Various aspects of reaction-diffusion problems

Tomáš Vejchodský

Centre for Mathematical Biology
Mathematical Institute

CMB Group Meeting, Oxford, 10 June, 2013

Outline

Numerical analysis - Finite Element Method

- Mesh adaptivity
- A posteriori error estimates
- Discrete maximum principles

Mathematical biology

- Circadian rhythms
- Skin patterns formation

Mesh adaptivity

Mesh adaptivity

Mesh adaptivity

Mesh adaptivity

Mesh adaptivity

Mesh adaptivity

?

\square

Mesh adaptivity

Mesh adaptivity

Mesh adaptivity

Mesh adaptivity

Mesh adaptivity - hp version

A posteriori error estimates

Error indicators \times Error estimators

Properties

- Efficiency and reliability
- Guaranteed upper bound
- Guaranteed lower bound
- Asymptotic exactness
- Robustness
- Locality

Approaches

- Explicit residual
- Implicit residual - Dirichlet
- Implicit residual - Neumann
- Hierarchical
- Postprocessing
- Complementarity
- Quantity of interest

Discrete maximum principles

$-\Delta u=f$ in $\Omega=(0,4) \times(0,2), \quad u=0$ on $\partial \Omega$
Conservation of nonnegativity: $f \geq 0 \quad \Rightarrow \quad u \geq 0$

Discrete maximum principles

$-\Delta u=f$ in $\Omega=(0,4) \times(0,2), \quad u=0$ on $\partial \Omega$
Conservation of nonnegativity: $f \geq 0 \quad \Rightarrow \quad u \geq 0$
$f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{ll}1 & \text { for } x_{1}<1 \\ 0 & \text { for } x_{1} \geq 1\end{array} \quad u_{h}\right.$ by linear FEM

Brandts, Korotov, Křížek, Šolc, SIAM Review 51 (2009), 317-335

Discrete maximum principles

$-\Delta u=f$ in $\Omega=(0,4) \times(0,2), \quad u=0$ on $\partial \Omega$
Conservation of nonnegativity: $f \geq 0 \quad \Rightarrow \quad u \geq 0$
$f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{ll}1 & \text { for } x_{1}<1 \\ 0 & \text { for } x_{1} \geq 1\end{array} \quad u_{h}\right.$ by linear FEM

Negative values $10 \times$ magnified.

Project StochDetBioModel

Marie Curie Intra-European Fellowship for Career Development

Scope:

- Analytical and computational methods for reaction-diffusion systems
[Cotter, Vejchodsky, Erban, 2013]
- Models with and without stochastic effects
[Erban, Chapman, Kevrekidis, Vejchodsky, 2009]
- Circadian rhythms - spatial aspects
- Skin pattern formation - unilateral regulation

Circadian rhythms - chemical reactions

[Vilar et al, 2002]

Circadian rhythms - equations

Law of mass action:

$$
\begin{aligned}
\mathrm{d} \bar{D}_{A} / \mathrm{d} t & =\theta_{A} \bar{D}_{A}^{\prime}-\gamma_{A} \bar{D}_{A} \bar{A} \\
\mathrm{~d} \bar{D}_{A}^{\prime} / \mathrm{d} t & =-\theta_{A} \bar{D}_{A}^{\prime}+\gamma_{A} \bar{D}_{A} \bar{A} \\
\mathrm{~d} \bar{D}_{R} / \mathrm{d} t & =\theta_{R} \bar{D}_{R}^{\prime}-\gamma_{R} \bar{D}_{R} \bar{A} \\
\mathrm{~d} \bar{D}_{R}^{\prime} / \mathrm{d} t & =-\theta_{R} \bar{D}_{R}^{\prime}+\gamma_{R} \bar{D}_{R} \bar{A} \\
\mathrm{~d} \bar{M}_{A} / \mathrm{d} t & =\alpha_{A}^{\prime} \bar{D}_{A}^{\prime}+\alpha_{A} \bar{D}_{A}-\delta_{M_{A}} \bar{M}_{A} \\
\mathrm{~d} \bar{M}_{R} / \mathrm{d} t & =\alpha_{R}^{\prime} \bar{D}_{R}^{\prime}+\alpha_{R} \bar{D}_{R}-\delta_{M_{R}} \bar{M}_{R} \\
\mathrm{~d} \bar{A} / \mathrm{d} t & =\beta_{A} \bar{M}_{A}+\theta_{A} \bar{D}_{A}^{\prime}+\theta_{R} \bar{D}_{R}^{\prime} \\
& -\bar{A}\left(\gamma_{A} \bar{D}_{A}+\gamma_{R} \bar{D}_{R}+\gamma_{C} \bar{R}+\delta_{A}\right) \\
\mathrm{d} \bar{R} / \mathrm{d} t & =\beta_{R} \bar{M}_{R}-\gamma_{C} \overline{A R}+\delta_{A} \bar{C}-\delta_{R} \bar{R} \\
\mathrm{~d} \bar{C} / \mathrm{d} t & =\gamma_{C} \overline{A R}-\delta_{A} \bar{C}
\end{aligned}
$$

