseval’s identity in γM [43, Theorem 2, Chapter III, Section 4] to
obtain

‖γu∗‖2H = ‖γuM∗ ‖2H =

∞∑
i=1

|(γuM∗ , γui)H |2 =

∞∑
i=1

|(γu∗, γui)H |2.

The derivation of the lower bound on λ1 is based on the method of a priori-a
posteriori inequalities. This method relies on an abstract theorem proved in [22]. We
formulate this theorem in the setting of this paper and for the readers’ convenience
we present its brief proof. Notice that in contrast to [22], Theorem 3.3 operates with
a pair of Hilbert spaces and with a compact operator between them.

Theorem 3.3. Let γ : V → H be a continuous, linear, and compact operator
between Hilbert spaces V and H. Let u∗ ∈ V and λ∗ ∈ R be arbitrary. Let λi,
i = 1, 2, . . . , be eigenvalues of (2.1). Let us consider w ∈ V such that

(w, v)V = (u∗, v)V − λ∗(γu∗, γv)H ∀v ∈ V. (3.4)

If γu∗ 6= 0 then

min
i

∣∣∣∣λi − λ∗λi

∣∣∣∣ ≤ ‖γw‖H‖γu∗‖H
. (3.5)

Proof. Using Lemma 3.2 and definitions (2.1) and (3.4), we obtain

min
i

∣∣∣∣λi − λ∗λi

∣∣∣∣2 ‖γu∗‖2H ≤ ∞∑
i=1

∣∣∣∣λi − λ∗λi
(γu∗, γui)H

∣∣∣∣2
=

∞∑
i=1

∣∣∣∣ (ui, u∗)Vλi
− (u∗ − w, ui)V

λi

∣∣∣∣2
=

∞∑
i=1

∣∣∣∣ (w, ui)Vλi

∣∣∣∣2 =

∞∑
i=1

|(γw, γui)H |2 = ‖γw‖2H .

In order to obtain a computable lower bound on λ1, we combine the estimate
(3.5) with a complementarity technique, see Sections 4–6. The bounds derived by the
complementarity technique depend on the particular choice of spaces V and H, but
they have a common general structure. The following theorem utilizes this general
structure and presents an abstract lower bound on λ1.



TWO-SIDED BOUNDS FOR EIGENVALUES 7

Theorem 3.4 (Abstract complementarity estimate). Let u∗ ∈ V , λ∗ ∈ R be
arbitrary and let w ∈ V satisfy (3.4). Let λ1 be the smallest eigenvalue of (2.1) and
let the relatively closest eigenvalue to λ∗ be λ1, i.e. let∣∣∣∣λ1 − λ∗

λ1

∣∣∣∣ ≤ ∣∣∣∣λi − λ∗λi

∣∣∣∣ ∀i = 1, 2, . . . . (3.6)

Further, let A ≥ 0 and B ≥ 0 be such that

B < λ∗‖γu∗‖H (3.7)

and

‖w‖V ≤ A+ CγB, (3.8)

where Cγ is the optimal constant from (3.1). Then

X2
2 ≤ λ1 and Cγ ≤ 1/X2, (3.9)

where

X2 =
1

2

(
−α+

√
α2 + 4(λ∗ − β)

)
, α =

A

‖γu∗‖H
, and β =

B

‖γu∗‖H
. (3.10)

Proof. By using the fact that Cγ = λ
−1/2
1 , the estimate (3.5), assumptions of the

theorem, and the inequality (3.1), we obtain the validity of the following relation

λ∗C
2
γ − 1 =

λ∗ − λ1

λ1
≤ min

i

∣∣∣∣λi − λ∗λi

∣∣∣∣ ≤ ‖γw‖H‖γu∗‖H
≤ Cγ

‖w‖V
‖γu∗‖H

≤ Cγα+ C2
γβ.

This is equivalent to the quadratic inequality

0 ≤ C2
γ(β − λ∗) + Cγα+ 1.

By solving it for Cγ under the assumption (3.7), we conclude that this inequality is
not satisfied for Cγ > 1/X2. Thus, Cγ has to be at most 1/X2.

The particular complementarity estimates have the form (3.8), where the numbers
A and B are obtained by an approximate minimization procedure, see Sections 4–
6. The better approximation of the exact minimizer we compute the tighter bound
(3.8) and consequently (3.9) we obtain. The exact minimizer yields equality in (3.8)
and B = 0. Therefore, the assumption (3.7) can always be satisfied by computing
sufficiently accurate minimizer.

The assumption (3.6) is crucial and cannot be guaranteed unless lower bounds
on λ1 and λ2 are known. However, since the Galerkin method is known to converge
[5, 6, 11] with a known speed, very accurate approximations of λ1 and λ2 can be
computed. If these approximations are well separated, they can be used in (3.6) to
verify its validity with a good confidence.

In order to increase this confidence, we propose a test. This test is based on the
following observation. Let λlow

1 ≤ λ1 ≤ λ∗ ≤ λlow
2 ≤ λ2 ≤ λup

2 , D1 = (λ∗ − λlow
1 )/λlow

1

and D2 = (λlow
2 − λ∗)/λup

2 . Then inequality D1 ≤ D2 implies the assumption (3.6).
Indeed, if all these inequalities are satisfied then, clearly, |(λ1 − λ∗)/λ1| ≤ D1 ≤ D2 ≤
|(λ2 − λ∗)/λ2| ≤ |(λi − λ∗)/λi| for all i = 2, 3, . . . and (3.6) holds true.
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Thus, if we knew guaranteed lower bounds λlow
1 and λlow

2 on the first eigenvalue
λ1 and the second eigenvalue λ2 of (2.1), respectively, then we could use the Galerkin
method to compute upper bounds λ∗ and λup

2 , check if λ∗ ≤ λlow
2 and the inequality

D1 ≤ D2 would then guarantee the validity of (3.6). However, the guaranteed lower
bounds λlow

1 and λlow
2 are not available.

