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Learning about Rare Disasters:

Implications For Consumption and Asset Prices'

Max Gillman,?> Michal Kejak® & Michal Pakog*

Abstract

Rietz (1988) and Barro (2006) subject consumption and dividends to rare
disasters in the growth rate. We extend their framework and subject con-
sumption and dividends to rare disasters in the growth persistence. We model
growth persistence by means of two hidden types of economic slowdowns: re-
cessions and lost decades. We estimate the model based on the post-war U.S.
data using maximum likelihood and find that it can simultaneously match a
wide array of dynamic pricing phenomena in the equity and bond markets.
The key intuition for our results stems from the inability to discriminate be-
tween the short and the long recessions ex ante.

Abstrakt

Studie Rietz (1988) a Barro (2006) podrobuji spottebni a dividendové pro-
cesy fidkym katastrofam (rare disasters) v mife jejich ekonomického ristu.
Nase studie tento ramec rozsifuje zavedenim fidkych katastrof do persistence
rustu. Tato ristova persistence je modelovana pomoci dvou skrytych typu
ekonomického poklesu: recesi a ztracenych desetileti. Model jsme odhadli
metodou maximalni vérohodnosti (maximum likelihood) na zakladé povalecnych
americkych dat a ukazali, Ze je schopen soucasné vysvétlit Sirokou skalu dy-
namickych cenovych jevi na trzich akcii a obligaci. Zakladem nasich zjisténi
je neschopnost investora ez ante odlisit kratké recese od dlouhych.
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1 Introduction

Rietz (1988) proposes to model rare disasters as sudden cataclysms: short
but deep declines in the standards of living. Using the large economic de-
clines in the U.S. associated with World War I, the Great Depression, and
World War II, Barro (2006) calibrates the probability of the disasters and
argues that it is possible to account for the level of the equity premium.!
Rietz and Barro consider a constant probability of disaster. Farhi & Gabaix
(2011), Gabaix (2008, 2012), Gourio (2008, 2012, 2013), Gourio et al. (2013),
Seo & Wachter (2013), Tsai & Wachter (2013), and Wachter (2013) extend
their work by making the probability variable while Martin (2013) exploits
cumulant-generating functions. In accordance with Timmermann (1993),
Gourio (2012) suggests learning as a fruitful way to endogenize the disaster
probability. Nevertheless, learning in this Barro-Rietz framework inevitably
plays marginal role because the deep declines in consumption are learned
almost instantaneously.

This paper proposes an alternative model of rare disasters as protracted
stagnation in the standards of living, so-called “lost decades” in the macroe-
conomics literature on depressions (Hayashi & Prescott, 2002, Kydland &
Zarazaga, 2002, Bergoeing et al., 2002). Interpreting disasters as protracted
stagnation makes learning rather slow and generates a sizable increase in the
magnitude as well as in the variation of economic uncertainty, thus dramat-
ically enhancing the match of a broad range of macroeconomic and finance
phenomena.

In the language of macroeconomics, the uncertainty shocks of Bloom
(2009) arise endogenously as the consumption volatility fluctuates due to
learning, contrary to the exogenous specification in the long-run risk models
of Bansal & Yaron (2004) and Bansal et al. (2007, 2010, 2012). In a related
paper, Orlik & Veldkamp (2013) propose a different way to endogenize these

uncertainty shocks.

I addition, Brown et al. (1995) study the long-term survival of financial markets
while Barro & Jin (2011) and Barro & Ursua (2012) analyze the large economic declines
in international macroeconomic data.



In the language of finance, learning induces a procyclical variation in con-
sumption and dividend forecasts and a countercyclical variation in the Ep-
stein & Zin (1989, 1991) discount rates in response to changes in the average
time to the (partial) resolution of uncertainty, and thus our model can simul-
taneously match a wide array of dynamic pricing phenomena in the equity
and bond markets.

We follow Mehra & Prescott (1985) and consider a version of Lucas
(1978) representative-agent model of asset pricing with exogenous, stochas-
tic and perishable dividends, as extended to a continuous-time incomplete-
information setting by Veronesi (2004) and David & Veronesi (2013). Sim-
ilarly to Pakos (2013), we extend the regime-switching models of Cecchetti
et al. (1990), David (1997), David & Veronesi (2013), Hamilton (1989) and
Veronesi (1999, 2000, 2004) by subjecting consumption and dividends to hid-
den shifts in the growth rate and growth persistence as well. The variability
in the growth persistence is modeled by considering two types of recessions
with identical repressed growth rates but different mean duration: the former
corresponds to a regular business-cycle recession while the latter is a rare lost
decade, which happens on average once a century.

From the perspective of Mehra & Prescott (1985) and Weil (1989), our un-
derlying hidden chain is not Markov with exponentially distributed sojourn
times but rather semi-Markov? with the sojourn times following any distri-
bution, in our case a time-varying mixture of two exponential distributions,
one for each recession type. Modeling multiple recessions with different mean
duration inculcates a tail uncertainty about the sojourn times as in Weitz-
man (2013), interpreted as long-run risk in Pakos (2013). In related studies,
Branger et al. (2012), and quite recently Jin (2014), emphasize the interplay
between rare events and long-run risk.

In comparison to the model of Rietz (1988), semi-Markov chains can be
reformulated as Markov ones by augmenting their state space. Such refor-
mulation in our setting leads to a Markov chain with three states: expansion,

short recession and long recession, subject to the restriction that the reces-

28ee Howard (1971, Chapter 10).



sions share exactly the same growth rate. We think of “a low-probability,
depression-like third state” of Rietz (1988) as a decade-long stagnation in
consumption with the disaster probability (the subjective belief about the
third state) fluctuating in response to changing economic conditions.

Our model of hidden growth persistence is closely related to Cogley &
Sargent (2008) who study learning about the mean duration of recessions.’
In their setting, the duration distribution of expansions as well as recessions is
governed by fixed but unknown parameters, while their representative agent
is endowed with pessimistic priors based on the negative experience of the
Great Depression. Such a calibrated model matches well to many pricing
puzzles in the equity market. In a related study, Collin-Dufresne et al. (2013)
point out that the best unbiased estimate of a fixed but hidden parameter is
a martingale that induces permanent shocks. They extend Cogley & Sargent
(2008) by using the recursive preferences of Epstein & Zin (1989, 1991) so as
to inculcate long-run risk into asset price dynamics.

Our analysis differs from Cogley & Sargent (2008) and Collin-Dufresne
et al. (2013) in the following ways. First, rather than using pessimistic pri-
ors from the Great Depression, we instead estimate the consumption and
dividend parameters by maximum likelihood from the postwar U.S. data
from 1952 to 2011. Second, the persistence in our model follows a hidden
two-state Markov chain rather than being a fixed parameter, which has the
advantage that the risk premiums are stationary. Third, each slowdown in
economic activity confronts the investor with a Peso-type problem about the
mean duration of the recession, generating a tail uncertainty as in Weitzman
(2013).

The additional related literature includes Backus et al. (2011), Bates
(2000), Branger et al. (2012), Santa-Clara & Yan (2010), and quite recently
Schreindorfer (2014). These studies suggest to measure the frequency and
size of such disasters using the price data on options and other derivatives on
U.S. equity indexes. Furthermore, while working on our paper, we have come

across a study of Lu & Siemer (2013) who study learning about rare events

3Weitzman (2007) and Johannes et al. (2012) also emphasize the importance of
Bayesian updating about unknown structural parameters.
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in a framework without a tail uncertainty about the recession duration.
The paper is organized as follows. In Section 2 we present the formal
model and derive the theoretical implications of variable growth persistence
for consumption and asset prices. In Section 3 we present the results of
estimation. Section 4 describes the quantitative implications of learning for
consumption and asset prices while in Section 5 we present sensitivity analysis
and discuss our preliminary results for option pricing. We conclude in Section

6. Detailed mathematical proofs are found in the Technical Appendix.

2 Model

We start by briefly describing the representative investor’s preferences and
specifying the hidden semi-Markov model of the cash-flow growth rates. We
then go on to solve the investor’s optimal consumption-portfolio problem.
In order to do this, we first solve the inference problem by introducing the
posterior distribution over the discrete number of hidden states and derive a
recurrent relationship for its law of motion by applying the Bayes rule. We
then discuss how the variation in the posterior distribution generates time-
varying endogenous economic uncertainty in terms of changing forecasts as
well as changing forecast-error variances of the T-period cash flow growth
rates. Second, we take the posterior distribution and make it a part of
the state vector in the dynamic programming problem. This is relevant
as it makes the optimization problem Markovian, leading to the standard
Hamilton-Jacobi-Bellman equation. Using the derived first-order conditions
and the guess-and-verify method, we then derive the pricing equations for
unlevered and levered equity, real zero-coupon bonds as well as European
options. The section additionally relates the real yield curves and the bond
risk premiums to the term structure of the T-period forecasts as well as the

T-period forecast error variances of the consumption growth rate.



2.1 Preference Specification

The representative agent maximizes the recursive utility function of Epstein
& Zin (1989, 1991) over his consumption stream ¢; and the continuation

utility J; defined by the recursion

J, = Et{/tooU(cT,JT)dr}, (2.1)

with the CES utility aggregator

=

Ule,J) = —° Cl_%_((l_’y)‘]). (2.2)

L=y (1=y) gy

In these expressions, F; denotes the conditional expectation operator, d > 0

is the rate of time preference, v > 0 is the coefficient of the relative risk
aversion, ¢ > 0 is the magnitude of the elasticity of the intertemporal sub-
stitution, and 0 = (1 —~)/ (1 — @b‘l) is a measure of the non-indifference
to the timing of the resolution of uncertainty as we relax the independence
axiom of the expected utility.

The investor prefers early resolution of the uncertainty when the current
marginal utility %—g falls as relatively more of the consumption occurs in the
future, measured by higher continuation utility J. In this case, the cross-

0 (oU

derivative 7 (%) is negative which happens for v > 1~!. The expected

utility is nested for a—aj (%—Z) — 0 which happens for v = 1.

2.2 Asset Markets

We endow the investor with a single Lucas tree called unlevered equity (or
consumption claim), and denote it with the superscript u. The asset yields
a continuous flow of dividends at the rate D}. In addition, we distinguish
between the total wealth, which is unobservable, and the aggregate equity
market. We thus introduce levered equity denoted with the superscript [. The
levered equity yields a continuous flow of dividends at the rate D!, which is
different from Dy'. We refer to the unlevered and levered dividends jointly

as the cash-flows and distinguish them using the superscript e € £ = {u, [}

6



. We furthermore introduce real zero-coupon bonds with maturities of up to
thirty years (superscript b) and European call options (superscript ¢). For
the simplicity of notation, we denote the class of the securities A = EU{b, c}.
We assume that all assets in A except the unlevered equity are in zero net
supply.