Initial conditions:

$$
\begin{aligned}
& \bar{D}_{A}=\bar{D}_{R}=1 \mathrm{~mol} \\
& \bar{D}_{A}^{\prime}=\bar{D}_{R}^{\prime}=\bar{M}_{A}=\bar{M}_{R}=\bar{A}=\bar{R}=\bar{C}=0 \mathrm{~mol}
\end{aligned}
$$

Circadian rhythms－equations

Law of mass action：

$$
\begin{aligned}
\mathrm{d} \bar{D}_{A} / \mathrm{d} t & =\theta_{A}-\left(\theta_{A}+\gamma_{A} \bar{A}\right) \bar{D}_{A} \\
\bar{D}_{A}^{\prime} & =1-\bar{D}_{A} \\
\mathrm{~d} \bar{D}_{R} / \mathrm{d} t & =\theta_{R}-\left(\theta_{R}+\gamma_{R} \bar{A}\right) \bar{D}_{R} \\
\bar{D}_{R}^{\prime} & =1-\bar{D}_{R} \\
\mathrm{~d} \bar{M}_{A} / \mathrm{d} t & =\alpha_{A}^{\prime}+\left(\alpha_{A}-\alpha_{A}^{\prime}\right) \bar{D}_{A}-\delta_{M_{A}} \bar{M}_{A} \\
\mathrm{~d} \bar{M}_{R} / \mathrm{d} t & =\alpha_{R}^{\prime}+\left(\alpha_{R}-\alpha_{R}^{\prime}\right) \bar{D}_{R}-\delta_{M_{R}} \bar{M}_{R} \\
\mathrm{~d} \bar{A} / \mathrm{d} t & =\beta_{A} \bar{M}_{A}+\theta_{A}\left(1-\bar{D}_{A}\right)+\theta_{R}\left(1-\bar{D}_{R}\right) \\
& -\bar{A}\left(\gamma_{A} \bar{D}_{A}+\gamma_{R} \bar{D}_{R}+\gamma_{C} \bar{R}+\delta_{A}\right) \\
\mathrm{d} \bar{R} / \mathrm{d} t & =\beta_{R} \bar{M}_{R}-\gamma_{C} \overline{A R}+\delta_{A} \bar{C}-\delta_{R} \bar{R} \\
\mathrm{~d} \bar{C} / \mathrm{d} t & =\gamma_{C} \overline{A R}-\delta_{A} \bar{C}
\end{aligned}
$$

Circadian rhythms - equations

Law of mass action:

$$
\begin{aligned}
\mathrm{d} D_{A} / \mathrm{d} t= & \theta_{A}-\left(\theta_{A}+\gamma_{A} A\right) D_{A} \\
D_{A}^{\prime}= & 1-D_{A} \\
\mathrm{~d} D_{R} / \mathrm{d} t= & \theta_{R}-\left(\theta_{R}+\gamma_{R} A\right) D_{R} \\
D_{R}^{\prime}= & 1-D_{R} \\
\partial M_{A} / \partial t= & \alpha_{A}^{\prime}+\left(\alpha_{A}-\alpha_{A}^{\prime}\right) D_{A}-\delta_{M_{A}} M_{A}+d_{M_{A}} \partial^{2} M_{A} / \partial x^{2} \\
\partial M_{R} / \partial t= & \alpha_{R}^{\prime}+\left(\alpha_{R}-\alpha_{R}^{\prime}\right) D_{R}-\delta_{M_{R}} M_{R}+d_{M_{R}} \partial^{2} M_{R} / \partial x^{2} \\
\partial A / \partial t= & \beta_{A} M_{A}+\theta_{A}\left(1-D_{A}\right)+\theta_{R}\left(1-D_{R}\right) \\
& \quad-A\left(\gamma_{A} D_{A}+\gamma_{R} D_{R}+\gamma_{C} R+\delta_{A}\right)+d_{A} \partial^{2} A / \partial x^{2} \\
\partial R / \partial t= & \beta_{R} M_{R}-\gamma_{C} A R+\delta_{A} C-\delta_{R} R+d_{R} \partial^{2} R / \partial x^{2} \\
\partial C / \partial t= & \gamma_{C} A R-\delta_{A} C+d_{C} \partial^{2} C / \partial x^{2}
\end{aligned}
$$

No flux boundary conditions
Concentration: $D_{A}=\bar{D}_{A} / \nu, D_{R}=\bar{D}_{R} / \nu, \ldots \quad \nu=1$ cell

Spatial setting

Cytoplasm \quad Nucleus Cytoplasm

$$
M_{A}, M_{R}, A, R, C
$$

Cell size:

- $L_{\text {cell }}=10-100 \mu \mathrm{~m}$

Diffusivities:

- Proteins:
$d_{A}=d_{R}=d_{C}=20000 \mu \mathrm{~m}^{2} \mathrm{~h}^{-1}=20000 / L_{\text {cell }}^{2} \mathrm{cell}^{2} \mathrm{~h}^{-1}$ (measurements [Nenninger 2010]: $\approx 14400-36000 \mu^{2} \mathrm{~h}^{-1}$)
- mRNA:
$d_{M_{A}}=d_{M_{R}}=d_{A} / \sqrt[3]{10}$
(mRNA is roughly $10 \times$ bigger than protein)