Therefore, in practice we propose to set λlow
1 = X2

2 , see (3.9), λlow
2 = (λ∗+λup

2 )/2,
and compute D1 and D2 with these values. This yields the following diagnostics
indicating the validity of the assumption (3.6). If D2 ≤ 0 or D1 > D2 then it is
highly probable that some of the assumptions is not satisfied and the results should
not be trusted. On the other hand if D2 > 0 and D1 is several times smaller than D2

then we can have a good confidence in the validity of (3.6). This diagnostics performs
very well in all numerical experiments presented below. At the early stages of the
computations the approximations are not very precise and the diagnostics showed
that the results are untrustworthy. However, at the final stages of the computations
the value D1 is at least five times smaller than D2 providing good confidence in the
validity of (3.6).

4. Application to Friedrichs’ inequality. In this section we apply the above
general theory to the case of Friedrichs’ inequality. We will consider the variant of
Friedrichs’ inequality that is suitable for general symmetric second-order linear elliptic
differential operators. First, we introduce differential operators of this general type,
see Subsection 4.1, and provide the corresponding Friedrichs’ inequality, see Subsec-
tion 4.2. In Subsection 4.3 we derive two-sided bounds on the optimal constant in
Friedrichs’ inequality that are based on the general theory and on the complemen-
tarity technique. In Subsection 4.4 certain computational issues are discussed and
finally, in Subsection 4.5 we present numerical results.

4.1. A general symmetric second-order linear elliptic operator. Let us
consider a domain Ω ⊂ Rd with Lipschitz boundary ∂Ω. Let ∂Ω consist of two
relatively open parts ΓD and ΓN such that ∂Ω = ΓD∪ΓN and ΓD∩ΓN = ∅. Note that
we admit the case where either ΓD or ΓN is empty. Further, let us consider a matrix
function A ∈ [L∞(Ω)]d×d, coefficients c ∈ L∞(Ω), and α ∈ L∞(ΓN). Matrix A is
assumed to be symmetric and uniformly positive definite, i.e. there exists a constant
C > 0 such that

ξTA(x)ξ ≥ C|ξ|2 ∀ξ ∈ Rd and for a.a. x ∈ Ω,

where | · | stands for the Euclidean norm. Coefficients c and α are considered to be
nonnegative.

Further, we introduce a subspace

H1
ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD in the sense of traces}

of the Sobolev space H1(Ω) of L2(Ω) functions with square integrable distributional
derivatives. In what follows, we use the notation (·, ·) and (·, ·)L2(ΓN) for the L2(Ω)
and L2(ΓN) scalar products, respectively. Using this notation, we define a bilinear
form

a(u, v) = (A∇u,∇v) + (cu, v) + (αu, v)L2(ΓN). (4.1)

4.2. Friedrichs’ inequality and the optimal constant. The bilinear form (4.1)
is a scalar product in H1

ΓD
(Ω) under the conditions presented in the following lemma.

Its proof follows for instance from [21, Theorem 5.11.2].
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Lemma 4.1. The bilinear form defined in (4.1) is a scalar product in H1
ΓD

(Ω)
provided that at least one of the following conditions is satisfied:

(a) measd−1 ΓD > 0,
(b) there exists a nonempty ball B ⊂ Ω such that c > 0 on B,
(c) there exists a subset Γα ⊂ ΓN such that measd−1 Γα > 0 and α > 0 on Γα.
In this section we assume that at least one of conditions (a)–(c) of Lemma 4.1

is satisfied, hence, that a(·, ·) is a scalar product in H1
ΓD

(Ω). The equivalence of the
norm induced by a(·, ·) and the standard H1 norm yields completeness and therefore
the space H1

ΓD
(Ω) equipped with the scalar product a(·, ·) is a Hilbert space. This

enables to use the theory from Section 2. We set

V = H1
ΓD

(Ω), (u, v)V = a(u, v), H = L2(Ω), (u, v)H = (u, v), (4.2)

and we define γ : H1
ΓD

(Ω)→ L2(Ω) as the identity operator, which is compact due to
the Rellich theorem [1, Theorem 6.3]. With this setting and with the notation ‖ · ‖a
for the norm induced by a(·, ·), we obtain the validity of Friedrichs’ inequality.

Theorem 4.2. Let the bilinear form a(·, ·) given by (4.1) form a scalar product
in H1

ΓD
(Ω). Then there exists a constant CF > 0 such that

‖v‖L2(Ω) ≤ CF‖v‖a ∀v ∈ H1
ΓD

(Ω). (4.3)

Moreover, the optimal value of this constant is CF = λ
−1/2
1 , where λ1 is the smallest

eigenvalue of the following problem: find ui ∈ H1
ΓD

(Ω), ui 6= 0, and λi ∈ R such that

a(ui, v) = λi(ui, v) ∀v ∈ H1
ΓD

(Ω). (4.4)

Proof. Lemma 4.1 together with the equivalence of the norms ‖·‖a and ‖·‖H1(Ω)

guarantees that H1
ΓD

(Ω) with the scalar product a(·, ·) given by (4.1) is a Hilbert
space. The statement then follows immediately from Theorem 3.1.

Let us note that the most common version of Friedrichs’ inequality

‖v‖L2(Ω) ≤ CF‖∇v‖L2(Ω) ∀v ∈ H1
0 (Ω)

follows from (4.3) with ΓD = ∂Ω, ΓN = ∅, A being identity matrix, c = 0, and α = 0.
As usual, we denote by H1

0 (Ω) the space H1
ΓD

(Ω) with ΓD = ∂Ω.

