Advantages of (non)linear methods in assessing climate interaction structure strategies and lessons learned

Hlinka, J.; Hartman, D.; Vejmelka, M.; Paluš, M.

Institute of Computer Science, Academy of Sciences of the Czech Republic

DAMES Potsdam 2012

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

data-driven analysis

- data-driven analysis
- motivation (aims):

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - feature & change detection
 - uncovering (dynamical) mechanisms

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - feature & change detection
 - uncovering (dynamical) mechanisms

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

typical workflow:

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - feature & change detection
 - uncovering (dynamical) mechanisms
- typical workflow:
 - ► dependence quantification (data → global interaction matrix)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - feature & change detection
 - uncovering (dynamical) mechanisms
- typical workflow:
 - ► dependence quantification (data → global interaction matrix)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 graph-theoretical analysis or decomposition into subsystems

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - feature & change detection
 - uncovering (dynamical) mechanisms
- typical workflow:
 - ► dependence quantification (data → global interaction matrix)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- graph-theoretical analysis or decomposition into subsystems
- characterizing properties or alterations

- data-driven analysis
- motivation (aims):
 - quantitative characterization
 - feature & change detection
 - uncovering (dynamical) mechanisms
- typical workflow:
 - ► dependence quantification (data → global interaction matrix)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- graph-theoretical analysis or decomposition into subsystems
- characterizing properties or alterations

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

(日) (日) (日) (日) (日) (日) (日)

Measuring dependence:

Pearson's correlation $\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}$

Measuring dependence:

Measuring dependence: Pearson's correlation $\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$

Mutual information:

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

Practical problem

- linear correlation
 - widely used, simple concept

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

generally effective

Practical problem

- linear correlation
 - widely used, simple concept
 - generally effective
- ▶ BUT ... real-world complex processes often nonlinear!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \Rightarrow use of nonlinear methods proposed

Practical problem

- linear correlation
 - widely used, simple concept
 - generally effective
- BUT ... real-world complex processes often nonlinear!
 - \Rightarrow use of nonlinear methods proposed
- BUT ... nonlinear methods also have downsides!
 - implementation
 - interpretation
 - sensitivity and bias

\Rightarrow Is linear correlation sufficient?

 fMRI: [Hlinka et al., 2011, Neuroimage], climate: [Hlinka et al., in prep.]

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

for bivariately normal distributions ("linear dependence"):

for bivariately normal distributions ("linear dependence"):

• linear correlation $\rho_{X,Y}$ fully captures the dependence

(日) (日) (日) (日) (日) (日) (日)

• mutual information between variables is $I(X, Y) = I_{Gauss}(\rho_{X,Y}) = -\frac{1}{2}log(1 - \rho_{X,Y}^2)$

for bivariately normal distributions ("linear dependence"):

• linear correlation $\rho_{X,Y}$ fully captures the dependence

(日) (日) (日) (日) (日) (日) (日)

- mutual information between variables is $I(X, Y) = I_{Gauss}(\rho_{X,Y}) = -\frac{1}{2}log(1 \rho_{X,Y}^2)$
- for general bivariate distribution (under marginal normality):

- for bivariately normal distributions ("linear dependence"):
 - linear correlation $\rho_{X,Y}$ fully captures the dependence
 - mutual information between variables is $I(X, Y) = I_{Gauss}(\rho_{X,Y}) = -\frac{1}{2}log(1 \rho_{X,Y}^2)$
- for general bivariate distribution (under marginal normality):
 - linear correlation is not sufficient to capture the dependence

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• mutual information between variables is $I(X, Y) \ge -\frac{1}{2}log(1 - \rho_{X|Y}^2)$

- for bivariately normal distributions ("linear dependence"):
 - linear correlation $\rho_{X,Y}$ fully captures the dependence
 - mutual information between variables is $I(X, Y) = I_{Gauss}(\rho_{X,Y}) = -\frac{1}{2}log(1 \rho_{X,Y}^2)$
- for general bivariate distribution (under marginal normality):
 - linear correlation is not sufficient to capture the dependence

- mutual information between variables is $I(X, Y) \ge -\frac{1}{2}log(1 \rho_{X,Y}^2)$
- ► ⇒ we can quantify the extra dependence (mutual information) that is not captured by linear correlation: $I_{extra} = I(X, Y) - I_{Gauss}(\rho_{X,Y})$

Vizualization

▲ロト ▲園 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Vizualization

▲ロト▲御ト▲ヨト▲ヨト ヨーのへで

Nonlinear interactions in (monthly) temperature data?