Our bivariate time-series model for the cash-flow growth rates generalizes
the standard Markov-trend model in logs introduced by Hamilton (1989) to a
semi-Markov setting by subjecting the instantaneous cash flow growth rates
dg; = dlog Dy for e € E to hidden semi-Markov shifts:

dg; = pg,dt + o°dzy. (2.3)

The predictable component p§ € { ﬁe,ﬁe} with p® < 1® is driven by a two-
state semi-Markov chain s; which is hidden in the standard Brownian noise
z = (zﬁ,zg) . We assume for tractability that z; and s; are statistically
independent processes.

Our cash flow model in (2.3) implies that the forecast-error variance of

the cash-flow growth rate over the next instant
(6°)* dt = var, {dgf — F, {dgf}} (2.4)

is constant. Nonetheless, our learning model with hidden shifts generates
a predictable variation in the T-period forecast-error variances when the in-
stantaneous cash flow growth rates dgy are time-aggregated from the infinites-
imal decision intervals to their T-period counterparts f:JFT dg¢ as shown in
detail in Section 2.4. Our setting thus differs significantly from the extensive
long-run risk literature where the predictable variation in the forecast-error

. 2 . .
variance (of)” is exogenous rather than endogenous due to learning.”

4See in particular Bansal & Yaron (2004) and Bansal et al. (2007, 2010, 2012).



2.2.1 Semi-Markov Chain

Current literature models business-cycle fluctuations in terms of two-state

hidden Markov chains with the state space
S = {s; = expansion, sy = recession}.

In a continuous-time setting, it is natural to express the transition probabil-

ities in terms of the hazard rates of transition

A= z Aijs
SjES\{Si}
where \;; denotes the non-negative transition intensity for any s;, s; € S and

1 # j. If the hazard rates are constant, the density of the sojourn time 7; for

1 = 1,2 is given by the exponential distribution

fTi (t) = /\z exp (—Ait)

for non-negative t. Exponential distribution tends to be a common choice
for modeling sojourn times due to the mathematical tractability allowed by

the memoryless property
P{m>x+y|lm>x} = P{r>y}.

However, exponential distributions have the drawback that they feature light
right tails if the hazard rate is inferred from the macroeconomic data, which in
other words means that long recessions are extremely rare. In fact, the follow-
ing back-of-the-envelope calculation suggests that the probability of observ-
ing an economic recession with a duration of more than 10 years {5 > 10}

equals

P{m >10|s = sy} = / fTQ dr = exp (—10)\2)
exp (—10) = 0.00005, (2.5)



when the mean duration of the recession state Ay ! is four quarters. In that
case, the number of slowdowns until the first appearance of a lost decade
follows the geometric distribution with the mean (0.00005)™" = 22,000. In
other words, it takes on average about 22,000 transitions in order to draw
at least a decade-long recession which is arguably implausible due to the
extreme rareness of the event.” 0

In order to model the long-lasting recessions in a more plausible way, we
propose to generalize the standard two-state Markov chain setting with the
state space S to a two-state semi-Markov chain setting where the probabil-
ity law governing the recession sojourn time is a mixture of two exponential
distributions. Although semi-Markov chains can be arguably less tractable,
there are special instances when they can be easily represented in terms of
restricted Markov chains by augmenting their state space. As shown in Mur-
phy (2012, Section 17.6), the two-state semi-Markov chain can be expressed
in terms of a three-state augmented Markov chain, in our case with two
sub-states for the downturn which differ in the mean duration. The first sub-
state corresponds to the common business-cycle recession and has the mean
duration Ay L. The second sub-state corresponds to the rare but protracted
recession where we set the mean duration A5 L equal to forty quarters. The

augmented state space is
S = {51752753}7

where 51 = (81, A1), S2 = (82, A2) and 53 = (s2, Ag). The semi-Markov prop-
erty implies equality of the growth rates across the recession types, that is,
pi = p¢ and p§ = p = pg for each e € E. As a result of two recession types,
the sojourn times of a low-growth epoch follow a mizture of two exponential

densities with different means. *

SAs a piece of anecdotal evidence, consider the lost decade experienced by Japan at
the end of the 20th century.

6Diebold et al. (1994) suggest modeling transition intensities as logistic functions of
certain exogenous variables. The drawback however is that in a general equilibrium setting
one needs to specify the dynamics of those exogenous variables in fine detail.

"Such a mixture density is called hyperexponential distribution. Hyperexponential
density is thus the probability distribution that governs the sojourn time spent in recession
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Furthermore, we assume that upon leaving the expansion state nature
tosses a biased coin according to the Bernoulli probability distribution (¢, 1 — q)
for some ¢ € (0,1) where the outcome of the toss decides the type of the
downturn. As a result, the transition probability matrix between times ¢ and
t 4+ T equals the matrix exponential exp {\T'}, where the transition intensity

matrix® \ is given by

A1 g\ (1 - Q) A1
A= XN =X 0 . (2.6)
A3 0 — A3

We note that the two-state model without long recessions is nested for ¢ = 1
because then the hazard rate of entering the long recession (1 — ¢) A1 is zero.

The invariant distribution @ = (7, 72, 73)’ is given as the left eigenvector
that corresponds to the zero eigenvalue of the transition intensity matrix,
subject to the restriction that Z?:1 7; = 1. In particular, the invariant

probability

_ (1—q) A5
T3 = 14 1 1
AL ad +(1—q) A

(2.7)

equals the average time spent in the long recession, (1 —¢) A\;*, divided by
the average length of one whole cycle, A ' 4gAy ' + (1 — ¢) A3 '. This result is
important in the empirical section where we propose to model the rare long
recession as a lost decade that occurs on average once a century, thus setting

A;! =10 years and 73 = 0.1, exactly in line with (2.7).

2.3 Inference Problem

The investor’s inference problem is to extract the current but hidden state

s¢ from the history of the cash-flow signals F; = {(gi‘, ng) for 7 < t} . For

when the type is hidden.

81dentification requires that we rule out instantaneous transitions between short and
long recessions by setting Aog = A3o = 0. This assumption however is not particularly
restrictive because the transition probabilities P { s, .7 = §;| s; = s5;} are positive for any
finite interval T > 0 and 7,7 = 1,2, 3.

10



that purpose, we define the belief
Wi,t:P{St:gi‘ft} fori:1,2,3, (28)

and introduce the so-called “innovation process” z; the increment of which
is the normalized forecast error of the cash-flow growth rates over the next

instant,
e 1 (& (&
dz; = s (dgi — Ev{dg;}). (2.9)

First, Liptser & Shiryaev (1977) show that zf is a Brownian motion in the
investor’s filtration which makes the investor’s intertemporal optimization
problem Markovian by allowing us to treat the beliefs m; = (w14, 72,4, 7'('3715)/ as
part of the state vector that reflects the variation in the investment oppor-
tunity set perceived by the investor. Second, it is straightforward to see that
the innovation process is correlated with the hidden semi-Markov chain s;.
Third, the innovation process enables us to express the cash-flow dynamics in
(2.3) as the sum of the predictable part m{dt = E; {dg;} and the cash-flow
news dgf — Ey {dgy} by using (2.9),

dg; = mydt 4+ o°dz} fore € E. (2.10)

We can then apply the Bayes rule and obtain the following law of motion for
the beliefs m;:

dmiy = miedt + ) vf,d3. (2.11)
eckE

2.3.1 Intuitive Explanation

Although the reference to the formal proof is provided in the Appendix B, the
outline of the intuition behind (2.11) is relatively straightforward. First, the
predictable part given by the drift n;; = 23:1 mj\ji reflects the dynamics

of the perfectly observable semi-Markov chain when augmented to the three-
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state Markov chain. Second, the volatility

ﬁe

‘ i
Vi = Tt (]_ — 7T17t) ( 0_6_ ) (212)

and

Ve, = —miamiy (“ ;H) for i — 2.3 (2.13)

measures the weight that the investor puts in his sequential updating on
the normalized news dzf in (2.11). Indeed, the weight Vi, is proportional
to the economic uncertainty about the underlying instantaneous growth rate

measured by the prior variance

var; {u;} = m (1 —my) (ﬁe — Ee) (2.14)

of the Bernoulli distribution over the growth rates i and p at the beginning
of the instant (¢,¢ -+ dt).

Speaking more formally, the Bayes rule says that the posterior odds equal
the prior odds times the likelihood ratio. Thus, the increment in the log of
the odds

O193 = : (2.15)

in favor of the expansion equals the log-likelihood ratio. ? The log-likelihood
ratio in favor of the hypothesis Hy : pug, = 71° against the alternative Hy :
ps, = pu°, conditional on the new data dgi and no regime shifts in the interval
(t,t+ dt), equals

2

(o€)” dt (o€)” dt

As a result of (2.10), the increment in the log odds due to the arrival of the

9 the sequential Bayesian updating, the posterior for the previous instant (¢ — dt, t)
becomes the prior for the next instant (¢, + dt).

12



new information is given by

dlog 0103 = O (dt) + (“ _H> z, (2.17)

0—6

and we recover the diffusion term v{, in (2.11) by applying It6 lemma to
(2.15). As can be seen in (2.17), good cash-flow news dz{ always raises the
posterior odds O 93 in favor of the expansion.

Furthermore, the total weight v5, +v5, = —vi;, <O0is split'! across the
beliefs 9+ and 734 according to the prior odds at the beginning of the instant
(t,t+ dt) in favor of the short recession

Oy = —2L (2.18)

as vy, /v, As aresult, good cash-flow news dzj during the short recession
lowers not only the beliefs my; and 73, but also brings down the relatively
high odds in favor of the shorter recession. Indeed, suppose we know that
s¢ # 51 and we try to discriminate between short and long recessions Oy 23.
11

Speaking more formally, let us denote 7" the random time spent in the
low-growth state s; € {$9,53} and recall that it follows an exponential dis-
tribution with mean A, ' in the short recession and A3 ' in the long recession.
The Bayes rule implies that the increment in the log of the odds Os3 again
equals the log-likelihood ratio

leg 023 = ()\2 — )\3) dt (219)

which is basically a special case of (2.11) for m; = 0. As a result, the poste-
rior odds in favor of the short recession Oy3 have tendency to decrease with
the amount of time spent in the low-growth state and the learning about the
growth persistence is time-consuming in proportion to the difference between

the hazard rates for the short recession and for the long recession, Ao — As.