4.3. Two-sided bounds on Friedrichs’ constant. A lower bound on Friedrichs’
constant CF can be efficiently computed by the Galerkin method. We use the setting
(4.2) and proceed as it is described in Section 3.2. The upper bound on CF is obtained
by the complementarity technique presented in the following theorem.

Let H(div,Ω) stands for the space of d-dimensional vector fields with square
integrable weak divergences and let n be the unit outward-facing normal vector to
the boundary ∂Ω. Further, let ‖q‖2A = (Aq, q) be a norm in [L2(Ω)]d induced by the
matrix A.

Theorem 4.3. Let V = H1
ΓD

(Ω), u∗ ∈ V and λ∗ ∈ R. Let the bilinear form
a(·, ·) given by (4.1) form a scalar product in V . Let w ∈ V satisfy

a(w, v) = a(u∗, v)− λ∗(u∗, v) ∀v ∈ V, (4.5)

where recall that (·, ·) stands for the L2(Ω) scalar product. Then

‖w‖a ≤ ‖∇u∗ −A−1q‖A + CF‖λ∗u∗ − cu∗ + div q‖L2(Ω) ∀q ∈W, (4.6)
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where W = {q ∈ H(div,Ω) : q · n = −αu∗ on ΓN}.
Proof. Let us fix any q ∈W , test (4.5) by v = w and use the divergence theorem

to express

‖w‖2a = (A∇u∗,∇w) + (cu∗, w) + (αu∗, w)L2(ΓN) − λ∗(u∗, w)− (q,∇w)− (div q, w)

+ (q · n, w)L2(ΓN) =
(
A(∇u∗ −A−1q),∇w

)
− (λ∗u∗ − cu∗ + div q, w).

The Cauchy–Schwarz inequality and Friedrichs’ inequality (4.3) yield

‖w‖2a ≤ ‖∇u∗ −A−1q‖A‖∇w‖A + CF‖λ∗u∗ − cu∗ + div q‖L2(Ω)‖w‖a.

Inequality ‖∇w‖A ≤ ‖w‖a finishes the proof.
The estimate (4.6) is of type (3.8) with

A = ‖∇u∗ −A−1q‖A, B = ‖λ∗u∗ − cu∗ + div q‖L2(Ω), (4.7)

and Cγ = CF. The numbers A and B can be readily computed as soon as suitable
approximations λ∗, u∗, and a suitable vector field q ∈W are in hand. Estimate (3.9)
then gives a guaranteed upper bound on Friedrichs’ constant CF.

The crucial part is the computation of suitable approximations λ∗ and u∗ of the
smallest eigenvalue λ1 of problem (4.4) and its corresponding eigenvector u1 such that
the inequality (3.6) is satisfied. Equally crucial is a suitable choice of the vector field
q ∈ W in such a way that estimate (4.6) provides a tight upper bound on ‖w‖a. A
possible approach and practical details about these issues are provided in the next
section.

4.4. Flux reconstruction. In order to compute two-sided bounds on Friedrichs’
constant, we proceed as follows. First, we use the Galerkin method, see Section 3.2, to
compute an approximation λh1 and uh1 of the eigenpair λ1 and u1 of (4.4), respectively.
We set λ∗ = λh1 , u∗ = uh1 , compute a suitable vector field q ∈ W , and evaluate the
numbers A and B by (4.7). The estimate (3.9) then provides the upper bound and
the Galerkin approximation λh1 yields the lower bound (3.3) on Friedrichs’ constant
CF.

The key point is the computation of the suitable vector field q. For simplicity, we
choose a straightforward approach of approximate minimization of the upper bound
(4.6) with respect to a suitable subset of W . First, we exploit the affine structure of
W . Let us choose an arbitrary but fixed q ∈ W . The practical construction of this
q is a geometrical issue depending on Ω and coefficient α. It suffices to construct a
vector field q1 ∈ H(div,Ω) such that q1 · n = 1 on ΓN and a function α ∈ H1(Ω)
such that α = α on ΓN. Let us note that usually Raviart–Thomas–Nédélec space
is considered for construction of vector fields in H(div,Ω). Then we can simply set
q = −αu∗q1. This q obviously satisfies the boundary condition q ·n = −αu∗ on ΓN.
To guarantee q ∈ H(div,Ω) we need an extra smoothness of q1 and α. Since u∗ = uh1
is piecewise polynomial and thus in W 1,∞(Ω), it suffices to have q1 ∈ [H1(Ω)]d and
α ∈W 1,∞(Ω), or in the opposite way q1 ∈ [W 1,∞(Ω)]d and α ∈ H1(Ω).

In any case, having a q ∈W , we can express the affine space W as W = q+W0,
where

W0 = {q ∈ H(div,Ω) : q · n = 0 on ΓN}

is already a linear space. The idea is to minimize the upper bound (4.6) over the
set q + Wh

0 , where Wh
0 ⊂ W0 is a finite dimensional subspace. However, the right-

hand side of (4.6) is a nonlinear functional in q and, thus, in order to simplify the
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computation, we use the idea from [33] and approximate it by a quadratic functional.
We rewrite inequality (4.6) using notation (4.7) and Young’s inequality as

‖w‖2a ≤ (A+ CFB)2 ≤ (1 + %−1)A2 + (1 + %)C2
FB

2 ∀% > 0. (4.8)

The right-hand side of this inequality is already a quadratic functional for a fixed %,
but the exact value of CF is unknown in general. However, it is sufficient to find an
approximate minimizer only. Therefore we approximate CF by the available value
(λh1 )−1/2. This leads us to the minimization of

(1 + %−1)‖∇uh1 −A−1q‖2A + (1 + %)(λh1 )−1‖λh1uh1 − cuh1 + div q‖2L2(Ω) (4.9)

over the affine set q +Wh
0 with a fixed value of % > 0. This minimization problem is

equivalent to seeking qh0 ∈Wh
0 satisfying

B(qh0 ,w
h
0 ) = F(wh

0 )− B(q,wh
0 ) ∀wh

0 ∈Wh
0 , (4.10)

where

B(q,w) = (div q,divw) +
λh1
%

(A−1q,w),

F(w) =
λh1
%

(∇uh1 ,w)− (λh1u
h
1 − cuh1 ,divw).