Results

$$
L_{\text {cell }}=20 \mu \mathrm{~m}
$$

Concentration $C(x, t)$

Results

$$
L_{\text {cell }}=40 \mu \mathrm{~m}
$$

Results

$$
L_{\text {cell }}=60 \mu \mathrm{~m}
$$

R and C in cytoplasm only

R and C in cytoplasm only - results

$$
L_{\text {cell }}=10 \mu \mathrm{~m}
$$

R and C in cytoplasm only - results

$$
L_{\mathrm{cell}}=20 \mu \mathrm{~m}
$$

R and C in cytoplasm only - results

$L_{\text {cell }}=30 \mu \mathrm{~m}$

Concentration $C(x, t)$

R and C in cytoplasm only - results

$L_{\text {cell }}=80 \mu \mathrm{~m}$

Concentration $R(x, t)$

Concentration $C(x, t)$

Skin pattern formation

Reaction-diffusion system:
$\left.\begin{array}{l}\frac{\partial u}{\partial t}=\delta_{1} \Delta u+f(u, v) \\ \frac{\partial v}{\partial t}=\delta_{2} \Delta v+g(u, v)\end{array}\right\}$ in $\Omega \quad \begin{aligned} & \frac{\partial u}{\partial n}=0 \\ & \frac{\partial v}{\partial n}=0\end{aligned}$

$$
\} \text { on } \partial \Omega
$$

Patterns for $\frac{\delta_{1}}{\delta_{2}}<1$

Skin pattern formation

Idea: add a unilateral regulation to the Turing's mechanism

Reaction-diffusion system with Signorini b.c.:
$\left.\begin{array}{l}\frac{\partial u}{\partial t}=\delta_{1} \Delta u+f(u, v) \\ \frac{\partial v}{\partial t}=\delta_{2} \Delta v+g(u, v) \quad\end{array}\right\}$ in $\left.\Omega \quad \begin{array}{l}\frac{\partial u}{\partial n}=0 \\ \\ v \geq 0, \frac{\partial v}{\partial n} \geq 0, v \frac{\partial v}{\partial n}=0\end{array}\right\}$ on $\partial \Omega$
Patterns even for $\frac{\delta_{1}}{\delta_{2}} \approx 1$ [Kučera, Väth, 2012]

Skin pattern formation

Idea: add a unilateral regulation to the Turing's mechanism

Reaction-diffusion system with unilateral source:

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial t}=\delta_{1} \Delta u+f(u, v) \\
\frac{\partial v}{\partial t}=\delta_{2} \Delta v+g(u, v)+\gamma v^{-}
\end{array}\right\} \text {in } \Omega \quad \begin{aligned}
& \frac{\partial u}{\partial n}=0 \\
&
\end{aligned} \begin{aligned}
& \frac{\partial v}{\partial n}=0
\end{aligned}
$$

Skin pattern formation

Idea: add a unilateral regulation to the Turing's mechanism

Reaction-diffusion system with unilateral source:

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial t}=\delta_{1} \Delta u+f(u, v) \\
\frac{\partial v}{\partial t}=\delta_{2} \Delta v+g(u, v)+\gamma v^{-}
\end{array}\right\} \text {in } \Omega \quad \begin{aligned}
& \frac{\partial u}{\partial n}=0 \\
& \frac{\partial v}{\partial n}=0
\end{aligned}
$$

Numerical experiments

$$
\begin{aligned}
& f(u, v)=\alpha u+v-r_{2} u v-\alpha r_{3} u v^{2} \\
& g(u, v)=-\alpha u+\beta v+r_{2} u v+\alpha r_{3} u v^{2}
\end{aligned}
$$

[Liu, Liaw, Maini, 2006]

Pattern formation－results

$$
\begin{aligned}
& \beta=-0.97 \\
& \gamma=0.00
\end{aligned}
$$

$$
\begin{gathered}
\beta=-0.89 \\
\gamma=0.08
\end{gathered}
$$

$$
\begin{array}{r}
\beta=-0.80 \\
\gamma=0.17
\end{array}
$$

Collaborators

- Philip K. Maini
- Radek Erban
- Simon Cotter
- Shuohao Liao - Higher-dimensional Fokker-Planck equation
- Milan Kučera
- Filip Jaroš
- Martin Väth

Outlook

Circadian rhythms

- Analysis of the spatial model
- Stochastic spatial model

Skin pattern formation

- Implementation of Signorini boundary conditions
- Another dynamics (Thomas system)

Acknowledgement

Marie Curie Fellowship, StochDetBioModel

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Pro-
EUROPEAN gramme (FP7/2007-2013) under REA grant COMMISSION agreement no. 328008.

Thank you for your attention

Tomáś Vejchodský

Centre for Mathematical Biology
Mathematical Institute

CMB Group Meeting, Oxford, 10 June, 2013