10Note that the restriction that the beliefs sum to one Z?:l mi+ = 1 implies that the
increment d (Z?Zl 7Ti7t) = d (1) is zero and hence the drifts as well as volatility must sum

to zero as well, 320, =0=3" iy
e can equivalently think of the analysis as being conditional on {s; # 5 }.
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2.3.2 Endogenous Disaster Probability

Rare consumption disasters in our semi-Markov model manifest themselves
as unfavorable draws of the recession duration. When we represent the two-
state semi-Markov chain in terms of a restricted three-state Markov chain,
subject to the equality constraint p§ = p® = pg for each e € £ = {u, [}, we
identify the rare consumption disasters as the long recessions s; = s3 and the

disaster probability as the belief
T3t = P{St = §3| E} . (220)

The endogenous variation in the disaster probability m3; comes from the
fluctuations in the posterior odds in favor of the expansion Oj 93 in (2.15)
and the posterior odds about the type of the recession Os3 in (2.18). In
fact, each recession s; = Sy carries with it the subjective risk that it may
correspond to the lost decade regime s3 due to the unobservability of the
recession type. Such a novel model of consumption disasters is an example of
a Peso problem, which refers to a situation in which the possibility of some

infrequent event (such as a long recession) has an effect on asset prices. 12

2.4 Fluctuating Economic Uncertainty

It is well-known in the literature that the variation in economic uncertainty is
the key to successfully explaining the variation in asset prices. 13 Economic
uncertainty can be measured by the degree of difficulty in making precise
forecasts of future cash-flow growth rates measured by the term structure of
the forecast-error variances of the T-period-ahead cash-flow growth rates.
We show that the introduction of hidden regime shifts generates endoge-
nous variation in the forecast-error variance of the cash-flow growth rates
and thus in economic uncertainty. The key to showing this consists in time-
aggregating the growth rates from the infinitesimal decision intervals to their

T-period intervals.

12866 Evans (1996) for a review of the Peso literature.
133ee in particular Bansal & Yaron (2004); Bansal et al. (2007, 2010, 2012)
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In order to time-aggregate the instantaneous cash-flow growth rates dgy

for each e € F, let us denote the T-period growth rate

t+T
dir = [ dg, (2.21)
t

the mean T-period growth rate

t+T
pir = [ s (222)
t

and the T-period innovation

t+T
Zip = / o°dzL. (2.23)
t

As a result of the time aggregation, the cash-flow model leads to

Gir = M1t Zr (2.24)

with the following variance decomposition of the T-period cash-flow growth

rate,
vary {gip} = vary {pg ) + var, {z{p} . (2.25)

Expressed in words, the variance of the T-period cash-flow growth rate
vary { gf’T} is given by the sum of the forecast error variance of the mean
T-period growth rate (first term) and the forecast-error variance of the T-
period innovations (second term). In particular, the volatility of the annual
consumption growth rate corresponds to of'y. The commonly used autore-
gressive processes imply that the forecast error variance of the mean T-period
growth rate (first term), var, { ,u;T}, is constant. *

We show in the following two sections that learning about hidden regime

shifts can generate countercyclical fluctuations in the forecast-error variance

gy example, Bansal & Yaron (2004) in their Model I specify the expected consump-
tion growth rate as an AR(1) process subject to homoscedastic innovations. Therefore,
their model generates constant forecast error variance of the T-period consumption growth
rate which they relax in their Model II by introducing exogenous variation in the con-
sumption variance (c¢)* as an AR(1) process.

15



of the T-period cash-flow growth rates with constant ¢¢ and hence constant
var; {z{p} = (0°)*T.

2.4.1 Time-Varying Forecast Error Variance

Let us denote the T-period forecast conditional on the hidden state
mf,Tﬁ = L {gf,T‘ Fi, 80 = :sz} (2.26)

and the T-period forecast error variances conditional on the hidden state

2
(‘%ﬁm) = var {gte,T‘ Fio st = 5i ) (2.27)

and

2
(Uf,Tz) = var {Mf,:r’ Ft, 8t = 51} : (2.28)

The conditional moments given the hidden state s; vary due to the possibil-

ity of a regime change with the more persistent state of lower hazard rate

e
t.T)i

decomposition conditional on the hidden state analogous to (2.25) can be

of transitioning \; displaying lower volatility v Furthermore, variance

expressed as ,
2
2
(o) = (5zs) +(@)°T, (2.29)
We then condition down to the investor’s information set F; which does

not contain the hidden state s;. The mean T-period cash-flow growth rate

mip = K { ng} is given by

3
e _ E (& .
mt’T —_— mt’T|Z‘7TZ7t. (230)
1=1

Furthermore, using the decomposition that the variance equals the variance

of the conditional mean plus the mean of the conditional variance!”

var, {x} = var, {E {x| Fy, s} + By {var {z| Fi, s¢}} (2.31)

I5Note that the conditional moments E; and var; are conditional only on F; which does
not include the hidden state s;.

16



yields the following decomposition of the corresponding T-period cash-flow

variance in (2.25)

e \2 e 2 e\2
(Ut,T) = Z (Ut,T|i> + ()T | i
i=1 N ~ _

Variance under Complete Info

~
Mean Variance under Incomplete Info
2

3 3
2
+ > (i) e = (o mime ) (2.32)
1=1 =1

~
Variance of Mean Growth under Incomplete Info

As we can see from (2.30) and (2.32), the variation in both the mean T-
period growth rate forecast my ;. as well as the volatility oy, depends on the
evolution of the beliefs (7 4, ma, 7r3,t)/. 16 1n addition, the T-period forecast
my attains its maximum when the confidence in favor of the expansion
state is the highest and its minimum when the confidence in favor of the
lost decade is the highest, whereas the corresponding forecast error variance
(UET)2 attains values based on the magnitude of the economic uncertainty

measured by the dispersion of the beliefs.

2.4.2 Countercyclical Consumption and Dividend Volatility

A two-state continuous-time Markov chain can be be expressed as a linear
combination of two independent compensated Poisson processes leading to
a continuous-time AR(1) process with innovations that are non-Gaussian
and heteroscedastic, having the instantaneous variance proportional to the
persistence of the state, (ﬁe — He)Q M\ dt for each s, € S. 17 It can be shown

that the analogous result carries over to our two-state semi-Markov setting.

16T his is consistent with Veronesi (1999) who shows in Proposition 6 that if expected
consumption growth rate follows a hidden Markov chain then shocks to the instantaneous
expected dividend growth rate are necessarily heteroscedastic. Although he does not time
aggregate the cash-flow growth rates from infinitesimal decision intervals to the finite
ones, his two-state Markov chain setting is able to generate time-varying consumption
volatility after the aggregation. However, such variation would be quantitatively smaller
in comparison to our two-state semi-Markov setting.

1796e Hamilton (1989) for discrete time treatment.
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Our empirical estimates in Section 3.2.1 confirm that the transition hazard
rates satisfy Ay > Ay and we thus obtain the ordering on the forecast error
volatility of the mean T-period cash-flow growth rate conditional on the
hidden state s; as U;T|2 > vt@’Tu. Note that we omit the discussion related
to the rare state by assuming 7m3; ~ 0. In view of (2.29), the volatility
of the T-period cash-flow growth rate under complete information is thus
countercyclical because the mean duration of the recessions )\s_tl is empirically
shorter in comparison to the expansions.

Furthermore, in case of incomplete information about the underlying state
the variance of the T-period cash-flow growth rate decomposed in (2.32) has
two terms, the mean of the conditional variance under complete information
plus the variance of the conditional mean hidden due to incomplete infor-
mation. The first term U™+ Vg (1 — m) is a decreasing function of
the belief 7 ; due to the ordering of the conditional volatility U;T‘i displayed

above and it is thus countercyclical. The second term

2 2 9
(mf,Tu) m + (mf’Tp) (1—m)— (mf,T|17Tl + My 7pp (1 — 7T1))

is a quadratic function of the belief m; and it is an increasing function in the
belief 7 4 for m 4 < % but decreasing for m ; > % due to the ordering of the T-
period-ahead forecasts miTll > m;T‘Q implied by pf > us. As we see later in
our parametrization using maximum likelihood estimates, the second term is
usually dominated by the first one and thus the total cash-flow volatility oy ;

remains countercyclical even after accounting for incomplete information.

2.4.3 Cash-Flow Dynamics over the Phases of the Business Cycle

The forecast as well as the forecast error variance of the T-period cash-
flow growth rate vary monotonically over the separate phases of the business
cycle. First, transitioning to the high-growth state s; = s is associated
with a gradual improvement in the T-period forecast mg, = Ej (gf’T) as
well as the T-period forecast error variance (ate’T)2 = vary {gf’T}. These
gradual changes are driven by the rise in the posterior odds O 23 in (2.15) as

the high-growth state is being recognized. Second, transitioning to the low-
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growth state s; = $y is associated with a gradual deterioration in the forecast
and the forecast error variance of the T-period cash-flow growth rate. Again,
these gradual changes are driven not only by falling posterior odds O 23 as
the low-growth regime is being recognized, but also rising posterior odds in
favor of the long recession O,y in (2.18) as the likelihood of a protracted

slowdown is increasing. 8

2.5 Investor’s Problem

The investor’s financial wealth W; comprises the unlevered and the levered
equity as well as the real zero-coupon bond with a given maturity 7" and the
riskless cash account offering the continuously compounded rate of return r;.
We denote the share of each asset a € A in the wealth portfolio W; as wf and
let the investor decide continuously how much to consume and how much to
save out of his current wealth W;. The dynamic budget constraint takes the
standard form as in Merton (1971),

aw, = (Z wit (AR} — rydt) + rtdt> W — cidt, (2.33)
acA
where we still need to specify the law of motion for the asset return df?{.
According to (2.9), the increment in the innovation process dzy is the
normalized instantaneous forecast error of the cash-flow growth rate dgy for
cach e € E' = {u, [} and it is to be thought of as the news about the current
hidden state s; € S. In informationally efficient asset markets, news arrival
leads to an instant revision in the price of each asset a € A generating a
surprise return (also called news, innovation or forecast error) in proportion

to the asset volatility 0",

dR{ — E{dR{} = ) vpd3, (2.34)
eck

180f course, the economic uncertainty in s € {s3} will eventually decline once the
unobservable state is recognized but it takes a long time in comparison to the mean
duration of the short recession ss.
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where the net return is defined as usual

dP! + Dgdt
dR¢ = #, (2.35)
Pta
The realized return dR{ is composed of the predictable part given by the
expected return Ey (dR{) = (fdt and the unpredictable part given by the

surprise return in (2.34),

dRy = (fdt+ ) 0pedz. (2.36)
eck
In our model, the expected return ¢ and the return volatility 93" for each
e € E and each asset a € A are determined jointly by market clearing in
general equilibrium.
The investor’s consumption-portfolio problem is to maximize his lifetime
utility defined recursively in (2.1) subject to the dynamic budget constraint
(2.33) leading to the standard Hamilton-Jacobi-Bellman (HJB) equation'”

0= max {U(c,J)dt+ E{dJ (W, m,m)}}, (2.37)

) u7 )
{e,wt whwb}

where the posterior distribution becomes a part of the state vector in ad-
dition to the wealth W.20 Ito lemma applied to the continuation utility
J = J (W, my,m), along with the budget constraint in (2.33) and the dynam-
ics of the return dRY in (2.36), then leads to a nonlinear partial differential

equation of the second order for J.