The computed vector field qh = q + qh0 ∈ W is then used in (4.7) to evaluate A and
B and consequently the two-sided bounds C low

F ≤ CF ≤ Cup
F , where

C low
F = (λh1 )−1/2 and Cup

F = 1/X2, (4.11)

X2 is given by (3.10) with γu∗ = uh1 , see (3.3) and (3.9).
Note that problem (4.10) can be naturally approached by standard Raviart–

Thomas–Nédélec finite elements [13]. Further we note that a particular value of the
constant % can influence the accuracy of the final bound. However, this influence was
minor in all cases we numerically tested and the natural value % = 1 yielded accurate
results. If necessary a simultaneous minimization of (4.9) with respect to both % > 0
and q ∈ q +Wh

0 can be performed.

4.5. Numerical experiment. In order to illustrate the capabilities of the above
described approach for computation of two-sided bounds on Friedrichs’ constant, we
present numerical results showing the dependence of Friedrichs’ constant on piece-
wise constant values of A. We consider the general setting from Section 4.1 and in
particular we set Ω = (−1, 1)2, ΓN = {(x1, x2) ∈ R2 : x1 = 1 and − 1 < x2 < 1},
ΓD = ∂Ω \ ΓN, c = 0, and α = 0. The matrix A is piecewise constant, defined as
A(x1, x2) = I for x1x2 ≤ 0 and A(x1, x2) = ãI for x1x2 > 0, where I ∈ Rd×d stands
for the identity matrix and the value of the constant ã is specified below.

We employ the standard piecewise linear triangular finite elements to discretize
eigenvalue problem (4.4). Thus, we consider a conforming triangular mesh Th and
seek the Galerkin solution of problem (4.4) in space

V h = {vh ∈ H1
ΓD

(Ω) : vh|K ∈ P 1(K), ∀K ∈ Th}, (4.12)

where P 1(K) denotes the space of affine functions on K, see Section 3.2.
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We point out that the discontinuity of A causes a strong singularity of the eigen-
vectors at the origin. Therefore, we employ a standard adaptive algorithm, see Algo-
rithm 1, and construct adaptively refined meshes in order to approximate the singu-
larity well. We use the localized version of (4.9) to define the error indicators

η2
K = (1 + %−1)‖∇uh1 −A−1q‖2A,K + (1 + %)(λh1 )−1‖λh1uh1 − cuh1 + div q‖2L2(K) (4.13)

for all K ∈ Th, where ‖w‖2A,K = (Aw,w)L2(K).

This error indicator is a natural choice, because we compute both uh1 and an
approximation of q on the same mesh and hence we need an indicator that combines
errors of both these solutions. Quantities (4.13) do it naturally. Indeed, if uh1 is not
accurate then its residual w is large and ηK show high values, because the sum of
their squares approximates the upper bound (4.8). Similarly, if qh is far from the
exact minimizer q then ηK exhibit high values as well. In addition, quantities ηK are
readily available, because both norms in (4.13) have to be computed anyway to get
the upper bound Cup

F .
We note that all numerical experiments in this paper use own Matlab finite ele-

ment implementation. Meshes are refined by routines of the Matlab PDEtoolbox and
generalized eigenvalue problems for resulting sparse matrices are solved by the Matlab
routine eigs that is based on the ARPACK package [25].

Adaptive algorithm
Step 1 Construct an initial mesh Th.

Step 2 Use the space (4.12) and compute Galerkin approximations λh1 ∈ R and
uh1 ∈ V h of the smallest eigenvalue and the corresponding eigenvector of
problem (4.4), see (3.2).

Step 3 Use the finite element space Wh
0 = {wh ∈W0 : wh ∈ [P 2(K)]2, ∀K ∈ Th}

and solve (4.10).

Step 4 Evaluate two-sided bounds (4.11). Set Cavg
F = (Cup

F + C low
F )/2,

EREL = (Cup
F − C low

F )/Cavg
F , and stop the algorithm as soon as

EREL ≤ ETOL.

Step 5 Compute error indicators (4.13) for all K ∈ Th and sort them in descending
order: ηK1

≥ ηK2
≥ · · · ≥ ηKNel

, where Nel is the number of elements in Th.

Step 6 (Bulk criterion.) Find the smallest n such that θ2
∑Nel

i=1 η
2
Ki
≤
∑n
i=1 η

2
Ki
,

where θ ∈ (0, 1) is a parameter.

Step 7 Construct a new mesh Th by refining elements K1, K2, . . . , Kn.

Step 8 Go to Step 2.

Algorithm 1: Mesh adaptation algorithm for two-sided bounds on Friedrichs’
constant.

The unknown value of Friedrichs’ constant lies between bounds C low
F and Cup

F

computed in Step 4 of Algorithm 1. When Algorithm 1 stops, the relative error is
guaranteed to be at most the given tolerance ETOL.

