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GLOBAL BEHAVIOR OF A THIRD ORDER
RATIONAL DIFFERENCE EQUATION
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Abstract. In this paper, we determine the forbidden set and give an explicit formula for
the solutions of the difference equation

ATnTn—1

_ n €N
—bxn + cxp_2’ 0

Tn+1 =

where a, b, ¢ are positive real numbers and the initial conditions x_o, x_1, xg are real
numbers. We show that every admissible solution of that equation converges to zero if
either a < c or a > ¢ with (a —¢)/b < 1.

When a > ¢ with (a — ¢)/b > 1, we prove that every admissible solution is unbounded.
Finally, when a = ¢, we prove that every admissible solution converges to zero.
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1. INTRODUCTION

Recently, there has been a great interest in studying properties of nonlinear and
rational difference equations (see, for example [1]-[22]). Our motivation stems from
some recent papers on difference equations which can be solved (see, e.g. [2], [5], [6],
9], [15], [16], [17], [18], [19], [20], [22]).

In this paper, we determine the forbidden set, give an explicit formula for the
solutions and discuss the global behavior of solutions of the difference equation

ATnTn—1

(1.1) Tpt1 = , n €Ny

—bx,, + cxp_2

where a, b, ¢ are positive real numbers and the initial conditions z_o, x_1, zg are real
numbers.
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2. FORBIDDEN SET AND SOLUTIONS OF EQUATION (1.1)

In this section we derive the forbidden set and give an explicit formula for well-
defined solutions of the difference equation (1.1).

Proposition 2.1. The forbidden set F' of equation (1.1) is

b3 io(a/c)’

U {(u07u715u72): ug = O} U {(uo,u,l,u,Q): U_1 = O}

o)
C
F= U {(U07u_1,u_2); Uo :u—27}
n=0

Proof. Suppose that zgx_; = 0. We have the following cases:

Case 1. If zp = 0 and x_1 # 0, then z3 is undefined.

Case 2. If z_7 =0 and z¢ # 0, then x5 is undefined.

Case 3. If x_5 =0 and xozr_; # 0, then 1 = —(a/b)x_1 # 0. Therefore, we have
that x_1,x¢ and z; are different from zero. This case is reduced to the case when
the initial values x_o,x_1 and x( are different from zero, by shifting indices by one.
The case is considered next.

Case 4. Now suppose that x_; # 0 for all ¢ € {0,1,2}. From equation (1.1), using

the substitution ¢, = x,_2/%,, we obtain the linear nonhomogeneous difference
equation

c b T_o
(2.1) b1 = —tn — —, to=—

a a To

We shall deduce the forbidden set of equation (1.1).

Consider the mapping f(z) = ¢/ax —b/a and suppose that we start from an initial
point (zg,z_1,z_2) such that x_o/xg = b/c.

Now the backward orbits x,,_2/x, = v, satisfy the equation

a b . T_ b
Up = [ Hvn_1) = Evn,1 + p with vg = x—02 =

n

hence we obtain v, = x,_2/x, = f"(v0) = (b/c)>.(a/c)’. Therefore, z, =
n . =0
Tn_2c/b Y (a/c).
i=0
On the other hand, we can observe that if we start from an initial point
ng

(ro,_1,7_2) such that to = x_a/z9 = (b/c) . (a/c)’ for some ng € N, then

i=0
according to equation (2.1) we obtain
Tng— b
tng = —0=2 = 2
T, c

This implies that —bx,, +czp,—2 = 0. Therefore, x,,+1 is undefined. This completes
the proof. O
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Theorem 2.2. Let x_o, x_1 and g be real numbers such that (xg,x_1,2_2) ¢ F.
If a # ¢, then the solution {x,}°> _, of equation (1.1) is

a—cC
T 1H90/a2j+1 ;on=135.,
(2.2) Ty =

a—cC
xOH | Gc/ayes same . =246

where § = (a — ¢+ ba)/a and o = xp/T_2.