2.5.1 First-Order Conditions and Equilibrium

The first-order condition for the consumption rate c states that the marginal
utility of consumption equals the marginal utility of wealth %—g = g—v‘[]/. The
first-order condition for the portfolio weight w* for the asset a € A states that
the total demand for asset a equals the myopic demand plus the intertem-

poral hedging demand that arises from the fluctuations in the investor’s own

195ee Duffie & Epstein (1992b,a).

20Note that the belief s is given implicitly due to the restriction that the probabilities
sum to one.
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uncertainty about the state of the macroeconomy (Merton, 1973, Veronesi,
1999).
In equilibrium, the conditions ¢; = DY, w = 1, w! = 0 and w? = 0 must

hold for the asset and the goods markets to clear.

2.5.2 Value Function and Wealth-Consumption Ratio

The first-order condition for the consumption rate implicitly defines the op-

timal policy function ¢ = ¢ (W, 7, m2). Invoking the homotheticity of the

recursive preferences 8‘1};;%@ = 1 implies that the policy function ¢ (W, 7y, m2)

is separable across the financial wealth W and the beliefs (m,m). The
separability of the policy function in turns implies, through the first-order

condition, that the value function is also separable across W and (7, 72),

I—y
J(W,m,m) = o8 [0 (m, m))* zv_y,

(2.38)

where we choose to parametrize it in terms of the equilibrium wealth-consumption

ratio
o (7T1,t,7T2,t) = Wt/Ct~

The conjecture in (2.38) reduces the nonlinear PDE, coming from the Hamilton-
Jacobi-Bellman equation for the continuation utility J in Section 2.5, to the
nonlinear degenerate-elliptic partial differential equation of the second order
for @, presented in Proposition D.1 in the Appendix D.

When the investor prefers early resolution of uncertainty (i.e., # < 0), the
cross-derivative of the marginal utility é% (g—l;{/) is negative. The intuition for
this results is simple. A positive short-run news dzj always raises the poste-
rior odds in favor of the expansion O 23, and thus the beliefs 7 and w5 go up.
This in turn leads to an improvement in the T-period forecasts of future con-
sumption growth rate my'y, raising the duration of the consumption stream,
and so delaying the mean time to the (partial) resolution of uncertainty about
the consumption stream. This is disliked by the investor with a preference

for early uncertainty resolution, and the marginal utility falls. The fall in the
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marginal utility is larger when the increase in the duration is bigger, allowing
us to order the cross-derivatives as 678“ ( gﬁf,) < 8772 ( aW) < 0.
As a corollary, the Wealth—consumptlon ratio is procyclical, being an in-

creasing function of the behefs > aﬁ > 0.

2.6 State-Price Density

The absence of arbitrage implies the existence of a positive state-price density

process M; which in case of the Epstein-Zin preferences (2.1) is given by the

tou ou

The following proposition presents the law of motion for the state-price den-

formula?!

sity and decomposes the corresponding risk prices into the Lucas-Breeden
component reflecting the covariance with the consumption growth and the
variable timing component reflecting the changing forecasts of the time to
the (partial) resolution of the consumption uncertainty in terms of the pos-
terior odds in (2.15) and (2.18). In our parametrization of the preferences,
late resolution of the uncertainty is disliked by the investor and the cross-
0 (aU
0J \ 0
the expected utility, we recover the standard consumption-based capital asset

derivative ) is negative, as argued in Sections 2.1 and 2.5.2. In case of

pricing model with zero timing components because the independence axiom

implies that the marginal utility of consumption does not depend on the
continuation utility and hence aaj (%—U) is zero which happens for v = ¢!,

Proposition 1. Let the equilibrium state-price density My be given by (2.39).
Then,

.. My satisfies

t
log M; — —05t — (1—0) / (®" (111, m20)) " dr — 21, (2.40)
0

21gee Duffie & Epstein (1992b,a) and Schroder & Skiadas (1999).
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with

r; = vlog Dy + (1 —0) log @ (714, moy) - (2.41)

1. My evolves according to the stochastic differential equation

A,

A —rydt =Y AfdZ, (2.42)

eckE

where

a. the instantaneous riskless interest rate ry = 1 (w4, may) S given by

(C.13)
b. the risk price functions Af = A (71, m9,) for each e € E are given
by
1 8@“
A? — Y Juau,e ]_ — 0 Z Vl tQ)“ . 7T1,t7 7T2,t)7
Lucas—Breeden Component _
Time—Varying Timing Component
(2.43)
where the symbol 6, is the Kronecker delta. 22
Proof. See the Appendix C. ]

Proposition 1, together with the equilibrium conditions, allows us to
express the first-order condition for the portfolio weights wf’ in the prob-
lem (2.37) for each asset a € A as the restriction that the risk premium

equals the negative of the covariance with the state-price density growth

rate, F; (ARY — rydt) = —covy {%, dR} — rtdt} , that is,

—r o= AT (2.44)
ecl
As can be seen, the risk prices Af measure the increase in the asset risk pre-

miums in response to the marginal increase in the exposure to the Brownian

shock dzf for each e € E.

0 foru##e

22Recall that the Kronecker delta satisfies Oye = .
’ 1 foru=e
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2.6.1 Risk Prices

The risk prices A{ for e € E in (2.43) measure the sensitivity of the growth
rate of the marginal utility of wealth to the news carried by the Brownian
shocks?3 dZ¢,

—M; (M, — B {dM,}) = Apdzy
~ ~~ - W_/
Marginal Utility Growth Rate Surprise Response to Consumption Surprise
l 151
+ Adz (2.45)

Response to Dividend Surprise

The innovations in the cash-flow growth rate dzy are i.i.d. and correspond
to the short-run cash-flow news. Good short-run cash-flow news always in-
creases the posterior odds Oj 93 in (2.15) in favor of the expansion state and
generates good long-run cash-flow news in terms of the improved forecasts of
the T-period cash-flow growth rates mj p. 24 The effect of short-run cash-
flow news on the long-run growth prospects is called the “cash-flow effect”
in the literature. Furthermore, the good short-run news also changes the
duration of the consumption stream as well as the forecast error variance
and tends to lengthen the mean time to the (partial) resolution of the con-
sumption uncertainty leading to a rise in the discount rates. The effect of
the short-run news on the discount rates is called the “discount-rate effect”
in the literature. According to the analysis in Section 2.5.2, the cash-flow
effect dominates the discount rate effect and the wealth-consumption ratio
Q" (714, ma4) is pro-cyclical rising unexpectedly on good short-run news dzf.
We call the innovation in the wealth-consumption ratio coming from the
long-run cash-flow as well as discount rate news simply the long-run news.

A positive piece of news in both the short-run and the long-run generates

23The levered dividend shock dZ! enters because it is correlated with the hidden state
s and is thus also a source of news as shown in (2.11).

24Recall that the shocks to the beliefs (71, o) are persistent in proportion to the mean
duration of the states )\;1 for j = 1,2,3 as well as the conditional probability of transi-
tioning to the short recession out of the expansion q.
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a positive surprise in the return on the wealth portfolio,

dR? — E; {dR?} = (dgf — E; {dgf})

A g

short-run news

+ (@) (dD¢ — E, {dD?}), for a = u, (2.46)

A\ g
~"~

long-run news

and a negative surprise in the marginal utility of wealth. When we invoke
equations (2.38), (2.46), and apply Ito lemma to ®f = O (w4, ), We

easily recover the formulas for the risk prices Ay in Proposition 1.

2.7 Levered Equity Prices

The absence of arbitrage implies that unlevered and levered equity prices

equal the expected discounted value of the future dividend stream,

M,P = F, {/ MTfodT} for a € {u,l}.
t

The equity price P} trends upward, making it more tractable to solve for
the equilibrium price function in terms of the corresponding price-dividend
ratio”

Pta

o = L.
t D?

(2.47)

Proposition D.1 in Appendix D exploits the martingale property of the gain
process M;®¢ Dy + fot M, D?dr, and derives the Fichera boundary value prob-

lems to be solved numerically as described in Appendix D for the ratio
Py = o (Wl,t, 7T2,t) .

2.7.1 Procyclical Price-Dividend Ratio

A preference for early resolution of uncertainty (i.e., # < 0) implies that

equity prices rise on good news. This happens because a positive innovation

250Observe that the price-dividend ratio for the unlevered equity in equilibrium must
equal the wealth-consumption ratio, g—'} =0y = I;V—:, and its pricing equation was partially
analyzed already in Section 2.5.1.
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in the cash-flow growth rate dzy (short-run news) raises the posterior odds
in favor of the expansion state in (2.15) improving the T-period forecasts in
the cash-flow growth rate (cash-flow effect). Although the increase in the
posterior odds tends to lower future mean discount factors M., (discount
rate effect), the cash-flow effect dominates the discount rate effect in our
parametrization. The dominance of the cash-flow effect then implies that
increasing the belief ;; for each ¢ = 1, 2 necessarily lowers the belief 73, =
1 — w4 — may, ceteris paribus, which improves the growth prospects and
leads to an increase in the price-dividend ratio ®f. Hence, the derivative

%?f is positive. In fact, the belief 7, corresponds to the expansion state

and its increase improves growth prospects more than the corresponding
increase in o, allowing us to order the derwatlves © > 67r > 0. However,
short recessions in our parametrization last on average about one year which
indicates that the long-run improvement in the growth prospects is about

the same, hence, the derivatives g‘b and are of comparable magnitudes.