In this particular numerical experiment we have chosen the initial mesh with eight
triangles as shown in Figure 4.1. The marking parameter in Step 6 and the tolerance
for the relative error in Step 4 were chosen as θ = 0.75 and ETOL = 0.01, respectively.
Further, we naturally set % = 1. We made an attempt to find an optimal value for %.
However, this decreases the relative error by a factor of magnitude 10−4–10−3 on a
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(−1,−1) (1,−1)

(1, 1)(−1, 1)

ΓD ΓN

ΓD

ΓD

Fig. 4.1. The initial mesh for the adaptive algorithm. The Dirichlet and Neumann parts of the
boundary are indicated as well as the piecewise constant matrix A: A = I in white elements and
A = ãI in gray elements.

ã C low
F Cup

F EREL NDOF

0.001 9.0086 9.0939 0.0094 4 832
0.01 2.8697 2.8971 0.0095 5 003
0.1 1.0035 1.0124 0.0088 7 866

1 0.5693 0.5743 0.0086 4 802
10 0.3173 0.3201 0.0088 7 866

100 0.2870 0.2897 0.0095 5 003
1000 0.2849 0.2876 0.0094 4 832

Table 4.1
Friedrichs’ constant. The lower bound Clow

F , upper bound Cup
F , relative error EREL, and the

number of degrees of freedom NDOF = dimV h for particular values of ã.

fixed mesh, which is below the target accuracy ETOL = 0.01. Therefore, we use the
natural value % = 1 that equilibrates both terms in (4.13). A similar statement can be
made in all subsequent numerical experiments. On the other hand, certain examples
might behave differently and optimization of % could be important.

The results for a series of values of ã are summarized in Table 4.1. For each
particular value of ã, we run the adaptive algorithm until the relative error drops
below ETOL = 0.01. This error level was reached in all cases using several thousands
of degrees of freedom. Notice the considerable dependence of the optimal value of
Friedrichs’ constant on ã. The values for ã = 0.001 and ã = 1000 differ more than
thirty times. Further notice that the exact value of Friedrichs’ constant for ã = 1 is
CF = 4/(π

√
5) ≈ 0.5694.

In order to illustrate the behavior of the adaptive process, we consider the case
ã = 0.001. The convergence of the bounds Cup

F and C low
F is presented in Figure 4.2

(left). The right panel of Figure 4.2 shows the convergence of the relative error EREL

together with the heuristic indicators D1 and D2 introduced at the end of Section 3.3.
The fact that D1 is several times smaller than D2 at the later stages of the adaptive
process indicates good confidence in the validity of assumption (3.6). In addition, two
adapted meshes are drawn in Figures 6.2–6.3 (left).

5. Application to the Poincaré inequality.
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Fig. 4.2. Friedrichs’ constant for ã = 0.001. Convergence of bounds Cup
F and Clow

F (left) and
of the relative error EREL and heuristic indicators D1 and D2 (right).

5.1. Poincaré inequality and the optimal constant. In this section we con-
sider the case when none of conditions (a)–(c) of Lemma 4.1 is satisfied. Therefore,
we assume the general symmetric second-order elliptic operator as described in Sec-
tion 4.1 with c = 0, α = 0, ΓD = ∅, and ΓN = ∂Ω. We apply the general theory of Sec-
tion 3 with V = H̃1(Ω) = {v ∈ H1(Ω) : (v, 1) = 0}, (u, v)V = a(u, v) = (A∇u,∇v),
H = L2(Ω), and (u, v)H = (u, v). It is an easy exercise to verify that a(·, ·) forms

a scalar product on H̃1(Ω) and that it induces a norm ‖ · ‖a equivalent to the stan-
dard H1-seminorm and H1-norm. The operator γ : V → H is set to be the identity
mapping I : H̃1(Ω)→ L2(Ω). This mapping is clearly compact, because the identity

mapping from H̃1(Ω) to H1(Ω) is linear and continuous and the identity mapping
from H1(Ω) to L2(Ω) is compact due to the Rellich theorem [1, Theorem 6.3]. This
setting enables to use the general conclusions of Theorem 3.1 and obtain the following
result.

Theorem 5.1. There exists a constant CP > 0 such that

‖v‖L2(Ω) ≤ CP‖v‖a ∀v ∈ H̃1(Ω). (5.1)

Moreover, the optimal value of this constant is CP = λ
−1/2
1 , where λ1 is the smallest

positive eigenvalue of the following problem: find ui ∈ H1(Ω), ui 6= 0, and λi ∈ R
such that

a(ui, v) = λi(ui, v) ∀v ∈ H1(Ω). (5.2)

Proof. The inequality (5.1) follows immediately from Theorem 3.1. This theo-

rem also implies that the optimal constant is CP = λ̃
−1/2
1 , where λ̃1 is the smallest

eigenvalue of the following problem: find ũi ∈ H̃1(Ω), ũi 6= 0, and λ̃i ∈ R such that

a(ũi, v) = λ̃i(ũi, v) ∀v ∈ H̃1(Ω). (5.3)

Notice that 0 < λ̃1 ≤ λ̃2 ≤ . . . . Similarly, the eigenvalues of (5.2) satisfy 0 = λ0 <
λ1 ≤ λ2 ≤ . . . and the zero eigenvalue corresponds to a constant eigenvector u0 = 1.
It can be easily shown that λ̃i = λi and ũi = ui for all i = 1, 2, . . . . Thus, the smallest
eigenvalue λ̃1 of (5.3) is equal to the smallest positive eigenvalue λ1 of (5.2) and the
proof is finished.
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Let us note that the Poincaré inequality (5.1) can be equivalently formulated as

‖v − ṽ‖L2(Ω) ≤ CP‖v‖a ∀v ∈ H1(Ω), ṽ = (v, 1)/|Ω|. (5.4)

The common version of the Poincaré inequality

‖v − ṽ‖L2(Ω) ≤ CP‖∇v‖L2(Ω) ∀v ∈ H1(Ω), ṽ = (v, 1)/|Ω|

then follows from (5.4), or equivalently from (5.1), with A being the identity matrix.