Proof. We can write the solution (2.2) as

m
(2.3) Tompi = T2t Hﬁi(j), i=1,2and m=0,1,...
=0

where

, a—c ,
Bi(G) = deja@ti—p T L,2.

Hence we can see that

a—c (a — c)aa aq aror_1
! (c/a)d —b B xilc(a — ¢+ ba) — bax T b “bro +cr_o o
and
a—c (a —c)a’a a’a
o (¢/a)?0 —b - 2(a — ¢+ ba) — ba’a TP ba(c + a)

B a’xd _awpaxo/(—bro+cx_o)  axori/T_4
~clex_g — bxg) —brga ¢ — brga/(—bro +cr_2) c—bri/r_y
- arixo o

by ter—qy T2

Hence, we see that (2.2) holds for n =1, n = 2.
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Now assume that m > 1. Then

arg ﬁ Ba(i)z—1 IT B1(4)

—1

—bxg H B2(4) + cxo H B2(7)

<.
3 !;:15

AT2m+2L2m+1
—bTomto + CTom

To2m+3 =

m

axg H Ba()x_1 H B1(§)  aBe(m)x_q Eoﬂl(j)
z0 "hol Bo(i)(—bfa(m) +c)  olmiTe
ala— )b/ ~be [[A(G) oo = e IT A()
T —bla—0/lc/aP T =b)+c  —bla—c)+c(B(c/a)miE —b)

ala —c)z_q ﬁoﬁl(j) e
— J= o —
N Ce(c/a)2m+2 —ab T c/a 2m+3 H 51

m—+1

=21 [] B10))
j=0

To complete the inductive proof, we shall show that formula (2.2) also holds for
Tom+4. We have

m+1 m
ar_y H Br(d)zo 1 B2(4)
Tomid = AT2m+3L2m+2 _ +1 7=0
—bxom 3 + Cm2m+1 —br_y H B1(j) + ca— 1:10 ()
m—+1 m m
ars T 61000 [ 5a) adsm+ 1) 1 5209
_ j= j= _ 3=0
e (L BGbmm+y+g  PAOED
=
aa )/ (6(c/a)*™** = b)zo {1 5a(s) ala )z 11 Aol
_ j= _ j=
B —b(a —¢)/0(c/a)?™t3 —b+ ¢ ~ —bla—c)+c(f(c/a)2mt3 —b)
aw—@mii@o> it
_ 1= _
~ ch(c/a)?mt3 —ab (c/a)2m+4 b H B2(7) = o gl_[o P20
This completes the inductive proof of the theorem. O
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3. GLOBAL BEHAVIOR OF EQUATION (1.1)

In this section, we investigate the global behavior of equation (1.1) with a # ¢,
using the explicit formula for its solution.

Theorem 3.1. Let {z,}° _, be a solution of equation (1.1) such that (xg,z_1,
Z_9) ¢ F. Then the following statements are true.
(1) Ifa < ¢, then {z,}52 _, converges to 0.
(2) If a > ¢, then we have the following cases:
(a) If (a—c)/b< 1, then {x,}52 _, converges to 0.

(b) If (a —c¢)/b> 1, then both {x2,}22 _; and {z2n4+1}5> _; are unbounded.

Proof. (1) Ifa < ¢, then f3;(j) converges to 0 as j — oo, i = 1,2. It follows
that there exists jo € N such that |3;(j)| < p, with some 0 < p < 1 for all j > jo.
Therefore,

m Jo—1 m
sl = 21| [T 5:)| = o0l TT 56| | TT 5:0)

j=0 j=0 i=jo

Jo—1

< |z-2+i]

II ﬁi(j)}um““~
=0

As m tends to infinity, the solution {z,}52 _, converges to 0.
(2) Suppose that a > ¢. Then we have the following cases:

(a) If (a — ¢)/b < 1, then B;(j) converges to —(a — ¢)/b € (—1,0)as j — 00,4 = 1,2.
Then there exists j; € N such that, 3;(j) € (u1,0), with some 0 > 1 > —1 for
all j > j1 and ¢ = 1,2. Therefore, |3;(j)| < w1 for all j > j; and the solution
{zn}52 5 converges to 0 as in (1).