2.7.2 Conditional Return Moments

The procyclical variation in equity prices in turn generates a corresponding
countercyclical variation in the conditional moments of the equity returns.
To see this, let us look first at the conditional equity return volatility o}
for e € E, which measures the sensitivity of the equity return to the cash-
flow news dz{ as shown in (2.34). According to the analogue of (2.46) for
a = u, we can also decompose the news for a = [ into short-run news

and long-run news. The long-run news can be further decomposed using It

lemma as d®¢ — E, {d®)} = 327 %‘ia (dm;y — Ey{dm;+}) , and thus the total
sensitivity to news ;" = 9¢ (1, m2) equals the sum of the sensitivity to the
short-run news, which is constant by assumption, and the sensitivity to the

long-run news, which depends on the beliefs,

1 00
gae _ 0Ba + Ve (2.48)
—~ —— 1 da 87'('@'
Total News Sensitivity Short-Run News Sensitivity N _

~
Long-Run News Sensitivity
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where the symbol 9, . is the Kronecker delta.

The volatility 93" in (2.48) is positive and countercyclical. Positive short-
run news dzy leads to a rise in the odds in favor of the expansion state in
(2.15), increasing 4 but decreasing the sum m; + 73, by exactly the same
amount. But the belief 73, is relatively small due to the inherent rareness
of long recessions and thus the news dm;; — E; {dm;;} for i = 1,2 are of
comparable magnitude but opposite sign. The inequality g%f > % from
the previous section then implies that the long-run news is always positively
correlated with the short-run news. In addition, the sensitivity of beliefs to
short-run news vf, in (2.11) is proportional to the prior variance var; {u¢, }
in (2.14), which tends to be large during times of heightened economic uncer-
tainty measured by the dispersion of the beliefs and leads to countercyclical
variation in the magnitude of the long-run news, and hence, in the equilib-
rium equity volatility ;" for each e € E.

Second, the first-order condition in (2.44) says that the equity risk pre-
mium can be decomposed into the Lucas-Breeden component (short-run risk
premium) plus the timing premium due to the non-indifference to the timing

of the resolution of uncertainty about future consumption growth inherent

in the Epstein-Zin preferences (the long-run risk premium),

\Et (dR? — Ttdt)J = ’J/COVt (dR? — Et {ng} s dgf — Et {dgf})l

Vv Vv
Equity Risk Premium Short-Run Equity Risk Premium

+ (1 6) covy <ng _ B {dRY}, é (D — E, {dcpg})) - (2.49)

NS

~
Long-Run Equity Risk Premium

The equity risk premium inherits the property of countercyclical variation
from the volatility 9{"° as well as the risk prices Af. We note again that
although positive short-run news does generate positive long-run news, the
magnitude of the long-run news is countercyclical as explained above, which
tends to lower both covariances through vf, in (2.11) in times of high confi-
dence when m;; ~ 0 or m; ~ 1.

The return variance var; {dR{} = (Zee E (19#76)2> dt as well as the ex-

pected return F; {dR{} = ({dt are instantaneous moments corresponding
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to infinitesimal decision intervals and thus must be time-aggregated to finite
intervals as described in Proposition E.1 in the Appendix E in order to be

comparable to the data.

2.8 Real Zero-Coupon Bond Prices

Absence of arbitrage implies that the price of the real zero-coupon bond P}
with a given maturity 1" equals the expected discounted value of the principal

payment
MP} = E {MrP}},

where we normalize the principal P% = 1. Proposition D.2 in the Appendix
D exploits the martingale property of the deflated price M;P? and derives
the partial differential equation for the bond price P’ as a function of the

beliefs (71, m2) and time t,
PP = P (my,mot;T).

As discussed in Section 2.6.1, and applied to price-dividend ratios later in
Section 2.7.1, the effect of uncertainty on asset prices can be decomposed into
the procyclical cash-flow effect and the countercyclical discount-rate effect.
As the cash-flow effect is not present in case of non-defaultable zero-coupon
bonds, their prices are driven solely by the countercyclical variation in the
discount rates. The countercyclical variation in the bond prices generates a
corresponding procyclical variation in the bond risk premium but counter-
cyclical variation in the bond return volatility and the bond yields. Such
countercyclical fluctuations in the bond prices imply negative surprise in the
bond returns during the good times and positive surprise in the bond return
during the bad times. The real bonds thus carry negative risk premiums

exactly because they help to smooth consumption. 20

2675 before, the expected bond return E; {de} = ¢Pdt as well as the bond return vari-

2
ance vary {de} = | Deer <19?’b> dt correspond to infinitesimal decision intervals. In

order to be comparable to their discrete-time counterparts, they must be time aggregated
to Ey {Ri7 +1,T} and var {Ri’ +1,T} as explained in Proposition E.1 in the Appendix E.
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2.8.1 Real Yield Curves

The intertemporal price between consumption today and consumption in 7'
periods ahead equals the gross yield-to-maturity 1+ Y;(T) = exp (ygT) ) on a
real zero-coupon bond that matures in T" periods. The functional dependence
of the annualized yield on the beliefs (7 4, ma,, 7r37t)/ presented in the previous
proposition is driven by three distinct effects. First, the subjective discount
rate 0 measures the investor’s desire for immediate consumption with more
impatient investors demanding higher yields in order to willingly accept lower
consumption today relative to the one in T periods ahead. The second effect
reflects the desire for a smooth consumption growth profile. The increased
desire to borrow against improved economic prospects measured by mj'y
shifts the demand for consumption to the right which however cannot be met
in an endowment economy without a corresponding change in the equilibrium
yield Y;(T). The strength of such an effect, moreover, is measured by the
elasticity of intertemporal substitution ). The consumption smoothing effect
explains why yields are high in times of good economic prospects and low
in times of bad economic prospects. The third and last motive is related
to the desire to save. Such precautionary saving is inherently related to the
degree of economic uncertainty measured by the forecast error volatility of
the T-period consumption growth rate oy'p. As discussed in Section 2.4, the
model with hidden regime shifts endogenously generates the variation in the
forecast error variance in response to fluctuations in the posterior distribution
(7Tl,t7 T2t 7T3,t)/-

The following proposition links the real yield curve to the optimal forecasts

and the forecast-error variances of the T-period consumption growth rate.

Proposition 2. Denote ygT) the continuously-compounded yield-to-maturity

on a T-period real zero-coupon bond and r? 1.1 the corresponding continuously-
compounded holding period return. Then, the annualized yield-to-maturity

on the T-period bond 1s given by
U (=\\— 1 u u \2
WP w004 (1= 0) @ @)+ (7 ) it~ () 2 ) (250)
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where T = (1,79, T3) denotes the invariant distribution of the Markov

chain.
Proof. See Appendix F. ]

Our quantitative results discussed later show that the real yield curve is
driven predominantly by the intertemporal substitution effect in response to
changing forecasts of future mean consumption growth rates mj'r /T. The
term structures of the T-period mean forecasts mj'; /T, and hence of the T-
period real log yields yt(T), slope down during the expansions but up during
the recessions because of the mean-reverting nature of the instantaneous
consumption growth rate uf . The slope is moreover steeper during the long
recessions because of the dramatically more inferior short- and medium-term
forecasts of the consumption growth rate averaged over the T periods.

In addition, our model has implications for the volatility of the real yield
curve. The volatility curve of the real yields o {yt(T)} for T" > 0 depends
on the variability of the mean T-period consumption growth rate forecasts
o {mgT / T}. Such forecast variability necessarily declines with the forecast
horizon T" and hence the model generates a downward-sloping volatility curve

for the real yield curve.

2.8.2 Bond Risk Premiums

The annual bond risk premium depends crucially on the time-series properties

of consumption as the following proposition shows.

Proposition 3. The annual geometric risk premium on the T-period real

zero-coupon bond is given by

2
f)/ u u

B, {7“?+1,T - yt(l)} Sy (var, {(Er1 — Ey) g/r} — vary { (B — Er) g4 })

Proof. See Appendix F. ]

The above proposition is consistent with the findings in Campbell (1986).
First, bond prices carry a zero risk premium when the consumption growth

rate gy is LLD. because then (Ey1 — Ey) g'r = (B — E4) g4 Second,
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bond prices carry a negative risk premium when the expected consumption

growth rate is positively autocorrelated,

var; {(Et+1 — Ey) g;fT} > vary {(Et+1 — Ey) ggfl} .

Moreover, the magnitude of the bond risk premium is an increasing function

of the consumption growth rate persistence.

2.9 European Options

Absence of arbitrage implies that the price of the European call option Pf
with the given maturity time 7" and the strike price P equals the expected

discounted value of the option payoff at the maturity
Mtptc = Et {MTPICv} 5
where the option price at the maturity equals the final payoft,
c [ -l
PT:maX(PT—P, 0).

Proposition D.3 in Appendix D exploits the martingale property of the dis-
counted option price M;Pf and derives the partial differential equation for

the no-arbitrage price
—l
Ptc = P (ﬂ-l,b T2ty Tty t? T? P )

as a function of the beliefs (7, mo;), the log of the levered equity price to
the strike price x; = log (Ptl/ﬁl> and time t.

3 Empirical Section

We follow the empirical strategy used by Cecchetti et al. (2000) and estimate
our two-state semi-Markov model for consumption and dividends hidden in
[.LI.D. Gaussian shocks in (2.3) by the maximum likelihood method. We
discuss the point estimates and their standard errors. We then demonstrate

the plausibility of these parameter estimates by calculating the variance ratios
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as well as the long-run forecasts of the consumption and dividend growth
rates. The fact that the decade-long optimal forecast of the consumption
growth rate during the long recession comes out close to zero motivates our
interpretation of the long recession as the lost decade. Finally, we show
that learning about hidden growth persistence endogenizes the variation in

the probability of the consumption disaster specified exogenously in Gourio
(2012, 2013), Seo & Wachter (2013) and Wachter (2013).

3.1 Summary Statistics

Our data construction of U.S. time series is similar to Bansal et al. (2007)
and it is described in full in the Appendix A.1. Table 1 presents the summary
statistics for consumption and aggregate equity market dividends in the U.S.
The geometric growth rates of the series hover most of the time around
their unconditional means of 1.87% and 2.06% but the dividend series are
more volatile with the annualized standard deviation of 10.38% compared to
1.26% for the consumption series. The first-order annualized autocorrelations
in both series are negligible. The skewness coefficient is negative -0.44 and
-0.45 due to the marked tendency to experience declines during economic
downturns while the excess kurtosis of about 1.41 and 3.78 along with the
quantile-to-quantile plots and the Kolmogorov-Smirnov tests against the null
of Gaussian distribution (not reported) favor a leptokurtic distribution such
as a Gaussian mixture density. Table 1 also presents the summary statistics
for the aggregate equity market. The average equity risk premium is about
5.51% with a volatility of about 16.55% per year. The null hypothesis of zero
equity risk premium can be rejected at 5% significance level. The average
price-dividend ratio is about 31.35 per year with annual volatility of about
33.59% and the first-order annualized autocorrelation coefficient of about
0.82.