5.2. Two-sided bounds on the Poincaré constant. A lower bound on the
Poincaré constant CP can be computed in the standard way by the Galerkin method,
see Section 3.2. The only difference is that here we compute the approximation
λh1 of the second smallest (the smallest positive) eigenvalue of (5.2), because the
smallest eigenvalue is λ0 = 0. In order to compute the upper bound, we employ the
complementarity technique as follows.

Theorem 5.2. Let V = H̃1(Ω), u∗ ∈ V , and λ∗ ∈ R. Let w ∈ V satisfy

a(w, v) = a(u∗, v)− λ∗(u∗, v) ∀v ∈ V. (5.5)

Then

‖w‖a ≤ ‖∇u∗ −A−1q‖A + CP‖λ∗u∗ + div q‖L2(Ω) ∀q ∈W0, (5.6)

where W0 = {q ∈ H(div,Ω) : q · n = 0 on ∂Ω}.
Proof. By fixing arbitrary q ∈W0, testing (5.5) by v = w and using the divergence

theorem, we obtain

‖w‖2a = (A∇u∗,∇w)− λ∗(u∗, w)− (q,∇w)− (div q, w)

=
(
A(∇u∗ −A−1q),∇w

)
− (λ∗u∗ + div q, w).

The Cauchy–Schwarz inequality and Poincaré inequality (5.1) yield

‖w‖2a ≤ ‖∇u∗ −A−1q‖A‖∇w‖A + CP‖λ∗u∗ + div q‖L2(Ω)‖w‖a.

Since ‖∇w‖A = ‖w‖a, the proof is finished.
We observe that complementarity estimate (5.6) is of type (3.8) with

A = ‖∇u∗ −A−1q‖A, B = ‖λ∗u∗ + div q‖L2(Ω), (5.7)

and Cγ = CP. As soon as suitable approximations λ∗, u∗, and a suitable vector field
q ∈W0 are available, the numbers A and B can be computed and used in (3.9)–(3.10)
to obtain a guaranteed upper bound on the Poincaré constant CP.

A straightforward approach for computation of λ∗, u∗, and q was described in
Section 4.4 for the case of Friedrichs’ constant. It can be directly used also for the
Poincaré constant. It is even simpler, because c = 0, α = 0, and ΓN = ∂Ω. The only
difference is that approximations λh1 and uh1 of the second smallest (the first positive)
eigenvalue of (5.2) and its corresponding eigenvector, respectively, have to be used.
In particular, the approximation qh ∈W0 is computed using (4.10). This vector field
is then used in (5.7) to evaluate A and B and consequently the two-sided bounds
C low

P ≤ CP ≤ Cup
P , where

C low
P = (λh1 )−1/2 and Cup

P = 1/X2, (5.8)

X2 is given by (3.10) with γu∗ = uh1 , see also (3.3) and (3.9).
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ã C low
P Cup

P EREL NDOF

0.001 14.2390 14.3690 0.0091 3 400
0.01 4.5199 4.5623 0.0093 3 510
0.1 1.4849 1.4989 0.0094 4 382

1 0.6365 0.6424 0.0092 3 009
10 0.4696 0.4740 0.0094 4 382

100 0.4520 0.4562 0.0093 3 510
1000 0.4503 0.4544 0.0091 3 400

Table 5.1
Poincaré constant. The lower bound Clow

P , upper bound Cup
P , relative error EREL, and the

number of degrees of freedom NDOF = dimV h for particular values of ã.
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Fig. 5.1. Poincaré constant for ã = 0.001. Convergence of bounds Cup
P and Clow

P (left) and of
the relative error EREL and heuristic indicators D1 and D2 (right).

5.3. Numerical experiment. We consider the same setting as in Section 4.5.
The only difference is that in the case of Poincaré constant we assume ΓN = ∂Ω
and ΓD = ∅. We employ the adaptive algorithm as before (Algorithm 1) with clear
modifications. We use error indicators (4.13), where λh1 and uh1 are the Galerkin
approximations of the second smallest (the smallest positive) eigenvalue λ1 of (5.2)
and its corresponding eigenvector u1, respectively. The relative error in Step 4 of
Algorithm 1 is computed using two-sided bounds (5.8).

The obtained two-sided bounds on the Poincaré constant CP for a series of values
of ã are presented in Table 5.1. The guaranteed 0.01 relative error tolerance was
reached in all cases using several thousands degrees of freedom. As in the case of
Friedrichs’ constant, we observe considerable dependence of the Poincaré constant CP

on ã. Finally, we point out that the exact value of the Poincaré constant for ã = 1 is
CP = 2/π ≈ 0.6366.

The progress of the adaptive algorithm is illustrated for the case ã = 0.001 in
Figure 5.1 (left), where the convergence of bounds Cup

P and C low
P is shown. Figure 5.1

(right) presents the relative error EREL and heuristic indicators D1, D2, see the end
of Section 3.3. In later stages of the adaptive process the indicator D1 is considerably
smaller than D2 which indicates good confidence in the validity of assumption (3.6).
Two adapted meshes are drawn in Figures 6.2–6.3 (middle).

6. Application to the trace inequality.
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6.1. Trace inequality and the optimal constant. In order to apply the
general theory from Sections 2–3 to the case of the trace inequality, we consider the
same general symmetric second-order elliptic operator as in Section 4.1. In addition
we assume measd−1 ΓN > 0 and that at least one of conditions (a)–(c) of Lemma 4.1
is satisfied. The general theory is applied with V = H1

ΓD
(Ω), (u, v)V = a(u, v),

H = L2(ΓN), and (u, v)H = (u, v)L2(ΓN). The operator γ : V → H is the standard
trace operator. Its compactness and other properties are provided in [21, Theorem
6.10.5], see also [10]. The general result from Theorem 3.1 then translates as follows.

