Seminář odd. 26 Tenkých vrstev a nanostruktur

Fyzikální ústav AVČR, Cukrovarnická 10, Praha 6 datum: 14. 11. 2011 pondělí čas: 15:00 místnost: knihovna, budova A, 1.p. TÉMA

Azobenzene: From electronic structure to molecular switching*

R. Turanský, I. Štich

Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

Azobenzene (AB) is an iconic photoswitchable molecule and a candidate for lighttriggered switches and light-powered molecular machines. Yet, fundamental understanding of electronic structure of $A B$ and $A B$ embedded into functional junctions formed by contacting $A B$ with metal electrodes is still missing.
In order to fill the gap we first study low-energy singlet and triplet states of AB molecule in a hierarchy of accuracies: DFT (Density Functional Theory), gROKS (generalized Restricted Open Shell Kohn Shan), and QMC (Quantum Monte Carlo). While only the QMC method yields quantitatively correct results for the ground- and all excitedstates, DFT and gROKS are found to provide qualitatively correct description of the lowest singlet $\left(S_{0}, S_{1}\right)$ states. Such a treatment can be made even quantitatively correct by application of a uniform blue shift of +0.7 eV to the lowest gROKS excited states energies.
We further study $A B$ embedded into junctions by the DFT/gROKS techniques. The ability of anchored photoswitches to perform optically, mechanically, and optomechanically driven switching cycles is studied. As a model for such nanoscale devices we have simulated molecular switches consisting of a single dithioazobenzene bridge between gold tips, Fig. 1. Purely optical switching cycles are hindered by mechanical effects due to the tips. However, the possibility of performing both combined opto-mechanical and purely mechanical two-way switching is predicted.

Fig. 1. Schematics of mechanical and optical switching cycles.

[^0]
[^0]: *Work done in collaboration with D. Marx (Ruhr Universität Bochum), and L. Mitas, (North Carolina State University).