The long-term annual data for real per-capita consumer expenditures for
42 countries is from Barro & Ursua (2012) and it is described in the Appendix
A.2. The confidence interval for the relative frequencies of the periods with

negative T-year growth rate are plotted in Figure 1 for T'=1,...,30. We
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classify periods of negative 10-year growth rate as lost decades and plot in
Figure 2 the histogram of their relative frequencies for each country sepa-
rately. The relative frequency features large cross-sectional variation with
the smallest share of lost decades observed in Indonesia and Philippines but
more than 30% of decades in Venezuela. The summary statistics in Table 2
reveals that the lost decades in the U.S. occur from 1790-2009 with a rela-
tive frequency of about 12%, with a standard error of 5%, and average about
-0.68% mean growth rate, with a standard error of 0.09%, which is signifi-
cantly below -1.41% mean growth rate, with a standard error of 0.15% in the
full Barro-Ursua sample, but is statistically close to the maximum likelihood

estimate of u® = —0.79% as discussed later.

3.2 Maximum Likelihood

The cash-flow model in (2.3) depends on the parameter vector

0 = (ﬁuaﬂuaﬂl7ﬁlaau70_la)\17>\27)\37Q)/7 <31>

subject to the restriction that the long-run geometric means of the consump-
tion and the dividend growth rates F { ,ugt} for e € F are equal.

Rare long recessions are not observed in the U.S. postwar data and thus we
cannot estimate their mean duration A5 L as well as their relative frequency
m3. For this reason, we calibrate these parameters based on the Barro-Ursua
sample for the U.S. (1790-2009). Table 2 reveals that long recessions with
mean duration of 10 years occur in this sample with the relative frequency
of about 12% with a standard error of 5%. We set ;' = 10 years and
w3 = 10% which implies exactly one lost decade per century on average. Our
choice is also consistent with the broader evidence in the cross-section of 42
countries in the the Barro-Ursua sample where the relative frequency of lost
decades is 13%.

We demonstrate in Section 3.2.1 that our choice of A3 and 73, together
with the maximum-likelihood estimates of the remaining parameters

(ﬁuo /”Luaﬁla Oua Ula )‘17 Q)/ )
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implies empirically plausible magnitudes of the T-period-ahead forecasts of

the dividend growth rate mg . for each e € E.

3.2.1 Parameter Estimates

Panel A in Table 3 reports the parameter values and the asymptotic standard
errors of the maximum likelihood estimates for the transition intensities \;,
consumption and the dividend growth rates uf as well as the volatility ¢ for
eache € K and1=1,2,3.

First, consumption is estimated to grow instantaneously at the annualized
rate of about u* =2.65% in expansions, and about p" =-0.79% in recessions,
which is consistent with the sample mean growth rate of about -0.68%, with
a standard error of 0.09%, experienced by the U.S. during its lost decades
between 1790-2009 but not used in the estimation (see Table 2). 27

Next, the aggregate dividend is estimated to grow instantaneously at the
annualized rate of about i’ =4.28% in expansions and about Hl =-6.33% in
recessions while the annualized estimate of the consumption volatility comes
out around o =1.09% whereas it is about o/ =10.16% for the aggregate
dividends. 2%

In addition, Panel B in Table 3 reports the long-run forecasts of consump-
tion and dividend growth rates, conditional on all the hidden states. The
annual consumption growth rate forecasts are g%:m = 2.44% in expansions
whereas g%,i:m = 0.37% in downturns and g%:1|3 = —0.63% in lost decades.
In addition, the annualized decade-long forecasts are g%:mu = 2.09% expan-
slons, gr_jp; = 1.79% in downturns and Ir—10)3 = 0.29% in lost decades.
The lost decade s; = 3 may in fact be thought of as a protracted, decade-
long, period of anemic growth during which the consumption level is forecast

to stagnate. 29

27Table 2 shows that the average is about -1.41% per year with a standard error 0.15%
in the Barro-Ursua cross-section of 42 countries.

28For comparison, David & Veronesi (2013) calibrate consumption volatility six times
higher at 6.34 % per year.

29We note that the estimation procedure restricts only the mean duration of the lost
decades A3 and their relative frequency in a century-long series (i.e., 73 = 0.1). The fact
that the decade-long consumption-growth forecast comes out close to zero is dictated by
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As regards dividends, the decade-long forecasts come out gépz sl = 2.54%
in expansions, ng:40|2 = 1.64% in downturns and ng:40|3 = —3.00% in lost
decades. For example, the cumulative drop in dividends over the whole 10-
year duration of the lost decade, which happens once a century, is —3.00% x
10 = —30.0%. This quantitative exercise demonstrates that much less con-
sumption and dividend risk, measured in terms of the difference in the hidden
growth rates ;1 — " and ol — Hl per unit of the volatility o* and o', is needed
when the growth persistence itself is subject to change, as opposed to the
common two-state models of asset prices that feature constant persistence.

Second, the mean duration of the expansion )\fl comes out almost 6 years
and according to (2.7) the mean duration of the short recession A\, ' comes
out slightly above 1 year. The transition probability to the short recession,
conditional on leaving the expansion state, ¢ = gA1/ (gA1 + (1 —q) A1), is
estimated around 0.92. These estimates imply that the invariant distribution
is T = (0.773,0.127,0.100), with each century experiencing on average 77
years of good times interrupted by about 13 brief business-cycle recessions
and about one lost decade. The Great Recession of 2008 is exactly the 13th

recession after the Great Depression.

3.2.2 Hidden State Estimates

We use the maximum likelihood estimates from Table 3 and follow Hamilton

(1989) in order to obtain the time series of the filtered beliefs
Tit = P{St = gfi‘ft;é\}

for each 1 = 1,2, 3 as well as the smoothed beliefs P { st = Si| Fr, é\}, which
are conditional on the whole sample period. The filtered belief 73, corre-
sponds to the probability of the consumption disaster.

Figure 1 shows that the filtered beliefs nicely track the NBER recessions
when 71 ; falls and 72 and 73 ¢ both rise due to the Peso problem discussed in
Section 2.3. Speaking quantitatively, the estimated disaster probability 7,

reaches magnitudes of almost 30% in the recessions while the correspond-

the realized consumption and dividends series.
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ing smoothed probability is estimated almost always below 10%. This fact
suggests that the U.S. economy did not experience significantly protracted
recessions ex post in the post-war sample but investors nonetheless worried

about such a possibility on an on-going basis.

4 Implications for Consumption and Asset Prices

We assess the performance of the model by comparing the model-implied
unconditional and conditional asset-pricing moments to their sample coun-
terparts. The estimates of the dividend growth rate model in (2.3) are from
Table 3 while the utility aggregator in (2.2) is configured with the relative
risk aversion v = 10.0, the elasticity of intertemporal substitution ¢ = 1.50
and the subjective discount rate 6 = 0.015. Our assumed level of the relative
risk aversion is 10, a value considered plausible by Mehra & Prescott (1985)
and used also by Bansal & Yaron (2004).

In order to obtain the conditional asset-pricing moments, we need to solve
the partial differential equations (D.1) and (D.2) for the unlevered and levered
price-dividend ratios ®% (71, m2) and ®! (71, m), and further (D.12) for the
whole term structure of the zero-coupon real bond prices PP (my, w2, t;T),
and finally, (E.1) and (E.2) for the first two moments of the time-aggregated
annual levered equity return M!(my, o, t;T) for i = 1,2. We then calculate

the (gross) bond yields Y ) (7, 1, ) as

Sl

Y(T)(T('l,ﬂ'g,t) = (Pb(ﬂ'l,ﬂ'g,t;T))_ , (4.1)

and the annual holding-period return R"T (7, ms,t) on the T-period zero-

coupon real bond as

Pb(ﬂl,ﬂ'g,t;T — 1)

RbyT(ﬂ-17 7T27 t) - Pb(ﬂ_l o t T)

(4.2)

We additionally calculate the levered equity risk premium E' (i, mo,t) as

the expected levered equity return in excess of the one-year yield,

M (7, w9, t) = M (7, w9, ;1) — YW (1), 79, 1), (4.3)
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the levered equity volatility V!(my,m,t) as the second moment minus the

first moment squared

Viry, mg,t) = (Mé(ﬂ'l,ﬂ'g,t; 1) — (M{(m,m,t; 1))2)§ : (4.4)

The unconditional moments are obtained by Monte Carlo integration
with respect to the invariant distribution of the beliefs. First, we use the
Euler-Maruyama scheme in order to solve the stochastic differential equa-
tion (2.3) in the finer filtration Gy = o (F; U {s; : 0 <7 < t}) for t > 0 and
obtain the time-series of the cash-flows Df for e € E, the shocks zf, and
the hidden states s;. We then invoke (2.9) in order to construct the time-
series of the instantaneous cash-flow forecast errors dzf as well as the beliefs
= (71g, T, 73). The time series obtained (Df, D! sy, 14, Tou, 773,15)/ con-
tains both the hidden state as well as the beliefs about that hidden state,
given the coarse information set JF; available to the investor.

Second, we construct the time series of the T-period expected consumption
growth rate mg, and the T-period consumption growth rate volatility oy
by means of (2.30) and (2.32). Furthermore, we use (4.1) and (4.2) in order
to construct the real bond yields Y;(T) and the annual holding period returns
Rf’T for maturities up to 30 years. In addition, we construct the equity risk
premium Mtl , equity return volatility W, equity Sharpe ratio Mtl / W, and
the equity price-dividend ratios ®f for e € E by means of (4.3), (4.4) and
(2.47). Finally, we calculate the unconditional moments, such as the mean,
the standard deviation or the first-order autocorrelation, as the corresponding
sample statistics.

In addition, we evaluate the performance of the model based on the beliefs
estimated from the actual post-war U.S. consumption and dividend data.
Such a stringent test is often absent in the literature because generating
plausible historical posterior beliefs based on the actual consumption data
is challenging; see the recent paper of Ju & Miao (2012, Figure 3) for a
notable exception. As we document below, our model generates plausible and
comparable dynamics for the levered equity prices using both the historical

and the simulated posterior beliefs.
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4.1 Consumption

In Table 5 we report the means, the standard deviations and the first-order
autocorrelations of the realized and the simulated data as well as the cor-
responding annual variance ratios for the horizons up to five years. As can
be seen, the simulated cash-flow model in (2.3) nicely matches the salient
features of the consumption and dividend data.