Theorem 6.1. Let the bilinear form a(·, ·) given by (4.1) form a scalar product
in H1

ΓD
(Ω). Then there exists a constant CT > 0 such that

‖v‖L2(ΓN) ≤ CT‖v‖a ∀v ∈ H1
ΓD

(Ω). (6.1)

Moreover, the optimal value of this constant is CT = λ
−1/2
1 , where λ1 is the smallest

eigenvalue of the following problem: find ui ∈ H1
ΓD

(Ω), ui 6= 0, and λi ∈ R such that

a(ui, v) = λi(ui, v)L2(ΓN) ∀v ∈ H1
ΓD

(Ω). (6.2)

Proof. The statement follows immediately from Lemma 4.1 and Theorem 3.1.
The common version of the trace inequality

‖v‖L2(∂Ω) ≤ CT‖v‖H1(Ω) ∀v ∈ H1(Ω)

then follows from (6.1) with ΓD = ∅, ΓN = ∂Ω, A being the identity matrix, c = 1,
and α = 0.

6.2. Two-sided bounds on the trace constant. As in the case of Friedrichs’
inequality, we compute the lower bound of the optimal value for the constant CT by
the Galerkin method, see Section 3.2. In order to compute an upper bound on CT we
employ the complementarity technique as follows.

Theorem 6.2. Let V = H1
ΓD

(Ω), u∗ ∈ V , and λ∗ ∈ R. Let the bilinear form
a(·, ·) given by (4.1) form a scalar product in V . Let w ∈ V satisfy

a(w, v) = a(u∗, v)− λ∗(u∗, v)L2(ΓN) ∀v ∈ V. (6.3)

Then, for any q ∈ H(div,Ω)

‖w‖a ≤ ‖∇u∗−A−1q‖A+CF‖cu∗−div q‖L2(Ω) +CT‖αu∗−λ∗u∗+q ·n‖L2(ΓN). (6.4)

Proof. Let us fix any q ∈ H(div,Ω), test (6.3) by v = w and use the divergence
theorem to express

‖w‖2a = (A∇u∗,∇w) + (cu∗, w) + (αu∗, w)L2(ΓN) − λ∗(u∗, w)L2(ΓN)

− (q,∇w)− (div q, w) + (q · n, w)L2(ΓN)

=
(
A(∇u∗ −A−1q),∇w

)
+ (cu∗ − div q, w) + (αu∗ − λ∗u∗ + q · n, w)L2(ΓN).

The Cauchy–Schwarz inequality, Friedrichs’ inequality (4.3), and trace inequality (6.1)
yield

‖w‖2a ≤ ‖∇u∗ −A−1q‖A‖∇w‖A + CF‖cu∗ − div q‖0‖w‖a
+ CT‖αu∗ − λ∗u∗ + q · n‖L2(ΓN)‖w‖a.
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The inequality ‖∇w‖A ≤ ‖w‖a finishes the proof.

As in the case of Friedrichs’ inequality, the bound (6.4) is of the type (3.8) with

A = ‖∇u∗−A−1q‖A+CF‖cu∗−div q‖L2(Ω), B = ‖αu∗−λ∗u∗+q ·n‖L2(ΓN) (6.5)

and Cγ = CT. Let us note that the complementarity estimate (6.4) is just one out
of several possibilities. This bound comes from [33] and contains Friedrichs’ constant
CF. Instead of its exact value an upper bound as computed in Section 4 can be used
here. However, there exist other variants of the complementarity technique that can
be used to obtain a bound on ‖w‖a avoiding the need of Friedrichs’ constant CF. See
for example [2, 12, 37, 40].

A suitable vector field q ∈ H(div,Ω) is computed by approximate minimization
of the right-hand side of (6.4). In a similar way as we obtained the functional (4.9),
we obtain the quadratic functional

(1 + %−1)(1 + σ−1)‖∇uh1 −A−1q‖2A + (1 + %)(1 + σ−1)(Cup
F )2‖cuh1 − div q‖2L2(Ω)

+ (1 + σ)(λh1 )−1‖αuh1 − λh1uh1 + q · n‖2L2(ΓN) ∀% > 0, σ > 0, (6.6)

where Cup
F is an upper bound of CF computed as described in Sections 4.3–4.4, λh1 is

the approximation of the smallest eigenvalue of (6.2) obtained by the Galerkin method
and uh1 is the corresponding approximate eigenvector. We look for the minimum of
(6.6) over a finite dimensional subspace Wh of H(div,Ω). This minimization problem
is equivalent to seeking qh ∈Wh such that

B(qh,w) = F(w) ∀w ∈Wh,

where

B(q,w) =
1 + %

σ
λh1 (Cup

F )2(div q,divw) +
1 + %

%σ
λh1 (A−1q,w) + (q · n,w · n)L2(ΓN),

F(w) =
1 + %

%σ
λh1 (∇uh1 ,w) +

1 + %

σ
λh1 (Cup

F )2(cuh1 ,divw) + (λh1u
h
1 − αuh1 ,w · n)L2(ΓN).

Practically, the classical Raviart–Thomas–Nédélec finite element method [13] can be
used to solve this problem. Note that the natural values for % and σ are % = 1 and
σ = 2, because then (1 + %−1)(1 + σ−1) = (1 + %)(1 + σ−1) = (1 + σ) = 3, see (6.6).
Similarly to the case of Friedrichs’ constant, these natural values often yield accurate
results. If not, a simultaneous minimization of (6.6) with respect to % > 0, σ > 0,
and q ∈Wh can be performed.