Nonlinear interactions in (monthly) temperature data?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

nonlinear interaction:

- Nonlinear interactions in (monthly) temperature data?
- nonlinear interaction: deviation from linear interaction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Nonlinear interactions in (monthly) temperature data?
- nonlinear interaction: deviation from linear interaction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

existence

- Nonlinear interactions in (monthly) temperature data?
- nonlinear interaction: deviation from linear interaction

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- existence
- strength

- Nonlinear interactions in (monthly) temperature data?
- nonlinear interaction: deviation from linear interaction

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- existence
- strength
- localization

- Nonlinear interactions in (monthly) temperature data?
- nonlinear interaction: deviation from linear interaction

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- existence
- strength
- Iocalization
- sources/form/origin

- Nonlinear interactions in (monthly) temperature data?
- nonlinear interaction: deviation from linear interaction

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- existence
- strength
- localization
- sources/form/origin
- relevance for specific analysis

- Nonlinear interactions in (monthly) temperature data?
- nonlinear interaction: deviation from linear interaction

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- existence
- strength
- localization
- sources/form/origin
- relevance for specific analysis
- treatment
Data and methods

Data: NCEP/NCAR reanalysis dataset

- surface air temperatures
- monthly data (years 1948 2007; 720 timepoints)
- ▶ global grid 73 × 144 points (2.5 deg ×2.5 deg sampling)

(ロ) (同) (三) (三) (三) (三) (○) (○)

yearly cycle removed (anomalies)

Data and methods

Data: NCEP/NCAR reanalysis dataset

- surface air temperatures
- monthly data (years 1948 2007; 720 timepoints)
- global grid 73 × 144 points (2.5 deg ×2.5 deg sampling)
- yearly cycle removed (anomalies)

Methods: interaction/dependence quantification

 nonlinear: Î(X, Y)mutual information (pdf estimated using equiprobable binning; N=8)

► linear: $\hat{\rho}(X, Y)$, $\hat{I}_{Gauss}(X, Y)$, $\tilde{\hat{I}}_{Gauss}(X, Y)$

• extra-linear:
$$\hat{l}_{extra} = \hat{l}(X, Y) - \tilde{\hat{l}}_{Gauss}(X, Y)$$

Results: Existence

Results: Existence

Controling for method bias:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Results: Existence

Controling for method bias:

Statistical testing: 15% links above 95th percentile

Localization of nonlinear contributions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Localization of nonlinear contributions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Localization of nonlinear contributions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

<ロ> (四) (四) (三) (三) (三) (三)

introduce conservative preprocessing: month-wise variance equalization

(日)

э

introduce conservative preprocessing: month-wise variance equalization

introduce conservative preprocessing: month-wise variance equalization

Statistical testing against surrogates: 8% links above 95th percentile

Temperature anomalies:

After additional normalization of variance:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

What about remaining 'non-linearities'?

・ロト・日本・日本・日本・日本・今日~

More examples

Temperature anomalies:

After additional normalization of variance:

Statistical testing: 6% links above 95th percentile

・ロト・「聞ト・「聞ト・「聞ト・」 目・

Temperature anomalies:

After additional detrending:

Statistical testing: 6% links above 95th percentile

・ロト・日本・日本・日本・日本・日本

What about daily data?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

What about daily data?

What about daily data?

∃ 990

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Example 'nonlinear' link

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Further observations: CMI, SLP

SLP components time series dependence:

existence: deviations from linear dependences (non-linearities) confirmed

existence: deviations from linear dependences (non-linearities) confirmed **strength:** non-linearities are relatively minor

・ コット (雪) (小田) (コット 日)

existence: deviations from linear dependences (non-linearities) confirmed strength: non-linearities are relatively minor localization: non-linearities are spatially sparse

existence: deviations from linear dependences (non-linearities) confirmed strength: non-linearities are relatively minor localization: non-linearities are spatially sparse sources: strongest non-linearities are non-stationarities

existence: deviations from linear dependences (non-linearities) confirmed strength: non-linearities are relatively minor localization: non-linearities are spatially sparse sources: strongest non-linearities are non-stationarities data dependence: sampling, transformations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

existence: deviations from linear dependences (non-linearities) confirmed strength: non-linearities are relatively minor localization: non-linearities are spatially sparse sources: strongest non-linearities are non-stationarities data dependence: sampling, transformations

(ロ) (同) (三) (三) (三) (○) (○)

Questions

existence: deviations from linear dependences (non-linearities) confirmed strength: non-linearities are relatively minor localization: non-linearities are spatially sparse sources: strongest non-linearities are non-stationarities data dependence: sampling, transformations

Questions

What if linear and nonlinear measures disagree?

(ロ) (同) (三) (三) (三) (○) (○)

existence: deviations from linear dependences (non-linearities) confirmed strength: non-linearities are relatively minor localization: non-linearities are spatially sparse sources: strongest non-linearities are non-stationarities data dependence: sampling, transformations

Questions

What if linear and nonlinear measures disagree?

(ロ) (同) (三) (三) (三) (○) (○)

What about genuine non-linearities?

existence: deviations from linear dependences (non-linearities) confirmed strength: non-linearities are relatively minor localization: non-linearities are spatially sparse sources: strongest non-linearities are non-stationarities data dependence: sampling, transformations

Questions

- What if linear and nonlinear measures disagree?
- What about genuine non-linearities?

Thank you for your attention!

This study was supported by the Czech Science Foundation project No. P103/11/J068.

Relevance for graph topology

Donges et al., 2009: nonlinearity key for global topology

Other datasets: ERA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?