(b) If (a—c)/b > 1, then B;(j) converges to —(a —¢)/b < —lasj — o0, i =1,2.
Then there exists jo € N such that 5;(j) < v < —1 for some v < —1 for all
j=joandi=1,2.

For large values of m we have

j2—1

H Bi(j)

|Tomti| = @2+

11 6i0)|

Jj=J2

I15)| = lo-2ui
j=0

J2—1

IT 5:6)
i=o

From this and since (xg,z_1,2_2) ¢ F, we have that both the subsequences

> |22 ||t

{z2n}52 1 and {x2,11}22 _; are unbounded. O
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4. CASEa—c=b

Using the transformation r,, = x,,/x,_1, equation (1.1) is reduced to the equation

arp—1

(41) Tn+1 = n:O,l,... .

—brprp_1+¢’

Equation (4.1) has been studied in [2], [3], [4], [22].

In order to discuss equation (1.1) when a — ¢ = b, we investigate the behavior of
equation (4.1).

The following theorem gives the solution of equation (4.1) in terms of the param-
eters a, b, c.

Theorem 4.1. Let r_1, 7o be real numbers such that r_irg = a # ¢/b Y (a/c)’
i=0

for any n € Ng. Then the solution of equation (4.1) is

n—1

“r 0(c/a)¥ —b
— 7 7 N0 1 1 == 1 ...
r 1l gegapr—p n= 35
(4.2) Ty =

n—2

= 0(c/a)? T —b B
TOHW, n72,4,6,...

7=0
where 0 = (a — ¢+ ba)/a and o = xo/z_2.

We shall derive only some results concerning the behavior of the solutions of
equation (4.1) with a — ¢ = b that we shall use.

The solution of equation (4.1) can be written as

Tomai = T—244 H'yi(j), 1=1,2 and m=0,1,...
§=0

where
O(c/a)?Fi=t —p

Yi(d) = 0lcja)ii = b i=1,2.

Theorem 4.2. Assume that a —c = b and let {r,}>>_, be a solution of equation
n .
(4.1) such that r_yrg = a # ¢/b Y (a/c)" for any n € Ng. Then the necessary and
i=0

sufficient condition for the solution {r,}5>_, to be a period-2 solution is o = —1.
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Proof. Necessity: Let {...,0,%,¢,1,...} be a period-2 solution of equation
(4.1). Then we have that

ag arp
4.3 =—r d =7
(43) P Tpere MM VT Souie
From equation (4.3) and since a — ¢ = b, we get o = —1.

Sufficiency: If & = —1, then 0 = (a — ¢+ ba)/a = 0. Therefore,

r2m+i:r72+iH7i(j):r72+ia i:1,2 and m:O,l,... .
j=0

O

Theorem 4.3. Assume that a —c = b and let {r,,}°% _, be a solution of equation
(4.1) such that « # —1 and r_179 = o # ¢/b Zn:(a/c)i for any n € Nyg. Then the
solution {r,}3> _, converges to a period-2 solutztizoon.

Proof. Let {r,};2_; be a solution of equation (4.1) such that r_1ro = a #
c/b Xn%(a/c)i for any n € Np.

=

The condition o # —1 (where a — ¢ = b) ensures that the solution {r, }>2 _; is not
a period-2 solution.
As lim () = lim (0(c/a)¥*i=1 —b)/(0(c/a)? % —b) = 1, there exists jo € N
j—00 j—00
such that ;(j) > 0 for all i = 1,2 and j > jo.
Now for each i € {1,2}, we have for large m

Jj2—1

Tomti = 1—ai | [ %) = r-2si [] %) H i (J)
=0

j=0 J=j2

J2—1 m
o T ) exp < 3 1n%~(j)>.
Jj=0 J=Jj2
Now we show the convergence of the series > [In~;(j)|.
J=Jj2
Using the asymptotic relations (1 +z)~! = 1+ O(x) and In(1 + z) = x + O(2?),
we have that

