Advantages of (non)linear methods in
assessing climate interaction structure
strategies and lessons learned

Hlinka, J.; Hartman, D.; Vejmelka, M.; Palus, M.
Institute of Computer Science, Academy of Sciences of the Czech Republic

DAMES
Potsdam 2012



Context: Studying system interaction structure



Context: Studying system interaction structure

» data-driven analysis



Context: Studying system interaction structure

» data-driven analysis
» motivation (aims):



Context: Studying system interaction structure

» data-driven analysis
» motivation (aims):
» quantitative characterization
» feature & change detection
» uncovering (dynamical) mechanisms



Context: Studying system interaction structure

» data-driven analysis
» motivation (aims):
» quantitative characterization
» feature & change detection
» uncovering (dynamical) mechanisms

» typical workflow:



Context: Studying system interaction structure

» data-driven analysis
» motivation (aims):
» quantitative characterization
» feature & change detection
» uncovering (dynamical) mechanisms
» typical workflow:

» dependence quantification (data — global interaction
matrix)



Context: Studying system interaction structure

» data-driven analysis
» motivation (aims):
» quantitative characterization
» feature & change detection
» uncovering (dynamical) mechanisms

» typical workflow:

» dependence quantification (data — global interaction
matrix)

» graph-theoretical analysis or decomposition into
subsystems



Context: Studying system interaction structure

» data-driven analysis
» motivation (aims):
» quantitative characterization
» feature & change detection
» uncovering (dynamical) mechanisms

» typical workflow:

» dependence quantification (data — global interaction
matrix)

» graph-theoretical analysis or decomposition into
subsystems

» characterizing properties or alterations



Context: Studying system interaction structure

» data-driven analysis
» motivation (aims):
» quantitative characterization
» feature & change detection
» uncovering (dynamical) mechanisms

» typical workflow:

» dependence quantification (data — global interaction
matrix)

» graph-theoretical analysis or decomposition into
subsystems

» characterizing properties or alterations



Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)



Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)

S o




Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)

S w

Measuring dependence:
— ov(X,)Y) _ E[(X=px)(Y=py)l

Pearson’s correlation px,y = =7~ vy



Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)

S w

Measuring dependence:
, i — cov(X,Y) _ E[(X=px)(Y=py)]
Pearson’s correlation px,y = =72~ = e

08 0. -0.8 -1

PV N

1 1 1 -1 1 -1
// - T e — \\ \
0 0
ST




Characterizing dependence
Independence: p(X, Y) = p(X)p(Y)

S #

Measuring dependence:
Pearson’s correlation py, y = <X-Y) — ElX=mo(Youy)]
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Mutual information:

I(X;Y) =Y p(x,y)log (M)
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Practical problem

linear correlation
» widely used, simple concept
» generally effective
BUT ... real-world complex processes often nonlinear!
= use of nonlinear methods proposed
BUT ... nonlinear methods also have downsides!

» implementation
» interpretation
» sensitivity and bias

= Is linear correlation sufficient?

fMRI: [Hlinka et al., 2011, Neuroimage], climate: [Hlinka et
al., in prep.]
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Quantification strategy

» for bivariately normal distributions (“linear dependence”):

» linear correlation px y fully captures the dependence
» mutual information between variables is

I(X; Y) = IGauss(pX,Y) = _%/Og(-l - pg(,Y)
» for general bivariate distribution (under marginal
normality):
» linear correlation is not sufficient to capture the dependence
» mutual information between variables is
I(X,Y) > —Llog(1 — p% )
» = we can quantify the extra dependence (mutual
information) that is not captured by linear correlation:

lextra = I(X7 Y) - /Gauss(PX,Y)
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Example problem

» Nonlinear interactions in (monthly) temperature data?

» nonlinear interaction: deviation from linear interaction
» existence

strength

localization

sources/form/origin

relevance for specific analysis

treatment
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Data and methods

Data: NCEP/NCAR reanalysis dataset

» surface air temperatures
monthly data (years 1948 - 2007; 720 timepoints)
global grid 73 x 144 points (2.5 deg x2.5 deg sampling)
yearly cycle removed (anomalies)
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Data and methods

Data: NCEP/NCAR reanalysis dataset
» surface air temperatures
monthly data (years 1948 - 2007; 720 timepoints)
global grid 73 x 144 points (2.5 deg x2.5 deg sampling)
yearly cycle removed (anomalies)
Methods: interaction/dependence quantification
» nonlinear: 7(X, Y)mutual information (pdf estimated using
equiprobable binning; N=8)
» linear: (X, Y), 7Gauss(X7 Y), 7Gauss(X7 Y)

> extra-linear: Joxia = 1(X, Y) — lgauss(X, Y)
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Results: Existence
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Results: Existence

1 2 3
Gaussian mutual information

Controling for method bias:

2

n

MI in data (bits)
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Statistical testing: 15% links above 95th percentile
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mean extraMI of a node
(relative to meanMI)
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Localization of nonlinear contributions

mean extraMI of a node
(relative to meanMI)
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Form/origin

» introduce conservative preprocessing: month-wise
variance equalization

MI in data (bits)
MI in data (bits)
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MI in surrogate data (bits) MI in surrogate data (bits)

Statistical testing against surrogates: 8% links above 95th
percentile



Temperature anomalies:
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What about remaining ‘non-linearities’?
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Temperature anomalies:
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Temperature anomalies:
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Working with components

Component 1 explained variance = 10.8885 %
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Working with components

Total vs. linear mutual information Extra—linear MI
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Example 'nonlinear’ link




Further observations: CMI, SLP

comparison of linear/nonlinear CMI (TE)
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Conclusion

existence: deviations from linear dependences
(non-linearities) confirmed

strength: non-linearities are relatively minor
localization: non-linearities are spatially sparse
sources: strongest non-linearities are non-stationarities
data dependence: sampling, transformations

Questions
» What if linear and nonlinear measures disagree?
» What about genuine non-linearities?

Thank you for your attention!

This study was supported by the Czech Science Foundation project No. P103/11/J068.



Relevance for graph topology
Donges et al., 2009: nonlinearity key for global topology
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Other datasets: ERA
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