Furthermore, the analysis in Section 2.4.3 predicts that the annual con-
sumption growth rate forecast my'; is procyclical and the consumption growth
rate volatility o'y is countercyclical. Table 7 confirms these predictions: the
mean forecast mj'; is about 1.04% in recessions and 2.08% during expan-
sions, and the consumption volatility oy'; is about 1.74% in recessions but
only 1.36% in expansions. In addition, Section 2.4.3 predicts a rising pattern
for the annual forecast, and a falling one for the annual volatility, over the
expansion, and wice versa for the recession. This prediction is confirmed in
Table 7 as well.

Our model of consumption given by (2.3) is thus able to endogenously
generate countercylical uncertainty shocks in Bloom (2009), Bloom et al.
(2012) and Baker & Bloom (2012).

4.2 Asset Prices

Table 6 in Panel A presents the model-implied levered-equity and real-bond
pricing moments and compares them to their sample counterparts. Table 6 in
Panel B repeats the same analysis using the inferred beliefs from the actual
post-war U.S. consumption and dividend data. Table 7 presents the variation
in the moments of the conditional distributions of the levered-equity and real-
bond prices over the various phases of the business cycle, and compares them

to their empirical evidence in Lustig & Verdelhan (2013).

4.2.1 Levered Equity

In this Section, we refer to Table 6 and Table 7 jointly.
First, the unconditional risk premium of about E {M]} = 6.29% per

year from Panel A in Table 6 compares well to the sample estimate of 7.26%
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with a standard error of 1.59% in Table 1. The conditional risk premium
varies significantly over time, having a standard deviation of about o {Mtl} =
4.11%. In addition, Table 7 reveals that such variation in the risk premium
occurs at the business cycle frequency: the mean equity risk premium in
short recessions comes out about 8.88%, significantly above the mean risk
premium of 5.52% during expansions. These numbers compare surprisingly
well to the point estimates of 11.31% with the standard error 2.20% and
5.28% with standard error 1.87% obtained by Lustig & Verdelhan (2013).

Second, the mean return volatility from Panel A in Table 6 is about
E {th} = 15.78% per year and also displays a large variation over time,
having the standard deviation of about o {W} = 3.59%. The total volatil-
ity of the realized excess return is given by the square root of the mean of
the conditional variance { (W)Q} plus the variance of the conditional mean
o? {Mtl} It comes out about 16.31% per year, close to the point estimate of
17.29% with a standard error 1.10% in Table 1. As before, Table 7 reveals the
strong business-cycle variation: the mean volatility in short recessions comes
out about 19.43%, which is significantly higher than the mean volatility of
14.71% during expansions.

Third, the mean Sharpe ratio from Panel A in Table 6 is about £ {Mtl/th} =
0.37 with a standard deviation of o {M]/V/'} = 0.15. As before, Table 7 re-
veals that the large variation in the Sharpe ratio M}/V} is tightly linked to
the business cycle: the mean Sharpe ratio during short recessions is about
0.43 and during expansions about 0.35. These numbers again compare sur-
prisingly well to the point estimates of 0.66 with standard error 0.14 and 0.38
with standard error 0.14 in Lustig & Verdelhan (2013).

Fourth, the mean price-dividend ratio comes out as F {CI)é} = 22.48
and displays volatility of nearly o {10g @i} = 12.20% per year. The price-
dividend ratio volatility is below the sample counterpart of 33.59% with a
standard error of 4.75% reported in Table 1. It is arguably difficult to match
the volatility of prices in a model where the mean consumption growth rate
switches between high and low values only. Nonetheless, the model can

match the persistence of the price-dividend ratio measured by the first-order
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autocorrelation AC1, which comes out about 0.75 in annual data in Panel
A of Table 6 and compares favorably with the point estimate of 0.82 with a
standard error of 0.09 in Table 1.

Fifth, Panel B in Table 6 reveals that the model generates comparable
values for unconditional moments for levered equity prices using the historical

beliefs as well.

4.2.2 Real Bonds

Speaking quantitatively, the average short-term yield 1.78% is above the
average long-term yield of about 0.80%. The short-term yield is also more
volatile, with the standard deviation of about 0.90%, than the long-term
yield with the standard deviation of about 0.10%. As a result, the average
yield curve is mildly downward sloping, which is consistent with the empirical
findings in Ang et al. (2008), Campbell et al. (2009) and Piazzesi & Schneider
(2007).

Furthermore, our model with learning features significantly lower persis-
tence of the consumption growth rate, which, according to Proposition 3,
generates a negligible bond risk premium on a 30-year zero-coupon bond of
about -1.08%. The negative sign for the bond risk premium comes from the
countercyclical variation in the real bond prices, which fall in good times
and rise in bad times, as explained in Section 2.8. In contrast, the related
long-run risk literature can generate a sizable equity risk premium only if the
expected consumption growth rate is highly persistent, in which case the risk

premium on real zero-coupon bonds is highly negative as discussed in Beeler
& Campbell (2012).

4.3 Consumption and Asset Prices over the Phases of the Busi-

ness Cycle

As explained in Section 2.4.3, a regime shift to the high-growth state s = s;
is associated with rising T-period forecasts of the cash-flow growth rate
mip = Ej (MZT) as well as falling economic uncertainty measured by the

corresponding T-period cash-flow volatility oy = oy { g;"T}. These pre-
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dictable changes occur gradually while the regime shift is being recognized in
terms of the posterior odds in favor of the high-growth state O; o3 in (2.15).
From the perspective of the equity pricing, the shift is associated with falling
levered-equity risk premiums, return volatility and Sharpe ratios as well as
a rising levered-equity price-dividend ratio, as shown in Table 7. From the
perspective of the real-bond pricing, the shift is associated with rising bond
yields and holding-period excess returns in Table 8. From the perspective
of macroeconomics, the shift is associated with rising annual forecasts of the
consumption growth rate my; and falling annual consumption growth rate
volatility oy';, as also shown in Table 7.

In contrast, a regime shift to the low-growth state s € {ss, 53} is associated
with falling T-period consumption growth-rate forecasts mj', as well as rising
economic uncertainty measured by the corresponding T-period consumption
volatility oy'p. These predictable changes also occur gradually over time as
the regime shift is being recognized in terms of the posterior odds O 23 and
Oy3. The posterior odds O o3 are informative about the growth rate (i.e.,
high growth rate versus low growth rate) whereas the posterior odds O3 in
(2.18) are informative about the growth rate persistence (i.e., high persistence
versus low persistence). In fact, the uncertainty about the persistence does
not arise in a standard two-state Markov chain setting. From the perspective
of the equity pricing, the shift is associated with rising levered-equity risk
premiums, return volatility and Sharpe ratios as well as a falling levered-
equity price-dividend ratio, as shown in Table 7. From the perspective of the
real-bond pricing, the shift is associated with falling bond yields and holding-
period excess returns in Table 8. From the perspective of macroeconomics,
the shift is associated with falling annual forecasts of the consumption growth
rate my'; and rising annual consumption growth-rate volatility o3, as also
shown in Table 7.

The predictable variation in the cash-flow forecasts and the discount rates
depends crucially on the fact that the economic uncertainty is declining over
time after the regime shift to the high-growth state, but rising after the

shift to the low-growth state. This single learning mechanism has the power
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to generate (1) the procyclical variation in the price-dividend ratio, (2) the
countercyclical variation in mean risk premium, return volatility and Sharpe
ratio, (3) the rising pattern of the risk premiums, the return volatility and
the Sharpe ratios during recessions and falling pattern during the expansions,
(4) the leverage effect, (5) the mean reversion of excess returns, and (6) the
predictability of consumption volatility from the price-dividend ratio. In
particular, Table 7 reveals that the variation in the conditional moments
of the levered-equity prices over the various phases of the business cycle
compares quantitatively to the empirical evidence in Lustig & Verdelhan
(2013).

5 Robustness of Results

In this section we perform the following robustness analysis. First, we assess
the performance of the two-state Markov chain model, which is nested in our
semi-Markov setting for ¢ = 1. We then examine the sensitivity of our results
to the choice of the two parameters (A3, 73), which cannot be estimated
from the short sample. We end by briefly assessing the implications for the

European options.

5.1 Two-State Markov Chain as a Nested Model

The standard two-state Markov chain is nested in our framework for ¢ = 1.
Table 6 reveals that the model without lost decades performs marginally bet-
ter than Mehra & Prescott (1985) because the states s; for ¢ = 1, 2 are hidden,
which generates a small uncertainty premium due to the preference for early
resolution of uncertainty coming from the Epstein-Zin preferences. Despite
that, the semi-Markov model with lost decades dramatically outperforms the

Markov model in every dimension reported.

5.2 Sensitivity to Non-Estimated Parameters

The cash-flow model parameters (A3, 73) are difficult to estimate given our

short sample. In our empirical approach, which is discussed in Section 3.2,
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we choose thoughtfully the mean duration of the long recession A3 =10
years and the invariant distribution of the lost decade w3 = 0.1. We then
invert the constraint (2.7) for the mean duration of the short recession A’
as a function of ¢, A{*, A3 and 73. Such choice of the parameters (A3, 73)
implies that each century features on average about one lost decade.

In order to examine the sensitivity of our results to the above choice
of A3 and 73, it is more natural to consider the pair (A2, A3), and then
obtain 73 from the constraint (2.7). We consider the hazard rate of the
short recession Ay € {0.5,1.0,1.5} and the hazard rate of the long recession
A3 € {0.08,0.10,0.12}, obtaining 3 x 3 = 9 candidate cases to consider.
Table 9 presents the asset-pricing implications for the levered equity and the
real bonds in the form of a two-dimensional matrix. ' We additionally re-
port the implied invariant distribution 7 = (7, 72, 73)". As can be observed,
the asset-pricing moments for the candidate calibrations are of comparable
magnitudes to the benchmark results in Table 6. Interestingly, higher mean
duration of the short recessions Ay I lowers the equity premium because it

weakens the Peso problem by slowing down the learning about the recession

type.

5.3 Discussion of European Options

Modeling consumption disasters as large negative declines in the realized
consumption growth rate results in option prices less in line with the data.
In the words of Backus et al. (2011) on p. 1994:

“The consumption-based calibration has a steeper smile, greater
curvature, and lower at-the-money volatility. This follows, in part,
from its greater risk-neutral skewness and excess kurtosis ... . They
suggest higher risk-neutral probabilities of large disasters and lower

44

probabilities of less extreme outcomes.

Our results suggest, in contrast, that modeling consumption disasters as

protracted periods of anemic consumption growth rate results in option prices

30The calibration in the middle of the matrix Ayt =1and A\;' = 10 is closest to the
choice in Section 3.2 with A\;' = 0.9447! and \;' = 10.
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consistent with the data. Because the gist of our paper is not option pricing,
our analysis is necessarily brief.