O(c/a)>+i=1 —p N (

N 0 (c/a)* " (a —c)
i) =M=y e )

1+ - —
+ a 6(c/a)?ti -1

= (1+ 222 (57 4o((9)7)
O(c —a) sc\25+i—-1 c\2i
- (ab )(a) +0((a) )-
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From this and since ¢/a < 1, by using a known criterion for the convergence of series
o0
we get that the the series > |In~;(j)| converges.
J=J2
Hence, there are two real numbers g; € R such that

lim 7ot =05 @€ {0, 1}.
—00

If we set n =2m+1i—1,4=0,1 in equation (4.1), we get

aram—1
—brom—172m + ¢

arom,
and "omy2 = —F/————————————— m:O,l,....

Tom+1 = ’
—bramrom+1 +¢

By taking the limit as m — oo, we obtain

aQ1

1 d ago
—bo100 + ¢

4.4 0 0= — 20
(4.4) ! 0 —bgoo1 + ¢

If o1 = 0, then from the second equation in (4.4), we get g9 = 0. This is a contradic-
tion, as the equilibrium point # = 0 of equation (4.1) is unstable (a repeller) when
a > c (see [2]).

This implies that g; # 0,4 = 0,1 and gpo1 = —1. Therefore, {r,}>>_, converges
to the 2-periodic solution

{"'7@0)917@0)91)"'} with 0001 = —1.

Now we are ready to formulate the main results in this section.

Theorem 4.4. Assume that {z,}° _, is a solution of equation (1.1) such that
(xo,x_1,2_2) ¢ F and let a —c =b. If « = —1, then {z,}52 _, Is an eventually

periodic solution with period 4.

Proof. Assume that a —c=5. If « = —1, then 6§ = 0. Therefore,

m m
a—cC
Tamti = @z || Uejayimi—p ~ T2+ [T-D
=0 j=0

=2 op (=)™ i=1,2and m=0,1,....
Now if weset m=2n+1—1,1=0,1, then
Taniotrio =T opi(—1)2"T =12, 1=0,1 and n=0,1,....
Therefore,

Tyn—1 = T—-1, T4n = L0, T4n+1 = —T—-1, T4n4+2 = —T0-
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Theorem 4.5. Assume that {x,}>2 _, is a solution of equation (1.1) such that
(vo,x—1,2_2) ¢ F and let a —c = b. If a # —1, then {z,}52_, converges to
a period-4 solution {po,p1, —pio, —p1} such that p; = polei|, where g1 is as in
Theorem 4.3.

Proof. Suppose that {z,}52_, is a solution of equation (1.1) such that
(xo,x_1,2_2) ¢ F and let a —c=10. As

-1, i=1,2,

. . a—c
jlggoﬁi(ﬁ—m =-1

there exists jo € N such that 5;(j) < 0 for all i = 1,2 and j > jo.
Hence

11 50| I 18:0)]
j=0 J=Jjo

esxp (Emj i[5 ).

Jj=jo

[15)] = be-aui

Jj=0

|T2m+i| = |72l

Jo—1

I1 8:G)
=0

= |T_24.4]

Now we show the convergence of the series Y |In(—3;(j))|.- Using the asymptotic
J=jo
relations (1 +z)~! =1+ 2 + O(2?) and In(1 + z) = = + O(x?), we have that

o= (1+2(2)" ro((2)")

o0
As ¢/a < 1, we get that the series Y In|S;(j)| is convergent.
J=jo
This ensures that there are two positive real numbers g, 1 such that

(4.5) n%gnoo |x2m+i| =i, 1€ {0, 1}.

Now set
lim x4y =1Ly, l€ {0, 1,2,3}.
m—00

As
Tam+1T4m+2 = mj:—: and  TamioTamt3 = %ﬁ,
using Theorem (4.3) we obtain Lo = —Lg and L3 = —L;.
On the other hand, from (4.5) we get
|Lo| = |=Lol = [Lol = po and  |Ls| = |=Li| = [L1] = pua.
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Then
Lo=po or Log=—pg and Li=p or Li=—p.

