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Abstract. We construct generators of the principle Heisenberg subalgebra in the quantized
universal enveloping algebra U(ŝl2). Applications for exactly solvable models are proposed.

1. Introduction
Quantum groups [1] are among central objects of interest both in Pure Mathematics and
Mathematical Physics. Numerous applications of quantum group structure are known to have
indispensable success in disclosure of underlying mathematical structures in problems of real-
life Physics and abstract models. Heisenberg subalgebras inside Kac–Moody Lie algebras [6]
play a fundamental role in separating Heisenberg-type algebraic structures among huge sets of
basises admitted for descriptions of physical models. Their importance for integrable models can
be compared to the importance of appropriate choice of coordinates in Mechanics. Quantum
group Heisenberg subalgebra are well known and used in the case of the homogeneous grading
[3, 5, 12]. In this notes we propose a version of the Heisenberg subalgebra inside a quantum
universal enveloping algebra in the principle [8, 5, 3, 12] grading case.

2. Principle Heisenberg subalgebra in quantum group
Consider the Lie algebra sl2 generated by the elements {h, x±} with standard relations [6]

[h, x±] = ±2x±,

[x+, x−] = h.

Following related ideas of [2], let us define the elements

x̂+ ≡ Φ(h) x+, (1)

x̂− ≡ x− Φ(h), (2)

ĥ ≡ h,

where Φ(h) is an invertible function of h. Then we substitute (1)–(2) to the commutation
relations of the quantum group [1] Uq(sl2) in the Drinfeld–Jimbo form [3, 5] to obtain

[ĥ, x̂±] = ±2 x̂±,

[x̂+, x̂−] = [ĥ]q ≡
qĥ − q−ĥ

q − q−1
.



Then, assuming the formulas
Φ(h)x+ = x+Φ(h+ 2),

x−Φ(h) = Φ(h+ 2)x−,

and the form of the Casimir operator [1]

C = 2x+x− +
1

2
h2 − h,

to express x+x− and x−x+ via C and h. One can solve the equation

Φ(h)x+x−Φ(h)− x−Φ
2(h)x+ = [ĥ]q,

to obtain Φ(h) from

Φ2(h)

[
C − h(h− 2)

2

]
− Φ2(h+ 2)

[
C − h(h+ 2)

2

]
= 2

qh − q−h

q − q−1
,

in terms of C and h.
Introducing the affinization of the Lie algebra sl2 with λ ∈ C as in [6], we have for the

generators of the zero-level Heisenberg subalgebra in the affine ŝl2

E+(λ) ≡ x+ + λx−, (3)

E−(λ) ≡ x− + λ−1x+ = λ−1E+(λ). (4)

Then the operator
F (λ, ζ) ≡ A(λ, ζ)h+B(λ, ζ)(x+ − λx−),

with
A(λ, ζ) ≡ −

∑
j∈Z

ζ−2jλj ,

B(λ, ζ) ≡
∑
j∈Z

ζ−2j−1λj ,

is an eigenoperator with respect to (3)–(4) for ζ ∈ C, [6].
Now, let us define for the quantum Heisenberg subalgebra Hq

(
ŝl2

)
generated by the elements{

Ê+, Ê−

}
,

Ê±(λ, h) = Φ(h) E±(λ) Φ
−1(h), (5)

so that [
Ê+(λ, h), Ê−(λ, h)

]
= 0,

and put
F̂ (λ, ζ, h) = Φ(h) F (λ, ζ) Φ−1(h),

thereof F̂ (λ, ζ) are eigenoperators for Ê±, ζ ∈ C. In terminology of ordinary Lie algebras,

constructed elements
{
Ê+, Ê−

}
constitute the principle Heisenberg subalgebra inside the

quantized universal enveloping algebra Uq(ŝl2). Similar considerations are possible for the case

of homogeneous [6, 12] grading of Uq(ŝl2).



3. Applications
Using the construction of previous section, we can define vertex operators [6, 7, 5]

V (z) ≡ exp

( ∞∑
n=0

Ê+nz
n

)
exp

( ∞∑
n=0

Ênz
−n

)
zn∂α

z , (6)

for α ∈ C, z being formal parameters. suitable for the construction of a vertex operator
representations [5] for corresponding quantum group. One could also relate this construction to
quantum vertex algebras [9].

In [11] a group-theoretical [8] way to construct solutions to the affine Toda models was found.
In particular, an algebraic origin of classical solitonic solutions was proposed. It is based on the
existence of a Heisenberg subalgebra inside an affine Lie algebra underlying corresponding affine
Toda model, and soliton vertex operators. In [12] we have studied the quantum group structure
of the quantum soliton vertex operators for the sine–Gordon model. Those vertex operators
corresponded to the homogeneous grading of ŝl2.

A general way to obtain the principal Heisenberg subalgebra proposed in these notes opens
a way to study quantum vertex operators for the sine–Gordon model associated to the principle
grading of ŝl2. Using the form of the quantum principal Heisenberg subalgebra, we can define
vertex operators as in (6) and prove that they exhibit other properties of quantum vertex
operators [12]. One can also generate solitonic specializations to the quantum Heisenberg
operator solutions to the affine Toda models [10]. The group element [11] in the formal general
solution in the solitonic specialization can be chosen in the form

g = exp
(
z+E+

)
g0 exp

(
z−E−

)
, (7)

where z± are light-cone coordinates on the plane, and g0 does not depend on z±. In quantum
case we replace the generators E± (3)–(4) with the generators Ê± (5). The group element
(similar to the classical one in [11]) is then given by

g0 =

N∏
m=1

Qm exp
(
F̂ (λ, ζm, h)

)
, (8)

where Qm ∈ R, m = 1, . . . , N are some real constants, and ζm ∈ C play a role of soliton
rapidities. Due to the properties of the quantum prinsiple Heisenberg subalgebra discussed in
section 2, it is easy to commute exponentials of the generators Ê± with the group element (8).

Then the generators Ê± act on corresponding highest/lowers quantum group representation

space vectors, and we obtain the quantum soliton-generating operators ωmF̂ (λ, ζm, h), where

ωm ∈ C are their eigenvalues with respect to Ê±.
In [4] the higher grading generalizations for the conformal affine Toda models were considered.

Both in principle and homogeneous grading of an underlying affine Lie algebra interesting
models were obtained and solved relfecting in particular physical interractions between Toda
and matter fields (associated to higher grading generators). The construction given here will
allow to construct quantum versions to the solutions of the mentioned higher grading Toda
systems.

In a forthcoming paper we will extend the construction given in this notes to the cases of
general Kac–Moody algebras.
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