We first solve numerically the partial differential equation (D.20) in Propo-
sition D.3 for the equilibrium price P (7, m9,t) of the European call option

with three-months to maturity, as described in the Appendix D. We then

—1
calculate the implied volatility function I <7T1, o, %) by equating the equi-

librium option price P¢ to the Black-Scholes formula. The average implied
volatility curve as a function of the moneyness log (Fl / Pl) is then con-

structed as the sample mean

T —l
N (m o g) ,
t=1
where the beliefs 7 ; and 7y are estimated from the consumption and div-
idend data. We consider 9 candidate calibrations for the two non-estimated
parameters Ao € {0.5,1.0,1.5} and A3 € {0.08,0.10,0.12}.

The results are plotted in Figure 2, a counterpart to Figure 5 in Backus
et al. (2011). As can be observed, our model seems to be able to resolve the
discrepancy stated in the quote by Backus et al.: the implied volatility curves

in our model are mildly downward sloping and display negligible curvature.

6 Conclusion

Our model is a minimal extension of the Mehra-Prescott-Rietz asset-pricing
framework to an incomplete information setting that can explain a broad
range of dynamic phenomena in macroeconomics and finance. We show that
the success of the model is attributable to the interplay of two key factors.
First, we extend the standard two-state hidden Markov model to a two-state
hidden semi-Markov setting which introduces variable growth persistence.
Learning about growth persistence dramatically magnifies the level as well
as the variation in economic uncertainty. Second, we relax the independence
axiom of the expected utility by using the recursive Epstein-Zin preferences
configured so that early resolution of uncertainty is preferred. This makes

assets with uncertain future payoffs comparably less valuable, increasing their
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equilibrium risk premiums.

It is the interplay of the fluctuations in the economic uncertainty due
to learning, and higher risk premiums due to the preference for the early
resolution of uncertainty, that makes the asset desirability not only lower,
but also fluctuating over time in response to the variation in the average
time needed to resolve the payoff uncertainty.

We estimate the model using maximum likelihood on the U.S. post-war
sample of consumption and dividend series. The model can generate endoge-

nously the following array of consumption and asset-pricing phenomena:

— consumption growth rate:

e procyclical variation in the T-period forecasts, including

— their rising pattern during expansions,

— their falling pattern during recessions,

e countercyclical variation in the T-period forecast-error volatility,

including
— their falling pattern during expansions,

— their rising pattern during recessions,

for any forecast horizon T;
— equity prices:

e procyclical variation in the price-dividend ratios, including
— their rising pattern during expansions,
— their falling pattern during recessions,
e countercyclical variation in risk premiums, return volatility and
Sharpe ratios, including
— their rising pattern during recessions,

— their falling pattern during expansions,

These effects naturally induce the leverage effect, the mean reversion
of excess returns, as well as the predictability of consumption volatility

from price-dividend ratio;
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— real bond prices:

e average real yield curve,
e level, variability and persistence of real yields,

e mean bond risk premiums.

Additionally, our preliminary results for option prices suggest that our model
could be useful for understanding the behavior of implied volatility of S&P
500 index options observed in the data.

The recent study of David & Veronesi (2013) uses expected-utility prefer-
ences and shows that learning is important for understanding the co-movement
of stocks and nominal bonds. We show that additionally relaxing the inde-
pendence axiom by employing the recursive utility is key for understand-
ing the co-movement of consumption and asset prices in general. Such co-
movement depends crucially on the fact that the economic uncertainty in our
semi-Markov model is declining over time after the shift to the high-growth
state, but rising over time after the shift to the low-growth state.

To sum up, modeling rare consumption disasters in terms of protracted but
mild recessions rather than deep short declines in the realized consumption
growth rate helps to understand consumption and asset prices through the
lens of rare disasters. The fact that the probability of the rare event is
endogenous, being a result of Bayesian updating rather than an exogenously

specified stochastic process, makes our results more credible.
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Figure 2: Relative Frequency of Lost Decades : Country-Level Evidence
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Notes. The international data are from Barro & Ursua (2012) as described
in more detail in the Appendix A.2.
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Table 9: Asset-Pricing Moments : Sensitivity Analysis *

Asset-Pricing

Moments

Transition Intensity of the Lost Decade, Duration of the Lost Decade in Years

A3 = 0.12, 8.33 years

A3 = 0.1, 10 years

A3 = 0.08, 12.5 years

Mean S.D. AC1

Mean S.D. AC1

Mean S.D. AC1

Transition Intensity of the Recession, Duration of the Recession in Years

Equity Premium

7 = (0.83,0.08,0.09)

7 = (0.81,0.08,0.10)

7 = (0.79, 0.08, 0.13)

6.92 5.18 0.29

7.12 5.18 0.28

7.22 5.19 0.28

% Equity Volatility 15.84 4.01 0.41 15.76 3.78 0.38 15.62 3.58 0.35

é Equity Sharpe Ratio 0.40 0.19 0.21 0.42 0.20 0.22 0.43 0.21 0.26

z; Price-Dividend Ratio 24.09 12.51 0.72 22.82 12.79 0.74 21.74 13.12 0.77

T\‘ One-Year Bond Yield 1.84 0.94 0.44 1.73 0.96 0.42 1.61 0.98 0.40
o

= 30-Year Bond Yield 0.82 0.11 0.53 0.79 0.09 0.50 0.78 0.08 0.46

30-Year Term Premium -1.16 2.73 0.00 -1.04 2.46 0.01 -0.90 2.20 0.02

7 = (0.80,0.12,0.08) 7 = (0.78,0.12,0.10) 7 = (0.76,0.12,0.12)

Equity Premium 6.53 4.46 0.35 6.75 4.47 0.32 6.90 4.51 0.31

- Equity Volatility 16.14 3.98 0.48 16.06 3.77 0.45 15.94 3.57 0.42

;gi Equity Sharpe Ratio 0.37 0.16 0.25 0.39 0.17 0.24 0.40 0.18 0.26

f; Price-Dividend Ratio 23.97 1247  0.72 22.69 12.62 0.74 21.62 1277 0.75

’Ié One-Year Bond Yield 1.84 0.90 0.51 1.74 0.92 0.50 1.64 0.93 0.48

30-Year Bond Yield 0.84 0.12 0.58 0.81 0.10 0.55 0.79 0.09 0.51

30-Year Term Premium -1.15 2.84 0.00 -1.04 2.57 0.00 -0.91 2.31 0.02

7 = (0.71,0.22,0.08) 7 = (0.69,0.22,0.09) 7 = (0.68,0.21,0.11)

Equity Premium 5.38 2.87 0.30 5.70 3.02 0.25 5.93 3.17 0.22

® Equity Volatility 16.03 3.17 0.54 16.10 3.10 0.49 16.07 3.00 0.45

;§> Equity Sharpe Ratio 0.32 0.11 0.17 0.34 0.12 0.15 0.35 0.13 0.16

2." Price-Dividend Ratio 23.72 11.53 0.73 22.31 11.91 0.75 21.17  12.22 0.76

(I:\) One-Year Bond Yield 1.81 0.82 0.59 1.71 0.84 0.59 1.61 0.85 0.58
o
~<

30-Year Bond Yield

30-Year Term Premium

0.94 0.13 0.69

-1.03 2.82 -0.03

0.87 0.12 0.67

-0.97 2.62  -0.02

0.83 0.10 0.64

-0.87 2.38 -0.01

# The reported entries are constructed by following the steps as in Table 6. In each case,
we modify the calibration in Table 3 by varying the durations of the short recession
Ao € {0.5,1.0,1.5} and the long recession A3 € {0.08,0.10,0.12}. The stationary
probability 7 is specific to each case.

64



"(yosse SurAfropun oyjp) A3mbo

Po19Ad] 91} JO 9011d 9y ST, pue 9011d Y113 ATy ST Rt ABN / va SO[ JO SULId) Ul PaINSeIUl SI SSOUADUOW 91 ], "SOION

ssaukauopy
sio Lo 00 0 S00- vo-
— —{spLo
=
— — 8
S0 8
— —ssro 2
E
mm —9ro
a0y s
po=fy= == —g910
210"y
2o
z,.
S’ =" D Ieqed
ssauauopy
sio 1o 00 0 S00- vo-
e
— 8o 2
5
8
- —sro 2
3
=
—_— —fss10 &
800="¢' 77" s
movosy==- —oo
210="
910
Ll
0L ="¢:gdued
ssaukauop
510 1o 00 0 S00- Lo
SeLo
— —mo o
&
8
— —svio 2
3
=
— —so &
s00=¢ s
H ovosfe= == —s610 *
z10="
910

50=": v oued

uoryd() [0 ANnbi-pa1oAdT YIUON-99IY ], U0 soAIn) A[IyR[0A porduw] :F omsig

65



Working Paper Series
ISSN 1211-3298
Registration No. (Ministry of Culture): E 19443

Individual researchers, as well as the on-line and printed versions of the CERGE-EI Working
Papers (including their dissemination) were supported from institutional support RVO 67985998
from Economics Institute of the ASCR, v. v. i.

Specific research support and/or other grants the researchers/publications benefited from are
acknowledged at the beginning of the Paper.

(c) Max Gillman, Michal Kejak,and Michal Pakos, 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording, or
otherwise without the prior permission of the publisher.

Published by

Charles University in Prague, Center for Economic Research and Graduate Education (CERGE)
and

Economics Institute of the ASCR, v. v. i. (El)

CERGE-EI, Politickych vézil 7, 111 21 Prague 1, tel.: +420 224 005 153, Czech Republic.
Printed by CERGE-EI, Prague

Subscription: CERGE-EI homepage: http://www.cerge-ei.cz

Phone: + 420 224 005 153

Email: office@cerge-ei.cz
Web: http://www.cerge-ei.cz

Editor: Marek Kapicka
The paper is available online at http://www.cerge-ei.cz/publications/working_papers/.
ISBN 978-80-7343-311-6 (Univerzita Karlova. Centrum pro ekonomicky vyzkum

a doktorské studium) .
ISBN 978-80-7344-304-7 (Akademie véd Ceské republiky. Narodohospodarsky ustav)


http://www.cerge-ei.cz/
mailto:office@cerge-ei.cz
http://www.cerge-ei.cz/
http://www.cerge-ei.cz/publications/working_papers/

CERGE-EI

P.O.BOX 882
Politickych vézna 7
111 21 Praha 1

Czech Republic
http://www.cerge-ei.cz