Without loss of generality, we take Ly = po and L; = pi. Then the solution
{zn}52 _, converges to the period-4 solution

{' oy Oy H1, —HOo, —H15 HOs 1, —HO, —H1, - - }

Moreover, as |T2m+1| = |T2mT2m+1|, we have pu; = polo1| where

(c/a)? —b = b
- 11_[¢9C/OLQJJrl b and u0:|$0|gm'

5. CASEa=c
In this section, we study the case when a = c.

Proposition 5.1. Assume that a = c. Then the forbidden set G of equation (1.1)
is

G:

(@

{(uo,u,l,u,g): Uy = u,gﬁ}

U {(ug,u—1,u—2): ugp =0} U {(ug,u—1,u_2): u_y =0}.

Let z_2,2_1 and zy be real numbers such that (zg,2_1,2_2) ¢ G. If a = ¢, then

n=0

the solution {z,}52 _, of equation (1.1) is

n—1

ax
_ _ =1,3,5,...
xl_li[a—boz(Zj—l—l)’ n 3y Jy 9

772

=2,4,6,...
J"01_[ ba2j+2) n y Xy Uy

(5.1) Ty =

where a = zp/z_o.

Proof. We can write the solution (5.1) as

(5.2) Tomii =2 g | [m(G), i=1,2and m=0,1,...
§=0
where
ao
i(J) = ——F—7——, =12
mi(J) a —ba(2j +1) !

By direct calculation, we can get the values of 21 and x5 as desired.
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Now assume that m > 1. Then

azo [T n2(j)z—1 [T m(j)
Tamis = AT2m4-2T2m 41 _ j=0 j=0
" —bTom+2 + axam m , m=1
T b [ () +axo 1T me()
5=0 7=0
azo [I me(f)z—1 [T m@)  ana(m)z 1 TT m(5)
_ j=0 j=0 _ Jj=0
= —bna(m) +a
0 T 1) (~bma(m) +a) 2(m)
=
a(ac/(a —ba(2m +2)))z—1 [T m(j) a(aa)r_y IT m(j)
_ j=0 - i=0
N —baa/(a — ba(2m +2)) +a © —baa+ ala — ba(2m + 2))
m m—+1
a
= - _ 1 = 1 _ ]
v 1j];[0m(.7) m(m+ 1)z 1};[0771(3)
m—41

=z [ mG)
7=0

To complete the inductive proof, we shall show that formula (2.2) also holds for

ZTom44. We have

m+1 ) m .
az—1 I m@G)zo [T n2(4)
Pomid = AT 2m+3L2m+2 - j=0 j=0
m = -
—bXom+3 + aT2m+1 mdl .
’ —bz_y [[ m() +az_1 []T m@)
=0 j=0

m—+1 m m
ar_; _HO 1 (j)o HO n2(7) ani(m + 1)xo HO n2(7)
j= j= j=

Ty ﬁ m(5)(=bnz(m + 1)+ a) —bm(m+1)+a
§=0

alaa/(a — ba(2m + 3)))zo ] n2(4) a(ac)zo [T n2(4)
_ =0 B =0
N —baa/(a — ba(2m +3)) + a ~ —baa+ a(a — ba(2m + 3))
m m—+1
ax
= - ) = ]_ y
e ba@m T 4)$0g772(3) nz(m + 1)xo ]1;[0 n2(7)
m+41
=0 [] m0)-
§=0
This completes the inductive proof of the theorem. O
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Theorem 5.2. Let {z,}2 _, be a solution of equation (1.1) such that (xg,z_1,
x_9) ¢ G. If a = ¢, then {x,}>_, converges to 0.

Proof. It is sufficient to see that 7;(j) — 0 as j — 00,7 =1,2. O

Acknowledgement. The author is grateful to the anonymous referee for
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