The computed vector field qh ∈ Wh together with λ∗ = λh1 and u∗ = uh1 are
then substituted to (6.5) in order to evaluate A and B. Consequently, we obtain the
two-sided bounds C low

T ≤ CT ≤ Cup
T , where

C low
T = (λh1 )−1/2 and Cup

T = 1/X2, (6.7)

X2 is given by (3.10) with γu∗ = γuh1 , see (3.3) and (3.9).

6.3. Numerical experiment. In order to illustrate the numerical performance
of the above described method, we consider the same example as in Section 4.5. We
proceed in the same way as in Section 4.5 with clear modifications in order to compute
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ã C low
T Cup

T EREL NDOF

0.001 17.8110 17.9760 0.0092 5 523
0.01 5.6490 5.7047 0.0098 5 418
0.1 1.8433 1.8593 0.0086 7 775

1 0.7963 0.8033 0.0088 5 499
10 0.5829 0.5880 0.0086 7 775

100 0.5649 0.5705 0.0098 5 421
1000 0.5632 0.5685 0.0092 5 523

Table 6.1
Trace constant. The lower bound Clow

T , upper bound Cup
T , relative error EREL, and the number

of degrees of freedom NDOF = dimV h for particular values of ã.
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Fig. 6.1. Trace constant for ã = 0.001. Convergence of bounds Cup
T and Clow

T (left) and of the
relative error EREL and heuristic indicators D1 and D2 (right).

two-sided bounds (6.7) on the trace constant. As before, the adaptive algorithm is
steered by error indicators that are in this case defined by a localized version of (6.6):

η2
K = (1+%−1)(1+σ−1)‖∇uh1−A−1q‖2A,K+(1+%)(1+σ−1)(Cup

F )2‖cuh1−div q‖2L2(K)

+ (1 + σ)(λh1 )−1‖αuh1 − λh1uh1 + q · n‖2L2(∂K∩ΓN) ∀K ∈ Th.

The parameters % and σ are naturally chosen as % = 1 and σ = 2. The values of the
upper bound Cup

F are taken from Table 4.1.
The obtained results are presented in Table 6.1. The method succeeded in ob-

taining guaranteed two-sided bounds on the trace constant with a relative error at
most 0.01 in all cases using several thousands of degrees of freedom. The particular
value of the trace constant CT depends considerably on ã. The values for ã = 0.001
and ã = 1000 differ more than thirty times. Further, notice that the exact value of
the trace constant for ã = 1 is CT = (2/(π cothπ))1/2 ≈ 0.7964.

As before, we illustrate the adaptive process for the case ã = 0.001. Figure 6.1
presents the convergence of bounds Cup

T and C low
T (left panel) and the relative error

EREL with heuristic indicators D1, D2 (right panel). Good confidence in the validity
of assumption (3.6) stems from the fact that D1 is several times smaller than D2 in
later stages of the adaptive process. Figures 6.2–6.3 (right) show two of the adapted
meshes.

Let us note that Tables 4.1, 5.1, and 6.1 show highest numbers of degrees of
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Fig. 6.2. Meshes in the middle of the adaptive process for ã = 0.001. From left to right:
Friedrichs’ (adaptive step 8), Poincaré (adaptive step 7), trace constant (adaptive step 8).

Fig. 6.3. Meshes in the final adaptive step for ã = 0.001. From left to right: Friedrichs’
(adaptive step 16), Poincaré (adaptive step 14), trace constant (adaptive step 15).

freedom for ã = 0.1 and 10. This is probably a coincidence caused by the fact that
the error decreases in jumps after each mesh refinement. For example, if NDOF is
about 5 000 then the relative error is already close to the threshold EREL = 0.01. If
it is slightly below the threshold, we stop the algorithm, but if it is slightly above,
we have to refine the mesh one more time, which results in higher NDOF and also a
smaller EREL.

7. Conclusions. We present a method for computing guaranteed lower and up-
per bounds of principal eigenvalues of elliptic operators and consequently for com-
puting guaranteed two-sided bounds of the optimal constants in Friedrichs’, Poincaré,
trace, and similar inequalities. The bounds are guaranteed provided there are no
round-off errors and all integrals are evaluated exactly. Further, the bounds are
guaranteed only if the domain Ω is represented exactly by used finite elements. Fur-
thermore, the upper bounds on eigenvalues computed by the Galerkin method are
guaranteed only if the corresponding matrix-eigenvalue problems are solved exactly.
On the other hand, the lower bounds on eigenvalues obtained by the complementarity
technique are guaranteed even if the matrix-eigenvalue problems and linear algebraic
systems are solved approximately only. In any case, the crucial assumption for having
guaranteed lower bounds on eigenvalues is (3.6).

These two-sided bounds can be of interest if the corresponding eigenvalue problem
cannot be solved analytically and if analytical estimates are not available or they are
too inaccurate. In particular, this is the case of complicated geometry of the domain
Ω, mixed boundary conditions, presence of non-constant and/or anisotropic diffusion
coefficient A, presence of reaction coefficient c, and presence of coefficient α.
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The method is quite general and it can be used for a wide variety of problems.
The general Hilbert space setting presented in Section 2 enables a variety of ap-
plications including linear elasticity. We believe that this approach can be further
generalized. Nonlinear eigenvalue problems and nonsymmetric operators can be of
particular interest and generalizations in these directions can be subject for further
research.
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[37] T. Vejchodský, Guaranteed and locally computable a posteriori error estimate, IMA J. Numer.

Anal., 26 (2006), pp. 525–540.
[38] T. Vejchodský, Complementarity based a posteriori error estimates and their properties,

Math. Comput. Simulation, 82 (2012), pp. 2033–2046.
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